
ITSO: A novel Inverse Transform Sampling-based

Optimization algorithm for stochastic search

Nikolaos P. Bakas∗, Vagelis Plevris†, Andreas Langousis‡, Savvas A. Chatzichristofis§

Abstract

Optimization algorithms appear in the core calculations of numerous Artificial Intelligence
(AI) and Machine Learning methods, as well as Engineering and Business applications. Fol-
lowing recent works on the theoretical deficiencies of AI, a rigor context for the optimization
problem of a black-box objective function is developed. The algorithm stems directly from the
theory of probability, instead of a presumed inspiration, thus the convergence properties of the
proposed methodology are inherently stable. In particular, the proposed optimizer utilizes an
algorithmic implementation of the n-dimensional inverse transform sampling as a search strat-
egy. No control parameters are required to be tuned, and the trade-off among exploration and
exploitation is by definition satisfied. A theoretical proof is provided, concluding that only
falling into the proposed framework, either directly or incidentally, any optimization algorithm
converges in the fastest possible time. The numerical experiments, verify the theoretical results
on the efficacy of the algorithm apropos reaching the optimum, as fast as possible.

Keywords: Stochastic Optimization, Inverse Transform Sampling, Black-box Function, Global
Convergence.

1 Introduction

Despite the numerous research works and industrial applications of Artificial Intelligence algorithms,
they have been criticized about lacking a solid theoretical background [1]. The empirical results
demonstrate impressive performance, however, their theoretical foundation and analysis are often
vague [2]. Machine Learning (ML) models, frequently aim at identifying an optimal solution [3, 4],
which is computationally hard and attempts to explain the procedure often based on the evaluation
of the function’s Gradients [5, 6]. Accordingly, the identification of whether a stochastic algorithm
will work or not remains an open question for many research and real-world applications [7, 8, 9, 10].
A vast number of optimization algorithms have been developed and applied for the solution of the
corresponding problems [11, 12, 13, 14], as well as mathematical proofs regarding their algorithmic
convergence [15, 16, 17], however, their basic formulation often stems from nature-inspired proce-
dures [18, 19] and not solid mathematical frameworks. Accordingly, a vast number of research works
have been published in order to investigate the performance of black-box algorithms [20, 21, 22].

∗Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi
Street, 2121, Aglantzia Nicosia, Cyprus. e-mail: n.bakas@cyi.ac.cy
†Department of Civil Engineering and Energy Technology, OsloMet—Oslo Metropolitan University, Pilestredet 35,

Oslo 0166, Norway. e-mail: vageli@oslomet.no
‡Department of Civil Engineering, University of Patras, 265 04 Patras, Greece. e-mail: andlag@alum.mit.edu
§Intelligent Systems Lab & Department of Computer Science, Neapolis University Pafos, 2 Danais Avenue, 8042

Pafos, Cyprus. e-mail: s.chatzichristofis@nup.ac.cy

1

ar
X

iv
:2

00
1.

02
50

0v
3

 [
m

at
h.

O
C

]
 2

5
M

ar
 2

02
0

In its elementary form, the purpose of efficient optimization algorithms is to find the argument
yielding the minimum value of a black-box function f(x), defined on a set A, f : A→ Rn. Accord-
ingly, the inverse problem of maximization is the minimization of the negated function −f(x), while
problems with multiple objective functions often utilize single function optimization algorithms to
attain the best possible solution. A is assumed a compact subset of the Euclidean space Rn, where
n is the number of dimensions of the set A, however, the proposed method applies similarly to dis-
crete and continuous topological spaces. The unknown, black-box function f , returns values for the
given input xij = xi = (xi1, xi2, · · · , xin) at each computational discrete time step i = {1, 2, . . . , fe},
where fe is the number of maximum function evaluations. The sought solution is a vector xmin ∈ A,
such that f(xmin) ≤ f(x),∀x ∈ A, which may be written by

xmin = arg min f(x) := {x ∈ A ⊆ Rn

| ∀y ∈ A : f(y) ≥ f(x)}
(1)

The purpose of this work is to provide a rigor context for the optimization problem of a black-box
function, by adhering to the Probability Theory, aiming at identifying the best possible solution
xmin, within the given iterations fe, during the execution of the algorithm.

The rest of the paper is organized as follows: In Section 2, the proposed Inverse Transform
Sampling Optimizer (ITSO) is presented. Additionally, the same Section provides in details the the-
oretical formulation of the algorithm as well as some programming and implementation techniques.
Illustrative examples of the optimization history are also comprised. In Section 3 the theoretical
proof of convergence is provided, as well as Lemma 1, deriving that the suggested optimization
framework is the fastest possible. The numerical experiments are divided into three groups. Sub-
section 5 is about the comparison with 13 nonlinear loss functions, 17 optimization methods, for 10
and 20 dimensions of search space, and 5000 and 10000 iterations per dimension. Section 4, briefly
presents the programming techniques that were investigated, in order to implement the proposed
method into a computer code. Finally, the conclusions are drawn in Section 6.

2 Optimization by Inverse Transform Sampling

Let the probability distribution of the optimal values of f , be considered as the product of some
monotonically decreasing kernel k over f at some time-step i and hence given input xi. This
assumption stands in the foundation of the method and can be considered as rational, instead of
an arbitrary selection strategy, inspired by natural or other phenomena. It is a straightforward
application of the Probability theory to the problem. The kernel may be considered as parametric,
concerning time i. The selection of the kernel k should satisfy the condition that its limit is the
Dirac delta function centered at arg min f ,

lim
i→∞

ki(f) = δm(x), (2)

where δm denotes the Dirac function centered at arg min f . Although the selection of the kernel
k is ambiguous, it can be chosen among a variety of functions satisfying Equation 2, such as the
Gaussian:

ki(f) = exp(−f(xi)
2
g(i)), (3)

where g(i) is a time increasing pattern. The function g(i) controls the shape of the kernel k,
approximating numerically Equation 2. Additionally, we may use:

ki(f) = max f − f(xi), (4)

2

ki(f) = 1− f(xi)−min f + ei
max f −min f + ei

∧ ei → 0, (5)

or any other non-negative Lebesgue-integrable function, which reverses the order of the given set
of all fî, where î is the permutation of the indices 1, 2, ..., i, such that the sequence of fî being
monotonically strictly decreasing. The duplicate values of fî should be extracted to avoid numerical
instabilities. These duplicates often appeared in the empirical calculations, especially when the
algorithm was close to a local or global stationary point. A variety of kernel functions k were
investigated, and the results weren’t affected significantly, even when distorting k(f) with some
random noise X ′ ∼ U(a, b)∀k(fî) ∈ (a, b).

Accordingly, for each dimension j of the vector space A, the marginal probability density function
PXj is obtained numerically from the kernel function:

PXj
(xij) = k(f(xij))∀j ∈ {1, 2, ...n}. (6)

PXj
(xij)dx is the probability that arg min f falls within the infinitesimal interval [xij − dx/2, xij +

dx/2]. The corresponding cumulative distribution function (CDF) FXj
, can be calculated by:

FXj (xij) =

∫ xij

lbj

PXj (ξ)dξ, (7)

where lbj is the lower bound of the jth dimension of the vector space A and can be numerically

evaluated by some numerical integration rule, such as the Riemann sum Sj =
n∑

i=1

PXj
(x∗ij)∆xij ,

with PXj
(x∗ij) computed by the application of the kernel k on some xij , such that f(x∗ij) = (f(xij)+

f(xi−1,j))/2, or another approximation scheme. In the following pseudo-code 1, the algorithmic
implementation of the Inverse Transform Sampling method is demonstrated. The symbols are also
noted in the Nomenclature section.

A graphical demonstration of the evolution of the Probability Density, as well as the corre-
sponding Cumulative Distribution Functions, is presented in Figure 1, for f(x) = (x− 5)2, which is
function with one extreme value and in Figure 2, for f(x) = sin(x+ 0.7) + 0.01 ∗ (x+ 0.7)2, which
has many extrema. Interestingly, as the function evaluations increase, the CDF, is characterised
by sharp slopes, which are positioned in regions where the PDF exhibits high values, and hence
function f(x) attends its lows. Figures 1 and 2, offer an intuitive representation of the procedure
for finding the minimum of the function, within the suggested framework.

3 Convergence Properties

During the optimization process, the algorithm generates some input variables xij as arguments for
the black-box function f . By utilizing the values of f , we may compute the values of the distribution
PXj

(xij), by Equation 6, and FXj
(xij) by Equation 7, for all xij .

Definition 1. We define the argument of f within fe iterations, corresponding to the minimum of
f as xm = arg min f .

In iteration i, the algorithm will have searched the space Â ⊂ A, within the limits lbj , ubj . By
definition, P is the probability density (likelihood) that the optimum occurs in a region x ± dx.

3

Algorithm 1: ITSO-Mathematical Framework

Data: A, fe, n
Result: x∗ = arg min f , f∗ = f(x∗)

1 while i ≤ fe do
2 j ← U {1, n};
3 ri ← U(0, 1);
4 SORT xij ∀i;
5 xij ← Fj

−1(ri);
6 fi = f(xi);
7 if fi ≤ f∗ then
8 f∗ ← fi;
9 x∗j ← xij ;

10 else
11 xij ← x∗j ;

12 end

13 end
14 return x∗ = arg min f

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(a) PDF, i = 3

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(b) CDF, i = 3

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(c) PDF, i = 100

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(d) CDF, i = 100

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(e) PDF, i = 350

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(f) CDF, i = 350

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(g) PDF, i = 500

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(h) CDF, i = 500

Figure 1: Probability Density and Cumulative Distribution Functions, utilizing ITSO search
strategy, for function f(x) = (x− 5)2. The shape sequentially tends to the Heaviside function,

centered at xm = 5

Hence,

E[X] =

E[X1]
E[X2]
. . .

E[Xn]

 =

∫ ub1
lb1

ξPX1(ξ)dξ∫ ub2
lb2

ξPX2(ξ)dξ

. . .∫ ubn
lbn

ξPXn(ξ)dξ

 , (8)

4

- 10 0 10 20
0.00

0.25

0.50

0.75

1.00

(a) PDF, i = 3

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(b) CDF, i = 3

-10 0 10 20
0

1

2

3

4

5

(c) PDF, i = 150

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(d) CDF, i = 150

-10 0 10 20
0

5

10

15

(e) PDF, i = 250

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(f) CDF, i = 250

-10 0 10 20
0

100

200

300

(g) PDF, i = 500

-10 0 10 20
0.00

0.25

0.50

0.75

1.00

(h) CDF, i = 500

Figure 2: Probability Density and Cumulative Distribution Functions, utilizing ITSO search
strategy, for function f(x) = sin(x+ 0.7) + 0.01 ∗ (x+ 0.7)2. The shape sequentially tends to the

Heaviside function, centered at xm = −2.24

where E[·], denotes the expectation of a random variable or vector.

Theorem 1. If PXj
tends to Dirac δm, then ITSO will converge to xm

Proof. For each dimension j, we may write

E[Xj] =

∫ ubj

lbj

ξPXj
(ξ)dξ =

∫ ubj

lbj

ξF ′Xj
(ξ)dξ, (9)

and integrating by parts, we obtain

E[Xj] = [ξFXj (ξ)]
ubj
lbj
−
∫ ubj

lbj

1FXj (ξ)dξ = ubj ∗ 1− lbj ∗ 0

−
∫ ubj

lbj

1FXj
(ξ)dξ.

(10)

If we apply the theorem of the antiderivative of inverse functions [23], we obtain∫ 1

0

FXj

−1(y)dy +

∫ ubj

lbj

FXj (x)dx = ubj ∗ 1− lbj ∗ 0. (11)

Hence, for Equations 10 and 11 we deduce that

E[Xj] =

∫ 1

0

FXj

−1(y)dy. (12)

5

With subscript m denoting that the Dirac function is centered at the argument that minimizes
f , i.e.

δm(x) =

{
+∞, x = arg min f
0, x 6= arg min f

, (13)

and

Hm(x) :=

∫ x

−∞
δm(s)ds. (14)

As PXj
tends to Dirac function, FXj

tends to the Heaviside step function centered at xm, hence
by Equation 12 we deduce that

E[Xj]
i→fe−−−→

∫ 1

0

Hm
−1(y)dy, (15)

and by Equation 11

E[Xj] −→ ubj −
∫ 1

0

Hm(y)dy = ubj − (ubj − xm) ∗ 1 = xm (16)

Lemma 1. (ITSO Convergence Speed) ITSO is the fastest possible optimization framework

Proof. Any distribution that doesn’t tend to Dirac, could be considered as a Dirac plus a positive
function of x. In this case, the algorithmic framework would search through a strategy that produces
a P ′ over x, as

P ′ = P ∗ ± δm. (17)

Hence, with F ∗ indicating the CDF corresponding to P ∗, Equations 15, and 12, result in

E[X]
i→fe−−−→

∫ 1

0

Hm
−1(y)dy +

∫ ub

lb

F ∗(x)dx, (18)

.
and thus, by Equations 17, and 16, we obtain

E[X] −→ xm ± ε. (19)

Hence the algorithm would converge to a point different than xm

4 Programming techniques

A variety of programming techniques were investigated, in order to implement the proposed method
into a computer code. To keep the algorithm simple and reduce the computational time, we applied
inverse transform sampling by keeping in each iteration i the best function evaluations, and randomly
sampling among them. This is equivalent to a kernel function that vanishes over the worst function
evaluations, and distributing the probability mass to the best performing ones. Accordingly, similar
programming techniques may be investigated in future works, within the suggested framework.

The Algorithm 2 represents a simple version of the supplementary code in the appendix, which
may easily be programmed. The variable opti evals is a dynamic vector, containing all values
of the objective function returned during the optimization history, until step i, and x evals is an

6

Algorithm 2: ITSO-Short Pseudocode

1 Initialize: x = rand(n), opti x = x, opti f = f(opti x);
2 for i = 1 : fe do
3 for j = 1 : n do
4 indsBEST = sortperm(opti evals)[1 : α];
5 inp x = x evals[indsBEST, j];
6 inp y = opti evals[indsBEST];
7 rr = min{inp x}
8 +rand(0, 1)(max{inp x} −min{inp x});
9 x[j] = rr;

10 fi = f(x);
11 if fi ≤ opti f then
12 opti f = fi;
13 opti x = x;

14 else
15 x = opti x;
16 end

17 end

18 end
19 return opti f , opti x

i× n matrix, containing all the design vectors x1:i, corresponding to opti evals. The integer α is a
parameter regarding how many instances of the optimization history are kept in order to randomly
sample among them; for example if fe = 104, we may select α = 102. In this variation of the code,
the Inverse Transform Sampling is approximately implemented in line 7, by calculating the random
variable rr, among the extrema of the vector inp x, corresponding to the range where: for the jth

dimension of all x1:i, the α best function values were returned by the black-box function f . The
sought solution is the vector opti x, and the mimimum attained value of the objective function
opti f .

5 Numerical Experiments

In this section, we present the results obtained by running the ITSO algorithm, as well as Adaptive
Differential Evolution (rand 1 bin), Differential Evolution (rand 1 bin), and Differential Evolution
(rand 2 bin) with and without radius limited, Compass Coordinate Direct Search, Probabilistic De-
scent Direct search, Random Search, Resampling Inheritance Memetic Search, Resampling Memetic
Search, Separable Natural Evolution Strategies, Simultaneous Perturbation Stochastic Approxima-
tion, and Exponential Natural Evolution Strategies from the Julia Package BlackBoxOptim.jl [24],
and Nelder-Mead, Particle Swarm, and Simulated Annealing from Optim.jl [25]. To demonstrate
the performance of each optimizer in attaining the minimum, we firstly run the algorithm r = 10
times, obtain fk(xi) for k = {1, 2, . . . , r} and all iterations i = {1, 2, . . . , fe}, and average the results

f̂(xi) =

∑r
k=1 fk(xi)

r
. (20)

7

Then, we normalize the vector of obtained function evaluations v = {f̂(x1), f̂(x1), . . . , f̂(xfe)} in
the domain [0, 1] through

f̂n(xi) =
f̂(xi)−min v

max v −min v
, (21)

and finally use the optimization history h

h(xi) =

m∑
l=1

f̂ ln(xi)

m

1
10

, (22)

where m indicates the number of black-box functions used for the evaluation. Equation 22 was
selected as a performance metric, in order to obtain a clear representation of the various optimizers
utilized, as powers smaller than one (in our case 1

10), have the property to magnify the attained
values at the final steps of the optimization history. In Figure 3 the numerical experiments for
m = 13 functions are presented. Each line corresponds to the normalized average optimization
history h (Equation 22, for all functions, which were repeated 10 times). We may see a clear
prevalence of the proposed framework, in terms of convergence performance, as expected by the
theoretical investigation. The numerical experiments for the comparison with other optimizers, may
be reproduced by running the file run.jl.

6 Discussion and Conclusions

In this work a novel approach was presented for the well known problem of finding the argument
that minimizes a black-box, function or system. A vast volume of approximation algorithms have
been proposed, mainly heuristic, such as genetic, evolutionary, particle swarm, as well as their varia-
tions. However, they stem from nature-inspired procedures, and hence their converge is investigated
a-posteriori. Despite their efficiency, they are often deprecated by researchers, due to the lack of
rigorous mathematical formulation, as well as complexity of implementation. To the contrary, the
proposed algorithm, initiates its formulation from well established probabilistic definitions and the-
orems, and its implementation demands a few lines of computer code. Furthermore, the convergence
properties were found stable, as a proof that the suggested framework attains the best possible
solution in the fewest possible iterations. The numerical examples validate the theoretical results
and may be reproduced by the provided computer code. We consider the suggested method as a
powerful framework which may easily be adopted to the sought solution of any problem involving
the minimization of a black-box function.

Appendix A Programming Code

The corresponding computer code is available on GitHub https://github.com/nbakas/ITSO.jl.
The examples of Figure 3 may be reproduced by running run.jl. The sort version of the Algorithm
1 is available in Julia [26] (file ITSO-short.jl), Octave [27] (ITSOshort.m), and Python [28] (ITSO-
short.py). The implementation of the framework is integrated in a few lines of computer code, which
can be easily adapted for case specific applications with high efficiency.

8

https://github.com/nbakas/ITSO.jl

0 1000 2000 3000 4000 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Function Evaluations

N
or

m
al

iz
ed

 R
es

po
nc

es

(a) 10 variables and 5000 evaluations

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

0.8

0.9

1.0

Function Evaluations

N
or

m
al

iz
ed

 R
es

po
nc

es
(b) 20 variables and 5000 evaluations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.5

0.6

0.7

0.8

0.9

1.0

Function Evaluations

N
or

m
al

iz
ed

 R
es

po
nc

es

(c) 20 variables and 10000 evaluations

Adapt. Diff. Evol. (rand 1 bin)
Adapt. Diff. Evol. (rand 1 bin, radious limited)
Diff. Evol. (rand 1 bin)
Diff. Evol. (rand 1 bin, radious limited)
Diff. Evol. (rand 2 bin)
Diff. Evol. (rand 2 bin, radious limited)
Compass Coordinate Direct Search
Probabilistic Descent Direct search
Random Search
Resampling Inheritance Memetic Search
Resampling Memetic Search
Separable Natural Evolution Strategies
Simultaneous Perturbation Stochastic Approximation
Exponential Natural Evolution Strategies
Nelder- Mead
Particle Swarm
Simulated Annealing
Proposed- BNO

(d) Utilized Optimizers

Figure 3: Average Optimization history h (Equation 22, for all 13 Functions, repeated 10 times.

Appendix B Black-Box Functions

The following functions were used for the numerical experiments. Equations 23, 24 (Elliptic, Cigar),
were utilized from [29], Cigtab (Eq. 25), Griewank 26 from [30], Quartic (Eq. 27 from [31], Schwefel
(Eq. 28), Rastrigin (Eq. 29), Sphere (Eq. 30), and Ellipsoid (Eq. 31) from [32, 24], and Alpine (Eq.
32) from [33]. Equations 33, 34, 35, were developed by the authors. The code implementation for
the selected equations appears in file functions opti.jl in the supplementary computer code.

The exact variation used in this work is as follows, where we have adopted the notation presented
in the Nomenclature section, where i denotes the step of the optimization history, and j the dimension

9

Table 1: Average Minimum Values of h Attained by each Optimizer

n = 10 n = 20 n = 20
fe = 5000 fe = 5000 fe = 10000

Adapt. Diff. Evol. (rand 1 bin) 0.00991 0.02210 0.00852

Adapt. Diff. Evol. (rand 1 bin, radious limited) 0.00734 0.01762 0.00482

Diff. Evol. (rand 1 bin) 0.01348 0.02196 0.01161

Diff. Evol. (rand 1 bin, radious limited) 0.00760 0.01377 0.00564

Diff. Evol. (rand 2 bin) 0.02140 0.03712 0.02687

Diff. Evol. (rand 2 bin, radious limited) 0.02072 0.03110 0.02008

Compass Coordinate Direct Search 0.00084 0.00118 0.00045

Probabilistic Descent Direct search 0.00984 0.01424 0.01239

Random Search 0.05678 0.08307 0.07936

Resampling Inheritance Memetic Search 0.00238 0.00513 0.00243

Resampling Memetic Search 0.00129 0.00236 0.00223

Separable Natural Evolution Strategies 0.02038 0.01165 0.01127

Simultaneous Perturbation Stochastic Approximation 0.13967 0.13998 0.13227

Exponential Natural Evolution Strategies 0.01972 0.01415 0.01286

Nelder-Mead 0.01858 0.03307 0.03452

Particle Swarm 0.00254 0.00166 0.00136

Simulated Annealing 0.03825 0.03812 0.03721

Proposed-ITSO 0.00001 0.00020 0.00017

of the design variable xij .

felliptic(xi) =

n∑
j=1

cj(xij +
3

2
)2,where

c = 103{0, 1

n− 1
, . . . , 1}.

(23)

fcigar(xi) = x21 +

n∑
j=2

|xij |. (24)

fcigtab(xi) = x21 +

n−1∑
j=2

|xij |+ x2n. (25)

fgriewank(xi) = 1 +
1

4000

n∑
j=1

x2ij −
n∏

j=1

cos

(
xij√
j

)
. (26)

10

fquartic(xi) =

n∑
j=1

j(xij − 2)4. (27)

fschwefel(xi) =

n∑
j=1

c2j ,where

cj =

j∑
k=1

(xik − 9).

(28)

frastrigin(xi) = 10n+

n∑
j=1

(xij +
7

10
)2

−10

n∑
j=1

cos(2π(xij +
7

10
)2).

(29)

fsphere(xi) =

n∑
j=1

(xij −
13

10
)2. (30)

felipsoid(xi) =

n∑
j=1

(xij −
√

2)2. (31)

falpine(xi) =

n∑
j=1

|xij sinxij +
1

10
xij |. (32)

fx j(xi) =

n∑
j=1

(xij − j −
21

10
)2. (33)

fx 5(xi) =

n∑
j=1

(xij − 5)2 − 5. (34)

fsin x(xi) =

n∑
j=1

(sin(xij +
7

10
) +

(xij + 7
10)2

100
). (35)

References

[1] M. Hutson, “AI researchers allege that machine learning is alchemy,” Sci-
ence, may 2018. [Online]. Available: http://www.sciencemag.org/news/2018/05/
ai-researchers-allege-machine-learning-alchemy

[2] D. Sculley, J. Snoek, A. Rahimi, and A. Wiltschko, “Winner’s Curse? On Pace, Progress, and
Empirical Rigor,” ICLR Workshop track, 2018.

[3] S. Sra, S. Nowozin, and S. J. Wright, Optimization for machine learning. Mit Press, 2012.

11

http://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
http://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy

[4] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learn-
ing,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[5] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead,” Nature Machine Intelligence, vol. 1, no. 5, pp. 206–215,
2019. [Online]. Available: https://doi.org/10.1038/s42256-019-0048-x

[6] J. Wu, M. Poloczek, A. G. Wilson, and P. Frazier, “Bayesian optimization with gradients,” in
Advances in Neural Information Processing Systems, 2017, pp. 5267–5278.

[7] B. Doerr, “Probabilistic tools for the analysis of randomized optimization heuristics,” in Theory
of Evolutionary Computation. Springer, 2020, pp. 1–87.

[8] C. Doerr, “Complexity theory for discrete black-box optimization heuristics,” in Theory of
Evolutionary Computation. Springer, 2020, pp. 133–212.

[9] M. Papadrakakis, N. D. Lagaros, and V. Plevris, “Design optimization of steel structures con-
sidering uncertainties,” Engineering Structures, vol. 27, no. 9, pp. 1408–1418, 2005.

[10] ——, “Optimum design of space frames under seismic loading,” International Journal of Struc-
tural Stability and Dynamics, vol. 1, no. 01, pp. 105–123, 2001.

[11] N. Moayyeri, S. Gharehbaghi, and V. Plevris, “Cost-based optimum design of reinforced con-
crete retaining walls considering different methods of bearing capacity computation,” Mathe-
matics, vol. 7, no. 12, p. 1232, 2019.

[12] V. Plevris and M. Papadrakakis, “A hybrid particle swarm—gradient algorithm for global struc-
tural optimization,” Computer-Aided Civil and Infrastructure Engineering, vol. 26, no. 1, pp.
48–68, 2011.

[13] N. D. Lagaros, N. Bakas, and M. Papadrakakis, “Optimum Design Approaches for
Improving the Seismic Performance of 3D RC Buildings,” Journal of Earthquake
Engineering, vol. 13, no. 3, pp. 345–363, mar 2009. [Online]. Available: http:
//www.tandfonline.com/doi/full/10.1080/13632460802598594

[14] N. D. Lagaros, M. Papadrakakis, and N. P. Bakas, “Automatic minimization of
the rigidity eccentricity of 3D reinforced concrete buildings,” Journal of Earthquake
Engineering, vol. 10, no. 4, pp. 533–564, jul 2006. [Online]. Available: http:
//www.tandfonline.com/doi/full/10.1080/13632460609350609

[15] A. D. Bull, “Convergence rates of efficient global optimization algorithms,” Journal of Machine
Learning Research, vol. 12, no. Oct, pp. 2879–2904, 2011.

[16] G. Rudolph, “Convergence analysis of canonical genetic algorithms,” IEEE transactions on
neural networks, vol. 5, no. 1, pp. 96–101, 1994.

[17] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a mul-
tidimensional complex space,” IEEE transactions on Evolutionary Computation, vol. 6, no. 1,
pp. 58–73, 2002.

[18] K. R. Opara and J. Arabas, “Differential evolution: A survey of theoretical analyses,” Swarm
and evolutionary computation, vol. 44, pp. 546–558, 2019.

12

https://doi.org/10.1038/s42256-019-0048-x
http://www.tandfonline.com/doi/full/10.1080/13632460802598594
http://www.tandfonline.com/doi/full/10.1080/13632460802598594
http://www.tandfonline.com/doi/full/10.1080/13632460609350609
http://www.tandfonline.com/doi/full/10.1080/13632460609350609

[19] N. Razmjooy, V. V. Estrela, H. J. Loschi, and W. Fanfan, “A comprehensive survey of new
meta-heuristic algorithms,” Recent Advances in Hybrid Metaheuristics for Data Clustering,
Wiley Publishing, 2019.

[20] M. A. Muñoz and K. A. Smith-Miles, “Performance analysis of continuous black-box optimiza-
tion algorithms via footprints in instance space,” Evolutionary computation, vol. 25, no. 4, pp.
529–554, 2017.

[21] C. Audet and W. Hare, Derivative-free and blackbox optimization. Springer, 2017.

[22] C. Audet and M. Kokkolaras, “Blackbox and derivative-free optimization: theory, algorithms
and applications,” 2016.

[23] F. D. Parker, “Integrals of Inverse Functions,” The American Mathematical Monthly, vol. 62,
no. 6, p. 439, jun 1955. [Online]. Available: http://www.jstor.org/stable/2307006?origin=
crossref

[24] R. Feldt, “Blackboxoptim.jl,” 2013-2018. [Online]. Available: https://github.com/robertfeldt/
BlackBoxOptim.jl

[25] J. Myles White, T. Holy, O. Contributors (2012), P. Kofod Mogensen, J. Myles White,
T. Holy, P. Contributors (2016), Other. Kofod Mogensen, A. Nilsen Riseth, J. Myles White,
T. Holy, and O. Contributors (2017), “Optim.jl,” 2012,2016,2017. [Online]. Available:
https://github.com/JuliaNLSolvers/Optim.jl

[26] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical
computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[27] Contributors, “Gnu octave,” http://hg.savannah.gnu.org/hgweb/octave/file/tip/doc/
interpreter/contributors.in, 28 Feb 2020.

[28] ——, “Python 3.8.2,” https://www.python.org/, 2020.

[29] J. Liang, B. Qu, P. Suganthan, and A. G. Hernández-Dı́az, “Problem definitions and evalua-
tion criteria for the cec 2013 special session on real-parameter optimization,” Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological
University, Singapore, Technical Report, vol. 201212, no. 34, pp. 281–295, 2013.

[30] C.-K. Au and H.-F. Leung, “Eigenspace sampling in the mirrored variant of (1, λ)-cma-es,” in
2012 IEEE Congress on Evolutionary Computation. IEEE, 2012, pp. 1–8.

[31] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for global optimization
problems,” arXiv preprint arXiv:1308.4008, 2013.

[32] S. Finck, N. Hansen, R. Ros, and A. Auger, “Real-parameter black-box optimization bench-
marking 2009: Presentation of the noiseless functions,” Citeseer, Tech. Rep., 2010.

[33] K. Hussain, M. N. M. Salleh, S. Cheng, and R. Naseem, “Common benchmark functions for
metaheuristic evaluation: A review,” JOIV: International Journal on Informatics Visualization,
vol. 1, no. 4-2, pp. 218–223, 2017.

13

http://www.jstor.org/stable/2307006?origin=crossref
http://www.jstor.org/stable/2307006?origin=crossref
https://github.com/robertfeldt/BlackBoxOptim.jl
https://github.com/robertfeldt/BlackBoxOptim.jl
https://github.com/JuliaNLSolvers/Optim.jl
http://hg.savannah.gnu.org/hgweb/octave/file/tip/doc/interpreter/contributors.in
http://hg.savannah.gnu.org/hgweb/octave/file/tip/doc/interpreter/contributors.in
https://www.python.org/

	1 Introduction
	2 Optimization by Inverse Transform Sampling
	3 Convergence Properties
	4 Programming techniques
	5 Numerical Experiments
	6 Discussion and Conclusions
	A Programming Code
	B Black-Box Functions

