
Citation: Georgioudakis, M.;

Plevris, V. Response Spectrum

Analysis of Multi-Story Shear

Buildings Using Machine Learning

Techniques. Computation 2023, 11, 126.

https://doi.org/10.3390/

computation11070126

Academic Editors: Gavril Grebenisan,

Alin Pop and Dan Claudiu Negrău

Received: 6 May 2023

Revised: 9 June 2023

Accepted: 20 June 2023

Published: 29 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Response Spectrum Analysis of Multi-Story Shear Buildings
Using Machine Learning Techniques
Manolis Georgioudakis 1,* and Vagelis Plevris 2

1 Institute of Structural Analysis & Antiseismic Research, School of Civil Engineering, National Technical
University of Athens, Zografou Campus, GR 15780 Athens, Greece

2 Department of Civil and Environmental Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
vplevris@qu.edu.qa

* Correspondence: geoem@mail.ntua.gr

Abstract: The dynamic analysis of structures is a computationally intensive procedure that must
be considered, in order to make accurate seismic performance assessments in civil and structural
engineering applications. To avoid these computationally demanding tasks, simplified methods are
often used by engineers in practice, to estimate the behavior of complex structures under dynamic
loading. This paper presents an assessment of several machine learning (ML) algorithms, with
different characteristics, that aim to predict the dynamic analysis response of multi-story buildings.
Large datasets of dynamic response analyses results were generated through standard sampling
methods and conventional response spectrum modal analysis procedures. In an effort to obtain
the best algorithm performance, an extensive hyper-parameter search was elaborated, followed by
the corresponding feature importance. The ML model which exhibited the best performance was
deployed in a web application, with the aim of providing predictions of the dynamic responses of
multi-story buildings, according to their characteristics.

Keywords: response spectrum analysis; ensemble algorithms; machine learning; shear building;
SHAP explainability

1. Introduction

Machine learning (ML) has numerous applications in modeling and simulation of
structures [1]. One of the most common applications of ML in structural analysis is the
prediction of structural behavior under different loads and environmental conditions. ML
algorithms can be trained on data from previous structural analyses, to learn how different
factors—such as material properties, geometry, and loading conditions—affect structural
response. This information can then be used to predict the behavior of new structures, with-
out the need for time-consuming and expensive additional analyses. Another interesting
field of application is structural health monitoring (SHM) and damage identification [2],
where, by analyzing the changes in structural response over time, and using data collected
by SHM systems, ML algorithms can learn to detect and localize damage in structures and,
in general, assess the health and condition of a structure over time. In design optimiza-
tion [3], by analyzing the relationships between different design parameters and structural
performance, ML algorithms can identify optimal design configurations that minimize
weight, maximize stiffness, or achieve other desired performance characteristics [4,5]. ML
can be also used to quantify the uncertainties associated with structural analyses, im-
proving the accuracy of predictions and reducing the risk of failure [6]. Overall, the use
of ML in structural analysis has the potential to significantly improve the accuracy and
efficiency of structural analysis, as well as to enable new capabilities for damage detection
and design optimization.

In the specialized fields of structural dynamics and earthquake engineering, ML
techniques are also increasingly being used [7], as they can help to extract useful insights

Computation 2023, 11, 126. https://doi.org/10.3390/computation11070126 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11070126
https://doi.org/10.3390/computation11070126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-2379-6633
https://orcid.org/0000-0002-7377-781X
https://doi.org/10.3390/computation11070126
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11070126?type=check_update&version=1

Computation 2023, 11, 126 2 of 22

and patterns from large amounts of data, which can be used to improve the accuracy and
efficiency of structural dynamic analysis techniques. Data-driven models for predicting
the dynamic response of linear and non-linear systems are of great importance, due to
their wide application, from probabilistic analysis to inverse problems, such as system
identification and damage diagnosis. In the following paragraphs, we examine some
important works and state-of-the-art contributions in the field.

Xie et al. [8] presented a comprehensive evaluation of the progress and challenges
of implementing ML in earthquake engineering. Their study used a hierarchical attribute
matrix to categorize the literature, based on four traits, (i) ML method; (ii) topic area;
(iii) data resource; and (iv) scale of analysis. Their review examined the extent to which ML
has been applied in several areas of earthquake engineering, including structural control
for earthquake mitigation, seismic fragility assessment, system identification and damage
detection, and seismic hazard analysis. Zhang et al. [9] presented a ML framework to assess
post-earthquake structural safety. They proposed a systematic methodology for generating
a reliable dataset for any damaged building, which included the incorporation of the
concepts of response and damage patterns. The residual collapse capacity of the damaged
structure was evaluated, using incremental dynamic analysis with sequential ground
motions. ML algorithms were employed, to map response and damage patterns to the safety
state of the building, based on a pre-determined threshold of residual collapse capacity.

Nguyen et al. [10] applied ML techniques to predict the seismic responses of 2D
steel moment-resisting frames under earthquake motions. They used two popular ML
algorithms—Artificial Neural Network (ANN) and eXtreme Gradient Boosting
(XGBoost)—and took into consideration more than 22,000 non-linear dynamic analyses,
on 36 steel moment frames of various structural characteristics, under 624 earthquake
records with peak accelerations greater than 0.2 g. Both ML algorithms were able to reliably
estimate the seismic drift responses of the structures, while XGBoost showed the best
performance. Sadeghi Eshkevari et al. [11] proposed a physics-based recurrent ANN that
was capable of estimating the dynamic response of linear and non-linear multiple degrees
of freedom systems, given the ground motions. The model could estimate a broad set
of responses, such as acceleration, velocity, displacement, and the internal forces of the
system. The architecture of the recurrent block was inspired by differential equation solver
algorithms. The study demonstrated that the network could effectively capture various
non-linear behaviors of dynamic systems with a high level of accuracy, without requiring
prior information or excessively large datasets.

In the interesting work of Abd-Elhamed et al. [12], logical analysis of data (LAD) was
employed to predict the seismic responses of structures. The authors used real ground mo-
tions, considering a variation of earthquake characteristics, such as soil class, characteristic
period, time step of records, peak ground displacement, peak ground velocity, and peak
ground acceleration. The LAD model was compared to an ANN model, and was proven
to be an efficient tool with which to learn, simulate, and predict the dynamic responses
of structures under earthquake loading. Gharehbaghi et al. [13] used multi-gene genetic
programming (MGGP) and ANNs to predict seismic damage spectra. They employed
an inelastic SDOF system under a set of earthquake ground motion records, to compute
exact spectral damage, using the Park–Ang damage index. The ANN model exhibited
better overall performance, yet the MGGP-based mathematical model was also useful, as it
managed to provide closed mathematical expressions for quantifying the potential seismic
damage of structures.

Kazemi et al. [14] proposed a prediction model for seismic response and performance
assessment of RC moment-resisting frames. They conducted incremental dynamic analyses
(IDAs) of 165 RC frames with 2 to 12 stories and bay length ranging from 5.0 m to 7.6 m,
ending up with a total of 92,400 data points for training the developed data-driven models.
The examined output parameters were the maximum interstory drift ratio and the median
of the IDA curves, which can be used to estimate the seismic limit state capacity and
performance assessment of RC buildings. The methodology was tested in a five-story

Computation 2023, 11, 126 3 of 22

RC building with very good results. Kazemi and Jankowski [15] used supervised ML
algorithms in Python, to find median IDA curves for predicting the seismic limit-state
capacities of steel moment-resisting frames considering soil–structure interaction effects.
They used steel structures of two to nine stories subjected to three ground motion subsets
as suggested by FEMA-P695, and 128,000 data points in total. They developed a user-
friendly graphical user interface (GUI) to predict the spectral acceleration Sa(T1) of seismic
limit-state performance levels using the developed prediction models. The developed GUI
mitigates the need for computationally expensive, time-consuming, and complex analysis,
while providing the median IDA curve including soil–structure interaction effects.

Wakjira et al. [16] presented a novel explainable ML-based predictive model for the
lateral cyclic response of post-tensioned base rocking steel bridge piers. The authors
implemented a wide variety of nine different ML techniques, ranging from the simple
to most advanced ones, to generate the predictive models. The obtained results showed
that the simplest models were inadequate to capture the relationship between the input
factors and the response variables, while advanced models, such as the optimized XGBoost,
exhibited the best performance with the lowest error. Simplified and approximate methods
are particularly useful in engineering practice and have been successfully used by various
researchers in structural dynamics and earthquake engineering related applications, such
us the evaluation of the seismic performance of steel frames [17] and others.

The novelty of the present work consists of the development of new optimized ML
models for the accurate and computationally efficient predictions of the fundamental
eigenperiod, the maximum displacement as well as the base shear force of multi-story
shear buildings. Four different ML algorithms are compared in terms of their prediction
performance. The interpretation and explanation are elaborated using the permutations
explainers of the SHAP methodology. In addition, a web application is developed based on
the optimized ML models, to be easily used by engineers in practice. The remainder of the
paper is organized as follows. Section 2 defines the problem formulation, followed by the
description of the dataset and the exploratory data analysis in Section 3. Section 4 provides
an overview of ML algorithms, followed by the ML pipelines and performance results of
Section 5 and a discussion on interpretability of the results in Section 6. Section 7 presents
and discussed the test case scenarios, while Section 8 presents the web application that has
been developed and deployed for broad and open use. In the end, a short discussion and
the conclusions of the study are presented.

2. Problem Formulation

The response spectrum modal analysis (RSMA) is a method to estimate the structural
response to short, non-deterministic, and transient dynamic events. Examples of such
events are earthquakes and shocks. Since the exact time history of the load is not known, it
is difficult to perform a time-dependent analysis. The method requires the calculation of the
natural mode shapes and frequencies of a structure during free vibration. It uses the mass
and stiffness matrices of a structure to find the various periods at which it will naturally
resonate, and it is based on mode superposition, i.e., a superposition of the responses of the
structure for its various modes, and the use of a response spectrum. The idea is to provide
an input that gives a limit to how much an eigenmode having a certain natural frequency
and damping can be excited by an event of this type. The response spectrum is used to
compute the maximum response in each mode, instead of solving the time history problem
explicitly using a direct integration method. These maxima are non-concurrent and for
this reason the maximum modal responses for each mode cannot be added algebraically.
Instead, they are combined using statistical techniques, such as the square root of the
sum of the squares (SRSS) method or the more complex and detailed complete quadratic
combination (CQC) method. Although the response spectrum method is approximate,
it is broadly applied in structural dynamics and is the basis for the popular equivalent
lateral force (ELF) method. In the following subsections, a brief description of the RSMA

Computation 2023, 11, 126 4 of 22

for multi-story structures is provided based on fundamental concepts of the single degree
of freedom structural system.

2.1. Response Analysis of MDOF Systems

An idealized single degree of freedom (SDOF) shear building system has a mass m
located at its top and stiffness k which is provided by a vertical column. For such a system
without damping, the circular frequency ω, the cyclic frequency f and the natural period
of vibration (or eigenperiod) T are given by the following formulas:

ω =

√
k
m

f =
ω

2π
T = 2π

√
m
k

(1)

Similar to the SDOF system, a multi-story shear building, idealized as a multi-degree
of freedom (MDOF) system is depicted in Figure 1, with the numbering of the stories from
bottom to top. The vibrating system of the figure has n stories and n degrees of freedom
(DOFs), denoted as the horizontal displacements ui (i = {1, 2, · · · , n}) at the top of each
story. The dynamic equilibrium of a MDOF structure under earthquake excitation can be
expressed with the following equation of motion at any time t:

Mü(t) + Cu̇(t) + Ku(t) = −M · r · üg(t) (2)

where M(n× n) is the mass matrix of the structure holding the masses mi at its diagonal;
K(n× n) is the stiffness matrix; C(n× n) represents the damping matrix, r(n× n) is the
influence coefficient vector; ü(t), u̇(t), u(t) (all n× 1) are the acceleration, velocity, and
displacement vectors, respectively, and üg(t) is the ground motion acceleration, applied to
the DOFs of the structure defined by the vector r.

S ug

m1

k1

k2

kn

m2

mj

mn

kj

Utop

u1

u2

uj

unug

Figure 1. Multi-story shear building model with n DOFs.

The MDOF system has n natural frequencies ωi (i = 1, 2, . . . , n) which can be found
from the characteristic equation: ∣∣∣K−ω2

i ·M
∣∣∣ = 0 (3)

By solving the determinant of Equation (3), one can find the eigenvalues λi of mode
i which are the squares of the natural frequencies ωi of the system (λi = ω2

i). Then,

Computation 2023, 11, 126 5 of 22

the eigenvectors (or mode shapes or eigenmodes φi (each n × 1) can be found by the
following equation: (

K−ω2
i ·M

)
·φi = 0 (4)

Equation (4) represents a generalized eigenvalue problem, which is a classic problem
in mathematics. The solution of this problem involves a series of matrix decompositions
which can be computationally expensive, especially for large systems with many DOFs.

Let the displacement response of the MDOF system be expressed as

u(t) = Φ · y(t) (5)

where y(t) represents the modal displacement vector and Φ = [φ1, φ2, . . . , φn] is the matrix
containing the eigenvectors. Substituting Equation (4) in Equation (2) and pre-multiply by
ΦT we take

ΦTMΦ︸ ︷︷ ︸
M∗

ÿ(t) + ΦTCΦ︸ ︷︷ ︸
C∗

ẏ(t) + ΦTKΦ︸ ︷︷ ︸
K∗

y(t) = −ΦT ·M · r · üg(t) (6)

where M∗, C∗ and K∗ are the generalized mass, generalized damping, and generalized
stiffness matrices, respectively. By virtue of the properties of the matrix Φ, the matrices M∗,
K∗, and C∗ are all diagonal matrices and Equation (6) reduces to the following

ÿi(t) + 2ξi ·ωi · ẏi(t) + ω2
i · yi(t) = −Γi · üg(t) i = {1, 2, 3, . . . , n} (7)

where yi(t) is the modal displacement response of the ith mode, ξi is the modal damping
ratio of the ith mode and Γi is the modal participation factor for the ith mode, expressed by

Γi =
φT

i Mr
m∗i

(8)

where m∗i = φT
i Mφi is the i-th element of the diagonal matrix M∗. Equation (7) represents

n second order differential equations (i.e., similar to that of a SDOF system), the solution
of which will provide the modal displacement response yi(t) for the ith mode. Subse-
quently, the displacement response in each mode of the MDOF system can be obtained by
Equation (5) using the yi(t).

2.2. Response Spectrum

In this work, we use the design spectrum for elastic analysis, as described in §3.2.2.5 of
Eurocode 8 (EC8) [18]. The inelastic behavior of the structure is taken into account indirectly
by introducing the behavior factor q. Based on this, an elastic analysis can be performed,
with a response spectrum reduced with respect to the elastic one. The behavior factor q is
an approximation of the ratio of the seismic forces that the structure would experience if its
response was completely elastic with 5% viscous damping, to the seismic forces that may be
used in the design, with a conventional elastic analysis model, still ensuring a satisfactory
response of the structure. For the horizontal components of the seismic action, the design
spectrum, Sd(T), is defined as

Sd(T) =

ag · S ·
[

2
3 + T

TB
·
(

2.5
q −

2
3

)]
, if 0 ≤ T ≤ TB

ag · S · 2.5
q , if TB ≤ T ≤ TC

ag · S · 2.5
q ·
[

TC
T

]
≥ β · ag , if TC ≤ T ≤ TD

ag · S · 2.5
q ·
[

TC ·TD
T2

]
≥ β · ag , if TD ≤ T

(9)

where T is the vibration period of a linear SDOF system, S is the soil factor, TB and TC
are the lower and upper limits of the period of the constant spectral acceleration branch,
respectively, TD is the value defining the beginning of the constant displacement response

Computation 2023, 11, 126 6 of 22

range of the spectrum, ag is the design ground acceleration on type ‘A’ ground and β is
the lower bound factor for the horizontal design spectrum, with a recommended value of
0.2. Although q introduces a non-linearity into the system, for the sake of simplicity, in this
study we assume elastic behavior of the structure by taking q equal to 1. It has to be noted
that we do not use the horizontal elastic response spectrum which is described in §3.2.2.2
of EC8, but rather the design spectrum for elastic analysis of §3.2.2.5, for the case q = 1.
The two are almost the same, but there are also some minor differences.

2.3. Response Spectrum Method for MDOF Systems

Given the spectrum, Equation (7) is forming the equation of motion of a SDOF system.
The maximum modal displacement response yi,max is found from the response spectrum
as follows:

yi,max = |yi(t)|max = Γi ·
Sd(Ti)

ω2
i

(10)

Consequently, the maximum displacement (ui,max) and acceleration (üi,max) response
of the MDOF system in the ith mode are given as follows:

ui,max = φi · yi,max

üi,max = φi · Γi · Sd(Ti) = φi ·ω2
i · yi,max = φi · ui,max

(11)

In each mode of vibration, the required response quantity of interest Q, i.e., displace-
ment, shear force, bending moment, etc., of the MDOF system can be obtained using the
maximum response obtained by Equation (11). However, the final maximum response
Qmax, is obtained by combining the response in each mode using a modal combination rule.
In this study, the commonly square root of sum of squares (SRSS) rule is used as follows:

Qmax =

√
n

∑
i=1

Q2
i (12)

The SRSS method of combining maximum modal responses is fundamentally sound
when the modal frequencies are well separated.

3. Dataset Description and Exploratory Data Analysis

The dataset was generated from 1995 results of dynamic response analyses of multi-
story shear buildings of various configurations using the response spectrum method de-
scribed in Section 2. More specifically, the dataset consists of 3 features, namely (i) <Stories>,
the number of stories in the shear building; (ii) <k̃>, the normalized stiffness over the mass
of each story; and (iii) <Ground Type>, the ground type as the code provision (EC8) dic-
tates. In addition, the dataset is completed with 3 targets, namely (i) <T1>, the fundamental
eigenperiod of the building; (ii) <Utop>, the horizontal displacement at the top story; and
(iii) <Ṽb>, the normalized base shear force over the mass of each story of the building.

3.1. Dataset Description

In this study, we assume a constant k and m for all stories of the building, i.e., ki and
mi remain constant for each story i. There is no change in the mass or stiffness of each
story, along the height of the building. For such buildings, the response of the structure is
characterized by the ratio k/m rather than the individual values of k and m and this is the
reason why k/m, denoted as <k̃> (normalized stiffness over mass), is taken as the input in
the analysis, instead of taking into account the individual k and m for each story. The unit
used for k̃ is (N/m)/kg which is equivalent to s−2. The normalized stiffness ranges from
2000 to 12,000 s−2 (with a step of 500, i.e., 21 unique values), while the number of stories
ranges from 2 to 20 (with a step of 1, resulting in 19 values), covering a wide range of the
structures and representing the majority of typical multi-story shear buildings that can be
found in practice.

Computation 2023, 11, 126 7 of 22

The normalized base shear force over the mass of each story of the building has unit
N/kg, which is equivalent to m·s−2. The ground acceleration ag for this study is kept
constant at 1 g = 9.81 m/s2 as it affects the results in a linear way, since we assume elastic
behavior (q = 1). As a result, all outputs are calculated with reference to an acceleration of
1 g. If another value is used for the ground acceleration, as is performed in the examined test
scenarios, then the outputs of the model need to be multiplied with this ground acceleration
value to obtain the correct results. A damping ratio of 5% was considered in all analyses.

All the targets, along with the input parameter <k̃> are treated as continuous variables,
while the remaining features are treated as integer variables. For the <Ground Type>
feature, which natively takes values from the list of [‘A’, ‘B’, ‘C’, ‘D’, ‘E’], the ordinal
encoding was used. In this encoding, each category value is assigned to an integer value
due to the natural ordered relationship between each other, i.e., a type ‘B’ ground, is “worse”
than a type ‘A’ ground, etc. Hence, the machine learning algorithms are able to understand
and harness this relationship.

The final dataset, consists of 1995 observations in total, which is the product of 19 × 21 × 5,
where 19 is the different numbers of stories, 21 are the different values of the normalized
stiffness over the mass of each story, and 5 are the different ground types considered.

3.2. Exploratory Data Analysis

Understanding the data is very important before building any machine learning model.
The statistical parameters and the distributions of dataset’s variables provide useful insights
on the dataset and presented in Table 1 and Figure 2, respectively. From the latter one, it can
be observed that all targets follow a right skewed unimodal distribution with platykurtic
kurtosis (flatter than the normal distribution).

Figure 3 depicts the box and Whisker plots for features (orange) and targets (moon-
stone blue). The red vertical line shows the median of each distribution. The box shows
the interquantile range (IQR) which measures the spread of the middle half of the data
and contains 50% of the samples, defined as IQR = Q3− Q1, where Q1 and Q3 are the
lower and upper quartiles, respectively. The black horizontal line shows the interval from
the lower outlier gate (Q1− 1.5 · IQR) to the upper outlier gate (Q3 + 1.5 · IQR). As a
result, the blue dots represent the “outliers” in each target, according to interquantile range
(IQR) method. Often outliers are discarded because of their effect on the total distribution
and statistical analysis of the dataset. However, in this situation, the occasional ’extreme’
building configurations (i.e., very flexible structures) cause an outlier that is outside the
usual distribution of the dataset but is still a valid measurement.

Table 1. Statistical parameters of the dataset.

Stories k̃ Ground
Type T1 Utop Ṽb

Unit [s−2] [s] [m] [m·s−2]

count 1995 1995 1995 1995 1995 1995
mean 11.000 7000.000 2.000 0.604 0.296 0.213
std 5.479 3028.600 1.414 0.341 0.240 0.101

skew 0.000 0.000 0.000 0.782 1.265 0.538
kurtosis −1.207 −1.205 −1.300 0.435 2.162 0.072

min 2.000 2000.000 0.000 0.093 0.004 0.032
25% 6.000 4500.000 1.000 0.330 0.104 0.142
50% 11.000 7000.000 2.000 0.567 0.254 0.201
75% 16.000 9500.000 3.000 0.801 0.416 0.282
max 20.000 12,000.000 4.000 1.834 1.571 0.553

Type [int] [float] [int] [float] [float] [float]

Computation 2023, 11, 126 8 of 22

0.0 0.5 1.0 1.5 2.0
T1[s]

0

50

100

150

200

C
ou

nt

0.0 0.5 1.0 1.5
Utop[m]

0

50

100

150

200

250

300

350

C
ou

nt

0.0 0.2 0.4 0.6
Vb[m/s2]

0

50

100

150

200

250

C
ou

nt

Figure 2. Histograms of the targets T1, Utop, and Ṽb.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

St
or

ie
s

2000 4000 6000 8000 10000 12000

0k

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

G
ro

un
d

Ty
pe

0.25 0.50 0.75 1.00 1.25 1.50 1.75

0T 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0U
to

p

0.1 0.2 0.3 0.4 0.5

0V b

Figure 3. Box and Whisker plots for features (orange) and targets (moonstone blue). Red vertical
line shows the median of each distribution. The blue dots represent the outliers in the distribution,
according to IQR method.

In Figure 4, the joint plots with their kernel density estimate (KDE) plots for utop
feature against T1 and Ṽb are also depicted. KDE is a method for visualizing the distribution
of observations in a dataset, analogous to a histogram and represents the data using a
continuous probability density curve in two dimensions. Unlike a histogram, a KDE plot
smooths the observations with a Gaussian kernel, producing a continuous density estimate.
It can be observed that T1 and Ṽb are correlated with a ‘linear’ type relation. This relation
can be also derived from the high correlation values depicted in Figure 5 that shows the
correlation matrix of the dataset features and targets, including also the Pearson product-
moment correlation coefficient. The Pearson product-moment correlation coefficient (ρ) is
used to measure the correlation intensity between a pair of independent random variables
(x, y), according to the following relation

ρ(x, y) =
COV(x, y)

σxσy
(13)

where COV is the covariance between the two random variables (x, y) and σx, σy is the
standard deviation of x, y, respectively. |ρ| > 0.8 represents a strong relationship between x
and y, values between 0.3 and 0.8 represent medium relationship, while |ρ| < 0.3 represents

Computation 2023, 11, 126 9 of 22

a weak relationship. It is shown that the number of stories, has a strong relationship with T1
and Utop, while Ground Type has no relationship with the number of stories and k̃.

0.0 0.5 1.0 1.5 2.0
Utop [m]

0.0

0.5

1.0

1.5

2.0
T 1

 [s
]

(a)

0.0 0.5 1.0 1.5 2.0
Utop [m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V b
 [m

/s
2]

(b)

Figure 4. Joint and KDE plots of Utop vs. (a) T1 and (b) Ṽb.

Stories k Ground
Type

T1 Utop Vb

Stories

k

Ground
Type

T1

Utop

Vb

0.000

0.000 0.000

0.840 -0.459 0.000

0.763 -0.398 0.242 0.891

0.689 0.295 0.367 0.374 0.568

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5. Features and targets correlation matrix.

4. Overview of ML Algorithms

This study estimates the dynamic behavior of shear multi-story buildings in terms
of predicting the fundamental eigenperiod (T1), the roof top displacement (utop), and
the normalized base shear (Ṽb) by using four ML algorithms including Ridge Regressor
(RR), Random Forest (RF) regressor, Gradient Boosting (GB), and Category Boosting (CB)
regressor. All considered algorithms (except RR) belong to ensemble methods which seek
better predictive performance by combining the predictions from multiple models usually
in the form of decision trees by means of the bagging (bootstrap aggregating) and boosting
ensemble learning techniques. Bagging involves fitting many decision trees (DTs) on
different samples of the same dataset and averaging the predictions, while, in boosting, the
ensemble members are added sequentially by correcting the predictions made by preceding
models and the method outputs a weighted average of the predictions. Ensemble learning
techniques eliminate any variance, thereby reducing the overfitting of models. In the
following sections, an overview of each ML algorithm is provided, along with its strong
and weak points.

Computation 2023, 11, 126 10 of 22

4.1. Ridge Regression (RR)

With the absence of constraints, every model in machine learning will overfit the data
and make unnecessary complex relationships. To avoid this, the regularization of data is
needed. Regularization simplifies excessively complex models that are prone to be overfit
and can be used to any machine learning model. Ridge regression [19] is a regularized ver-
sion of linear regression that uses the mean squared error loss function (LF) and applies L2
Regularization. In L2 Regularization (also known as Tikhonov Regularization), the penalty
term is applied into the square of weights (w) to the loss function as follows:

Regularization(L2) = LF + λ
m

∑
i=1

w2
i (14)

Consequently, the cost function J(θ) in Ridge Regression takes the following form

J(θ) =
1
m

m

∑
i=1

(
yi − ŷi

)2

︸ ︷︷ ︸
Loss Function

+ λ
n

∑
j=1

w2
j︸ ︷︷ ︸

Penalty

(15)

where m is the total number of observations in the dataset, n is the number of features
in the dataset, y and ŷ are the ground truth and the predicted values of the regression
model, respectively, and λ is the penalty term which express the strength of regularization.
The penalization in the sum of the squared weights reduces the variance of the estimates
and the model, i.e., it shrinks the weights and, thus, reduces the standard errors. The penalty
term serves to reduce the magnitude of the weights, and it also helps to prevent overfitting.
As a result, RR can provide improved predictive accuracy and stability.

Ridge regression also has the ability to handle non-linear relationships between predic-
tor and outcome variables, in contrast to linear regression. It is more robust to collinearity
than linear regression and it can be applied to small datasets, while no perfect normalization
of data is required. However, RR can be computationally expensive if the dataset is large.
In addition, its results are difficult to interpret because the L2 regularization term modifies
the weights. This is because the cost function contains a quadratic term, which makes it
more difficult to optimize. In addition, RR only provides a closed-form approximation of
the solution and can produce unstable results if outliers are present in the dataset.

Although, we a priori know that Ridge Regression will not able to compete with the
other ensemble models, it is still selected as a simplistic method for a rough approximation
of the model to be fitted.

4.2. Random Forest Regressor (RF)

Decision trees are simple tree-like models of decisions that work well for many prob-
lems, but they can also be unstable and prone to overfitting. The Random Forest developed
by Breiman [20] overcomes these limitations by using an ensemble of decision trees as
the weak learners, where each tree is trained on a random subset of the data and features
(hence the name “Random Forest”). The subsets of the training data are created by random
sampling with replacement (bootstrap sampling), thus, some data points may be included
in multiple subsets, while others may not be included at all. Each model in the ensemble is
trained independently using the same learning algorithm and hyperparameters, but with
its own subset of the training data. The predictions from each tree are then combined by
taking the average (Figure 6). Therefore, this randomness helps reduce the variance of the
model and the risk of overfitting problems in the decision tree method.

Computation 2023, 11, 126 11 of 22

. . .

. . .

. . .

DATASET

DECISION TREE 1 DECISION TREE 2 DECISION TREE N

PREDICTION 1 PREDICTION 2 PREDICTION N

AVERAGE PREDICTION

BOOTSTRAP
SAMPLING

BUILDING
THE MODEL

BOOTSTRAP
AGGREGATING

SUBSET 1 SUBSET 2 SUBSET N

FINAL PREDICTION

Figure 6. Random Forest algorithm flowchart.

Random Forest is one of the most accurate machine learning algorithms which inherits
the merits of the decision tree algorithm. It can work well with both categorical and
continuous variables and can handle large datasets with thousands of features. Random
Forest is a robust algorithm that can deal with noisy data and outliers and can generalize
well to unseen data without the need of normalization as it uses a rule-based approach.
Despite being a complex algorithm, it is fast and provides a measure of feature importance,
which can help in feature selection and data understanding.

Although RF is less prone to overfitting than a single decision tree, it can still overfit
the data if the number of trees in the forest is too high or if the trees are too deep. Random
Forest can be less interpretable than a single decision tree because it involves multiple
trees. Thus, it can be difficult to understand how the algorithm arrived at a particular
prediction. The training time of RF can be longer compared to other algorithms, especially
if the number of trees and their depth are high. Random Forest requires more memory
than other algorithms because it stores multiple trees. This can be a problem if the dataset
is large. Overall, RF is a handy and powerful algorithm where its default parameters are
often good enough to produce acceptable results.

4.3. Gradient Boosting Regressor (GB)

Gradient Boosting is one of the variants of ensemble methods in which multiple weak
models (decision trees) are combined to obtain better performance as a whole. Gradient
Boosting algorithm was developed by Friedman [21] and uses decision trees as weak
learners. In general, weak learners are not necessary to have the same structure, so they
can capture different outputs from the data. In Gradient Boosting, the loss function of each
weak learner is minimized using the gradient descent procedure, a global optimisation
algorithm which can apply to any loss function that is differentiable. As shown in Figure 7,
the residual (loss error) of the previous tree is taken into account in the training of the
following tree. By combining all trees, the final model is able to capture the residual loss
from the weak learners.

Computation 2023, 11, 126 12 of 22

DATASET

DECISION TREE 1 DECISION TREE 2 DECISION TREE N

PREDICTION 1 PREDICTION 2 PREDICTION N-1

WEIGHTED SUM PREDICTION

WEAK
LEARNERS

BOOTSTRAP
AGGREGATING

FINAL PREDICTION

DECISION TREE N-1

. . .

PREDICTION N

R
E

S
ID

U
A

L

. . .

R
E

S
ID

U
A

L

R
E

S
ID

U
A

L

Figure 7. Gradient Boosting algorithm flowchart.

To better understand how Gradient Boosting works, we present below the steps involved.

Step 1. Create a base tree with single root node that acts as the initial guess for all samples.
Step 2. Create a new tree from the residual (loss errors) of the previous tree. The new tree

in the sequence is fitted to the negative gradient of the loss function with respect
to the current predictions.

Step 3. Determine the optimal weight of the new tree by minimizing the overall loss func-
tion. This weight determines the contribution of the new tree in the final model.

Step 4. Scale the tree by learning rate that determines the contribution of the tree in the
prediction.

Step 5. Combine the new tree with all the previous trees to predict the result and repeat
Step 2 until a convergence criterion is satisfied (number of trees exceeds the
maximum limit achieved or the new trees do not improve the prediction).

The final prediction model is the weighted sum of the predictions of all the trees
involved in the previous procedure, with better-performing trees having a higher weight in
the sequence.

In Gradient Boosting, every tree is built one at a time, whereas Random Forests build
each tree independently. Thus, the Gradient Boosting algorithm runs in a fixed order,
and that sequence cannot change, leading to only sequential evaluation. The Gradient
Boosting algorithm is not known for being easy to read or interpret compared to other
ensemble algorithms like Random Forest. The combination of trees in Gradient Boosting
can be more complex and harder to interpret, although recent developments can improve
the interpretability of such complex models. Gradient Boosting is sensitive to outliers
since every estimator is obliged to fix the errors in the predecessors. Furthermore, the fact
that every estimator bases its correctness on the previous predictors, makes the procedure
difficult to scale up.

Overall, Gradient Boosting can be more accurate (under conditions depending on
the nature of the problem and the dataset) than Random Forest, due to the sequential
nature of the training process of trees which correct each other’s errors. This attribute is
capable of capturing complex patterns in the dataset, but it can still be prone to overfitting
in noisy datasets.

4.4. CatBoost Regressor (CB)

CatBoost is a relatively new open-source machine learning algorithm which is based
on Gradient Boosted decision trees. CatBoost was developed by Yandex engineers [22]
and it focuses on categorical variables without requiring any data conversion in the pre-
processing. CatBoost builds symmetric trees (each split is on the same attribute), unlike the
Gradient Boosting algorithm, by using permutation techniques. This means that in every

Computation 2023, 11, 126 13 of 22

split, leaves from the previous tree are split using the same condition. The feature-split pair
that accounts for the lowest loss is selected and used for all the level’s nodes. The balanced
tree architecture decreases the prediction time while controlling overfitting as the structure
serves as regularization. CB uses the concept of ordered boosting, a permutation-driven
approach to train the model on a subset of data while calculating residuals on another
subset. This technique prevents overfitting and the well-known dataset shift, a challenging
situation where the joint distribution of features and targets differs between the training
and test phases.

CatBoost supports all kinds of features, such as numeric, categorical, or text, which
reduces the time of the dataset preprocessing phase. It is powerful enough to find any
non-linear relationship between the model target and features and has great usability
that can deal with missing values, outliers, and high cardinality categorical values on
features without any special treatment. Overall, CatBoost is a powerful Gradient Boosting
framework that can handle categorical features, missing values, and overfitting issues. It is
fast, scalable, and provides good interpretability.

5. ML Pipelines and Performance Results

The ML models developed in this study are based on the dataset described in Section 3
and make use of the following open-source Python libraries, scikit-learn (RR, RF, GB) [23]
and CatBoost (CB) [22]. Three different ML models are considered for predicting the
fundamental eigenperiod (T1), the horizontal displacement at the top story (Utop), and the
normalized shear base over the mass of each story (Ṽb) of a shear building. The features
of all models are the number of stories (Stories), the normalized stiffness over the mass of
each story (k̃) and the Ground Type.

5.1. Cross Validation and Hyperparameter Tuning

The dataset is split into training and testing set, with 80% and 20% of the samples,
respectively. The training set was validated via the k-fold cross-validation method as
follows. Data are shuffled and divided into k equal sized subsamples. One of the k
subsamples is used as a test (validation) set and the remaining (k − 1) subsamples are
put together to be used as training data. Then a model is fitted using training data and
evaluated using the test set. The process is repeated k times until each group has served as
the validation set. The k results from each model are averaged to obtain the final estimation.

The advantage of the k-fold cross-validation method is that the bias and variance are
significantly reduced, while the robustness of the model is increased. The testing set, with
data that remain unseen by the models during the training, is used for the final test of the
model performance and generalization. With the term generalization we refer to the model’s
ability to adapt properly to new, previously unseen data, drawn from the same distribution
as the one used to create the model. The value of k depends on the size of the dataset in a
way which does not increase the computational cost. In this study, the k value is set equal
to 10.

Cross validation is performed together with the hyperparameter tuning in the data
pipeline. Hyperparameter tuning is the process of selecting the optimized values for a
model’s parameters that maximize its accuracy. The optimal values of the hyperparameters
for each model are found using extensive grid search, in which every possible combination
of hyperparameters is examined to find the best model. The optimized values of the
hyperparameters, along with the range of each ML model and algorithm, are presented in
Table 2. The hyperparameter names correspond to those in the utilized Python libraries [23].
The hyperparameters not shown had been assigned the default values.

Computation 2023, 11, 126 14 of 22

Table 2. Optimal hyper-parameters values for each ML algorithm and model found via grid search.

Algorithm Hyper-Parameter Search Range
Model Optimal Value

T1 Utop Ṽb

Ridge

alpha [0, 0.1, 0.5, 1, 5, 10] 10 10 10
max_iter [50, 100, 500, 1000] 50 50 50
solver [‘svd’, ‘cholesky’, ‘lsqr’] lsqr svd svd
tol [0.0001, 0.001] 0.001 0.001 0.001

Random Forest

n_estimators [10, 20, 50, 100, 500] 500 500 500
max_depth [2, 5, 10] 10 10 10
criterion [‘sqr’, ‘abs’, ‘fried’, ‘pois’] fried fried fried
min_samples_split [1, 2, 5, 10, 20] 5 5 5
min_samples_leaf [1, 2, 5] 1 1 2
min_impurity_decrease [0.01, 0.02, 0.05, 0.1, 0.2] 0.01 0.01 0.01

Gradient Boosting

n_estimators [10, 20, 100, 500] 500 500 500
learning_rate [0.01, 0.1] 0.1 0.1 0.1
criterion [‘sqr’, ‘fried’] sqr sqr sqr
min_samples_leaf [1, 2, 5, 10] 1 1 10
min_samples_split [5, 10, 20, 100] 10 5 5
max_depth [1, 2, 5, 10] 10 5 10

CatBoost

n_estimators [10, 20, 100, 500] 500 500 500
learning_rate [0.01, 0.1] 0.1 0.1 0.1
l2_leaf_reg [1, 2, 5, 10] 1 1 2
bagging_temperature [0.0, 0.1, 0.2, 0.5, 1.0] 0 0 0
depth [1, 2, 5, 10] 5 5 10

where “alpha”: the constant that multiplies the L2 term, controlling regularization strength. | “max_iter”: the maximum
number of iterations for conjugate gradient solver. | “solver”: the solver to use in the computational routines. | “tol”: the
precision of the solution (tol has no effect for solvers ‘svd’ and ‘cholesky’). | “n_estimators”: the number of trees in the forest. |
“max_depth”: the number of trees in the forest. | “criterion”: the function to measure the quality of a split. Possible values are:
‘sqr’, ‘abs’, ‘fried’, and ‘pois’ which stand for ‘squared_error’, ‘absolute_error’, ‘friedman_mse’, and ‘poisson’, respectively. |
“min_samples_split”: the number of trees in the forest. | “min_samples_leaf”: the minimum number of samples required to
be at a leaf node. | “min_impurity_decrease”: the value in which a node will be split, if this split induces, a decrease in the
impurity greater than this. | “learning_rate”: factor that shrinks the contribution of each tree. | “l2_leaf_reg”: the coefficient of
L2 regularization term of the cost function. | “bagging_temperature”: parameter to define the settings of the Bayesian bootstrap
and assign random weights to objects. The weights are sampled from exponential distribution if the value of this parameter is
set to “1”. All weights are equal to 1 if the value of this parameter is set to “0”. Possible values are in the range [0;inf). The higher
the value the more aggressive the bagging is.

Table 3 collects statistics of the fit time and test score for each model during the cross-
validation and hyperparameter tuning process, which is performed on the same hardware
configuration. It is shown that Ridge Regression has the lowest fit time for all the models
(up to 395 speed-up when compared to the slowest), while CatBoost algorithm outperforms
all the others in terms of scoring and exhibits the lowest standard deviation value.

Figures 8–10 show the performance of the ML models for predicting the T1, Utop and
Ṽb of the shear buildings in the train and test datasets for the optimized hyperparameter
values, accordingly. In general, the ensemble methods achieved higher accuracy compared
to the Ridge Regression algorithm. However, the Ridge Regression algorithm managed to
achieve acceptable results in the case of the T1 model.

Computation 2023, 11, 126 15 of 22

0.0 0.5 1.0 1.5 2.0
Actual T1 [s]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
T 1

 [s
]

Actual/Predicted
min = -8.547
max = 83.394
mean = 1.261
COV = 14.136

Ridge (Train Set)
R2: 0.916

0.0 0.5 1.0 1.5 2.0
Actual T1 [s]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
T 1

 [s
]

Actual/Predicted
min = 0.970
max = 1.027
mean = 1.000
COV = 0.000

Random Forest (Train Set)
R2: 1.000

0.0 0.5 1.0 1.5 2.0
Actual T1 [s]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
T 1

 [s
]

Actual/Predicted
min = 0.929
max = 1.044
mean = 1.000
COV = 0.000

Gradient Boosting (Train Set)
R2: 1.000

0.0 0.5 1.0 1.5 2.0
Actual T1 [s]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
T 1

 [s
]

Actual/Predicted
min = 0.990
max = 1.010
mean = 1.000
COV = 0.000

CatBoost (Train Set)
R2: 1.000

(a) Train set

0.0 0.5 1.0 1.5 2.0
Actual T1 [s]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
T 1

 [s
]

Actual/Predicted
min = -8.037
max = 93.553
mean = 1.364
COV = 29.552

Ridge (Test Set)
R2: 0.916

0.0 0.5 1.0 1.5 2.0
Actual T1 [s]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
T 1

 [s
]

Actual/Predicted
min = 0.976
max = 1.027
mean = 0.999
COV = 0.000

Random Forest (Test Set)
R2: 1.000

0.0 0.5 1.0 1.5 2.0
Actual T1 [s]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
T 1

 [s
]

Actual/Predicted
min = 0.929
max = 1.040
mean = 0.998
COV = 0.000

Gradient Boosting (Test Set)
R2: 1.000

0.0 0.5 1.0 1.5 2.0
Actual T1 [s]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
T 1

 [s
]

Actual/Predicted
min = 0.974
max = 1.012
mean = 1.000
COV = 0.000

CatBoost (Test Set)
R2: 1.000

(b) Test set

Figure 8. Actual vs. Predicted plots for both (a) train and (b) test dataset for T1 model.

0.0 0.5 1.0 1.5 2.0
Actual Utop [m]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
U

to
p

[m
] Actual/Predicted

min = -34.470
max = 602.729
mean = 1.317
COV = 262.021

Ridge (Train Set)
R2: 0.7924

0.0 0.5 1.0 1.5 2.0
Actual Utop [m]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
U

to
p

[m
] Actual/Predicted

min = 0.906
max = 1.113
mean = 0.997
COV = 0.000

Random Forest (Train Set)
R2: 0.9994

0.0 0.5 1.0 1.5 2.0
Actual Utop [m]

0.0

0.5

1.0

1.5

2.0

Pr
ed

ic
te

d
U

to
p

[m
] Actual/Predicted

min = -15.509
max = 50.774
mean = 1.057
COV = 3.717

Gradient Boosting (Train Set)
R2: 0.9920

0.0 0.5 1.0 1.5 2.0
Actual Utop [m]

0.0

0.5

1.0

1.5

2.0
Pr

ed
ic

te
d

U
to

p
[m

] Actual/Predicted
min = 0.677
max = 1.302
mean = 1.001
COV = 0.001

CatBoost (Train Set)
R2: 0.9998

(a) Train set

0.0 0.5 1.0 1.5 2.0
Actual Utop [m]

0.0

0.5

1.0

1.5

Pr
ed

ic
te

d
U

to
p

[m
] Actual/Predicted

min = -19.758
max = 12.170
mean = 0.856
COV = 3.601

Ridge (Test Set)
R2: 0.8244

0.0 0.5 1.0 1.5 2.0
Actual Utop [m]

0.0

0.5

1.0

1.5

Pr
ed

ic
te

d
U

to
p

[m
] Actual/Predicted

min = 0.834
max = 1.215
mean = 0.990
COV = 0.003

Random Forest (Test Set)
R2: 0.9962

0.0 0.5 1.0 1.5 2.0
Actual Utop [m]

0.0

0.5

1.0

1.5

Pr
ed

ic
te

d
U

to
p

[m
] Actual/Predicted

min = -10.199
max = 18.291
mean = 1.078
COV = 2.181

Gradient Boosting (Test Set)
R2: 0.9889

0.0 0.5 1.0 1.5 2.0
Actual Utop [m]

0.0

0.5

1.0

1.5

Pr
ed

ic
te

d
U

to
p

[m
] Actual/Predicted

min = 0.768
max = 1.205
mean = 1.000
COV = 0.002

CatBoost (Test Set)
R2: 0.9995

(b) Test set

Figure 9. Actual vs. Predicted plots for both (a) train and (b) test dataset for Utop model.

Computation 2023, 11, 126 16 of 22

0.0 0.2 0.4 0.6
Actual Vb [m/s2]

0.0

0.2

0.4

0.6

Pr
ed

ic
te

d
V b

 [m
/s

2]

Actual/Predicted
min = -665.286
max = 9.537
mean = 0.604
COV = 278.402

Ridge (Train Set)
R2: 0.701

0.0 0.2 0.4 0.6
Actual Vb [m/s2]

0.0

0.2

0.4

0.6

Pr
ed

ic
te

d
V b

 [m
/s

2]

Actual/Predicted
min = 0.913
max = 1.062
mean = 1.000
COV = 0.000

Random Forest (Train Set)
R2: 1.000

0.0 0.2 0.4 0.6
Actual Vb [m/s2]

0.0

0.2

0.4

0.6

Pr
ed

ic
te

d
V b

 [m
/s

2]

Actual/Predicted
min = 0.740
max = 1.318
mean = 0.999
COV = 0.003

Gradient Boosting (Train Set)
R2: 0.989

0.0 0.2 0.4 0.6
Actual Vb [m/s2]

0.0

0.2

0.4

0.6

Pr
ed

ic
te

d
V b

 [m
/s

2]

Actual/Predicted
min = 0.947
max = 1.049
mean = 1.000
COV = 0.000

CatBoost (Train Set)
R2: 1.000

(a) Train set

0.0 0.2 0.4 0.6
Actual Vb [m/s2]

0.0

0.2

0.4

0.6

Pr
ed

ic
te

d
V b

 [m
/s

2]

Actual/Predicted
min = 0.240
max = 8.504
mean = 1.053
COV = 0.314

Ridge (Test Set)
R2: 0.673

0.0 0.2 0.4 0.6
Actual Vb [m/s2]

0.0

0.2

0.4

0.6

Pr
ed

ic
te

d
V b

 [m
/s

2]

Actual/Predicted
min = 0.874
max = 1.093
mean = 1.000
COV = 0.000

Random Forest (Test Set)
R2: 0.999

0.0 0.2 0.4 0.6
Actual Vb [m/s2]

0.0

0.2

0.4

0.6

Pr
ed

ic
te

d
V b

 [m
/s

2]
Actual/Predicted
min = 0.769
max = 1.330
mean = 0.998
COV = 0.004

Gradient Boosting (Test Set)
R2: 0.987

0.0 0.2 0.4 0.6
Actual Vb [m/s2]

0.0

0.2

0.4

0.6

Pr
ed

ic
te

d
V b

 [m
/s

2]

Actual/Predicted
min = 0.940
max = 1.080
mean = 1.000
COV = 0.000

CatBoost (Test Set)
R2: 0.999

(b) Test set

Figure 10. Actual vs. Predicted plots for both (a) train and (b) test dataset for Ṽb model.

Table 3. Cross-Validation performance for each ML algorithm and model.

Algorithm Candidates Model
Fit Time [s] Test Score

Mean Std Dev Mean Std Dev

Ridge 144

T1 0.003 0.000 0.915 0.006

Utop 0.003 0.000 0.800 0.028

Ṽb 0.003 0.000 0.684 0.034

Random Forest 2880

T1 1.184 0.073 0.999 0.001

Utop 1.137 0.013 0.988 0.001

Ṽb 1.072 0.001 0.990 0.002

Gradient Boosting 1024

T1 0.919 0.011 1.000 0.000

Utop 0.583 0.001 0.999 0.001

Ṽb 0.839 0.006 0.999 0.000

CatBoost 640

T1 0.627 0.087 1.000 0.000

Utop 0.218 0.032 0.999 0.000

Ṽb 0.508 0.063 0.999 0.000

5.2. Model Evaluation Metrics

To quantify the performance of the ML models, the well-known metrics RMSE, MAE,
MAPE, and R2 are used [24]. The definition of each metric is as follows

RMSE =

√
1
m

m

∑
i=1

(xi − x̂i)2 (16)

MAE =
1
n

m

∑
i=1

(xi − x̂i) (17)

Computation 2023, 11, 126 17 of 22

MAPE =
100
n

m

∑
i=1

∣∣∣ xi − x̂i
xi

∣∣∣ (18)

R2 = 1− ∑m
i=1(xi − x̂i)

2

∑m
i=1(xi − x̂)2 (19)

where m is the size of the dataset, xi and x̂i are the actual and predicted feature value for
observation i, respectively.

The performance metrics of each ML algorithm and model are provided in Table 4.
CatBoost and Random Forest were the two best-performing ML algorithms. CatBoost
performed best for the fundamental eigenperiod T1, and the horizontal displacement at the
top Utop, with MAE values of 0.008 and 0.0034, respectively, for the test set, compared to
0.0013 and 0.0084 of the Random Forest. On the other hand, Random Forest had the best
performance for the normalized base shear force over the mass of each story Ṽb, with MAE
value of 0.0010 for the test set, compared to 0.0020 of the CatBoost algorithm. The other two
algorithms, Ridge and Gradient Boosting showed larger values of MAE as well as worse
values for the other metrics.

Table 4. Performance metrics of each ML algorithm and model. The finally selected algorithm
(CatBoost) is highlighted with brown color.

RMSE MAE MAPE R2
ML Algorithm

Train Test Train Test Train Test Train Test
T1

Ridge 0.0098 0.0098 0.0743 0.0722 0.1916 0.1932 0.9163 0.9159
Random Forest 0.0000 0.0000 0.0006 0.0013 0.0010 0.0023 1.0000 1.0000
Gradient Boosting 0.0000 0.0000 0.0040 0.0041 0.0086 0.0097 0.9997 0.9997
CatBoost 0.0000 0.0000 0.0006 0.0008 0.0013 0.0020 1.0000 1.0000

Utop

Ridge 0.0123 0.0090 0.0754 0.0699 1.0630 1.0817 0.7924 0.8244
Random Forest 0.0000 0.0002 0.0035 0.0084 0.0150 0.0400 0.9994 0.9962
Gradient Boosting 0.0005 0.0006 0.0146 0.0164 0.1156 0.1488 0.9920 0.9889
CatBoost 0.0000 0.0000 0.0026 0.0034 0.0182 0.0238 0.9998 0.9995

Ṽb

Ridge 0.0031 0.0032 0.0440 0.0450 0.2833 0.3061 0.7010 0.6727
Random Forest 0.0000 0.0000 0.0004 0.0010 0.0024 0.0060 0.9999 0.9994
Gradient Boosting 0.0001 0.0001 0.0073 0.0080 0.0372 0.0441 0.9894 0.9866
CatBoost 0.0000 0.0000 0.0015 0.0020 0.0079 0.0110 0.9995 0.9990

In general, CatBoost comes first in accuracy with acceptable fit and predicted times for
most of the cases, while Ridge Regression takes the trophy for being the fastest to fit the
data. Overall, CatBoost appears to be the best model to move forward with, as it came first
for, arguably, the most important metrics, although for the case of Ṽb model, the Random
Forest algorithm exhibited slightly better performance.

6. ML Interpretability

Machine learning models are often treated as “black boxes” which makes their inter-
pretation difficult. To understand the main features that affect the prediction of a model,
explainable machine learning techniques can be used to demystify their properties. To-
ward this, many explainability techniques have been developed. One which has gained
increasing interest is the SHAP (SHapley Additive exPlanations) method introduced by
Lundberg and Lee [25]. The method explains individual predictions and can be used for
the quantification of relative feature importance. The SHAP method is based on the game

Computation 2023, 11, 126 18 of 22

theoretically optimal Shapley values which measure the contribution to the outcome from
each feature separately among all the input features.

6.1. Feature Importance

SHAP feature importance is an abstract approach to explain the predictions of a
machine learning model. It provides an intuitive way to understand which features are
most important to the prediction based on the magnitude of feature attributions, where
large absolute Shapley values are the most important. The SHAP feature importance (FI)
can be quantified using the following formula

FIj =
1
n

m

∑
i=1
|s(i)j | (20)

where m is the number of observations in the dataset and s(i)j is the SHAP value of the
feature j for observation i. Figure 11 shows the SHAP feature importance by decreasing
importance for the best performing ML model. We see that the number of stories is the
most important feature affecting all targets. On the other hand, the Ground Type feature,
has no impact on the fundamental period T1 of the structure, which is meaningful and it is
expected according to the theory.

T 1

0.000

0.140

0.250

u t
op

0.060

0.080

0.160

0.00 0.05 0.10 0.15 0.20 0.25
Mean (|SHAP value|) (average impact on model magnitude output)

V b

0.030

0.040

0.060
Stories
k
Ground Type

Figure 11. SHAP feature importance plot for the best-performing ML model.

6.2. Summary Plots

Although the feature importance plot is useful, it contains no information beyond the
importance. For a deeper explanation of a machine learning model, additional informative
plots would be needed. One of them is the so-called summary or beeswarm plot. A beeswarm
plot visualizes all of the SHAP values in which the feature order (top to bottom) follows
their importance to the prediction. On the vertical axis, the values are grouped by feature
and the color of the points indicates the feature value ranging from low (blue) to high (red),
for each group. Points with the same Shapley values for each feature are scattered vertically
which subsequently forms their distribution. In Figure 12, the SHAP beeswarm plots of the
best performing for each ML model are shown.

Computation 2023, 11, 126 19 of 22

0.6 0.4 0.2 0.0 0.2 0.4 0.6
SHAP value (impact on model output)

Ground Type

k

Stories

Low

High

Fe
at

ur
e

va
lu

e

(a) T1 model

0.4 0.2 0.0 0.2 0.4
SHAP value (impact on model output)

Ground Type

k

Stories

Low

High

Fe
at

ur
e

va
lu

e

(b) Utop model

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
SHAP value (impact on model output)

k

Ground Type

Stories

Low

High

Fe
at

ur
e

va
lu

e

(c) Ṽb model

Figure 12. Summary plots showing the impact of all features on (a) T1, (b) Utop, and (c) Ṽb models.

It can be seen that for the number of stories, as the feature value increases, the SHAP
values increase, too. This tells us that higher number of stories will lead to a higher
predicted value for all models. In the case of the k̃ feature, we notice that as the feature
value increases the SHAP values increase for the T1 and Utop models, while in contrast
for the same feature the SHAP values decrease in the case of the Vb model. As expected,
the Ground Type feature has no impact on the predictions of the T1 model, while it has an
impact on the predicted Utop and Vb values.

Computation 2023, 11, 126 20 of 22

7. Test Case Scenarios

We consider three test case scenarios for testing the effectiveness of the developed
models and, in particular, the selected CatBoost prediction model. The first is a 3-story
building, followed by a 8-story building and a 15-story building. The feature values for
each scenario are presented in Table 5. The normalized stiffness (k̃) for each scenario is
2098.21, 5135.14, and 7169.81 s−2, respectively. For practical reasons, we prefer to take k and
m as independent parameters in the beginning and then calculate k̃, instead of working
with k̃ from start, but it is essentially the same.

Table 5. Feature values for each test case scenario.

Scenario Stories Mass (m) Stiffness (k) Ground
Type ag

[-] [kg] [N/m] [-] [m/s2]

1 3 112 × 103 235 × 106 B 0.32
2 8 185 × 103 950 × 106 A 0.24
3 15 265 × 103 1900 × 106 C 0.16

The results are presented in Table 6 for the three outputs, i.e., the fundamental period
T1, the displacement of the top story Utop and the base shear force Vb, for each scenario.
In all cases, the prediction model managed to give results of very high precision with error
values less than 3%. The maximum error value is only 2.93% corresponding to the shear
force for the first scenario. It has to be noted that the model gives Ṽb, the normalized base
shear force over the mass of each story of the building. By multiplying this with the mass
m, we obtain the last column of the table which corresponds to the final base shear force Vb.

Table 6. Target values (actual and predicted) for each test case scenario. The absolute error is
also provided.

T1 Utop Vb
[s] [m] [N]

Scenario 1
Actual 0.308 0.0275 2.899 × 106

Predicted 0.314 0.0285 2.816 × 106

Absolute Error 1.95% 3.49% 2.85%

Scenario 2
Actual 0.475 0.0358 6.333 × 106

Predicted 0.482 0.0365 6.336 × 106

Absolute Error 1.47% 2.01% 0.05%

Scenario 3
Actual 0.733 0.0638 1.241 × 106

Predicted 0.740 0.0650 1.241 × 106

Absolute Error 0.95% 1.75% 0.53%

8. Web Application

The best performing ML models based on CatBoost, were used to develop an interac-
tive web application. The GUI of the application is shown in Figure 13 for the input and
predicted values of the first case scenario. It serves for rapid predictions of the dynamic
response of multi-story buildings. More specifically, it can provide predictions of the
fundamental eigenperiod, as well as of the roof top horizontal displacement and the shear
base for the requested configurations of stories, mass, stiffness, and ground types. The web
application is developed in Flask web framework and can be deployed in every platform
with a Python environment with the required packages. The source code of the application
is available at https://github.com/geoem/drsb-ml (accessed on 6 May 2023).

https://github.com/geoem/drsb-ml

Computation 2023, 11, 126 21 of 22

Figure 13. Web application GUI for rapid predictions of the dynamic response of multi-story
shear buildings.

9. Conclusions

This paper presented the assessment of several ML algorithms for predicting the
dynamic response of multi-story shear buildings. A large dataset of dynamic response
analyses results was generated through standard sampling methods and conventional
response spectrum modal analysis procedures of multi-DOF structural systems. Then,
an extensive hyperparameter search was performed to assess the performance of each
algorithm and identify the best among them. Of the algorithms examined, CatBoost came
first in accuracy with acceptable fit and predicted times for most of the cases, while Ridge
Regressor took the trophy for being the fastest to fit the data. Overall, CatBoost appeared
to be the best performing algorithm, although for the case of the normalized shear base
model, the Random Forest algorithm exhibited slightly better performance.

The results of this study show that ML algorithms, and in particular CatBoost, can
successfully predict the dynamic response of multi-story shear buildings, outperforming
traditional simplified methods used in engineering practice in terms of speed, with minimal
prediction errors. The work demonstrates the potential of ML techniques to improve
seismic performance assessment in civil and structural engineering applications, leading
to more efficient and safer designs of buildings and other structures. Overall, the use of
ML algorithms in the dynamic analysis of structures is a promising approach to accurately
predict the dynamic behavior of complex systems.

The study has also some limitations that need to be highlighted and discussed. First
of all, the analysis is only elastic and the behavioral factor q of the design spectrum of EC8
takes the fixed value of 1 throughout the study. In addition, damping has been considered
with a fixed value of 5%, while the stiffness and mass of each story remains constant
along the height of the building. The extension of the work in order to account for these
limitations is a topic of interest which will be investigated in the future by adding extra
features to the ML model.

Author Contributions: Conceptualization, M.G. and V.P.; methodology, M.G. and V.P.; software,
M.G.; validation, M.G. and V.P.; formal analysis, M.G.; investigation, M.G.; resources, M.G.; data
curation, M.G.; writing—original draft preparation, M.G.; writing—review and editing, M.G. and
V.P.; visualization, M.G.; supervision, V.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The source code of the web application is available at https://github.
com/geoem/drsb-ml (accessed on 6 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/geoem/drsb-ml
https://github.com/geoem/drsb-ml

Computation 2023, 11, 126 22 of 22

References
1. Solorzano, G.; Plevris, V. Computational intelligence methods in simulation and modeling of structures: A state-of-the-art review

using bibliometric maps. Front. Built Environ. 2022, 8, 1049616. [CrossRef]
2. Georgioudakis, M.; Plevris, V. A Combined Modal Correlation Criterion for Structural Damage Identification with Noisy Modal

Data. Adv. Civ. Eng. 2018, 3183067.
3. Lagaros, N.D.; Plevris, V.; Kallioras, N.A. The Mosaic of Metaheuristic Algorithms in Structural Optimization. Arch. Comput.

Methods Eng. 2022, 29, 5457–5492.
4. Plevris, V.; Lagaros, N.D.; Charmpis, D.; Papadrakakis, M. Metamodel assisted techniques for structural optimization. In

Proceedings of the First South-East European Conference on Computational Mechanics (SEECCM-06), Kragujevac, Serbia,
28–30 June 2006 ; pp. 271–278.

5. Papadrakakis, M.; Lagaros, N.D.; Tsompanakis, Y.; Plevris, V. Large scale structural optimization: Computational methods and
optimization algorithms. Arch. Comput. Methods Eng. 2001, 8, 239–301. [CrossRef]

6. Lagaros, N.; Tsompanakis, Y.; Fragiadakis, M.; Plevris, V.; Papadrakakis, M. Metamodel-based Computational Techniques for
Solving Structural Optimization Problems Considering Uncertainties. In Structural Design Optimization Considering Uncertainties;
Tsompanakis, Y., Lagaros, N., Papadrakakis, M., Eds.; Taylor & Francis: Abingdon, UK, 2008; Chapter 21, pp. 567–597.

7. Lu, X.; Plevris, V.; Tsiatas, G.; De Domenico, D. Editorial: Artificial Intelligence-Powered Methodologies and Applications in
Earthquake and Structural Engineering. Front. Built Environ. 2022, 8, 876077. [CrossRef]

8. Xie, Y.; Sichani, M.E.; Padgett, J.E.; DesRoches, R. The promise of implementing machine learning in earthquake engineering: A
state-of-the-art review. Earthq. Spectra 2020, 36, 1769–1801. [CrossRef]

9. Zhang, Y.; Burton, H.V.; Sun, H.; Shokrabadi, M. A machine learning framework for assessing post-earthquake structural safety.
Struct. Saf. 2018, 72, 1–16. [CrossRef]

10. Nguyen, H.D.; Dao, N.D.; Shin, M. Prediction of seismic drift responses of planar steel moment frames using artificial neural
network and extreme gradient boosting. Eng. Struct. 2021, 242, 112518. [CrossRef]

11. Sadeghi Eshkevari, S.; Takáč, M.; Pakzad, S.N.; Jahani, M. DynNet: Physics-based neural architecture design for nonlinear
structural response modeling and prediction. Eng. Struct. 2021, 229, 111582. [CrossRef]

12. Abd-Elhamed, A.; Shaban, Y.; Mahmoud, S. Predicting Dynamic Response of Structures under Earthquake Loads Using Logical
Analysis of Data. Buildings 2018, 8, 61. [CrossRef]

13. Gharehbaghi, S.; Gandomi, M.; Plevris, V.; Gandomi, A.H. Prediction of seismic damage spectra using computational intelligence
methods. Comput. Struct. 2021, 253, 106584. [CrossRef]

14. Kazemi, F.; Asgarkhani, N.; Jankowski, R. Machine learning-based seismic response and performance assessment of reinforced
concrete buildings. Arch. Civ. Mech. Eng. 2018, 23, 94. [CrossRef]

15. Kazemi, F.; Jankowski, R. Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames
considering soil-structure interaction. Comput. Struct. 2023, 274, 106886. [CrossRef]

16. Wakjira, T.G.; Rahmzadeh, A.; Alam, M.S.; Tremblay, R. Explainable machine learning based efficient prediction tool for lateral
cyclic response of post-tensioned base rocking steel bridge piers. Structures 2022, 44, 947–964. [CrossRef]

17. Montuori, R.; Nastri, E.; Piluso, V.; Todisco, P. A simplified performance based approach for the evaluation of seismic performances
of steel frames. Eng. Struct. 2020, 224, 111222. [CrossRef]

18. EN 1998-1 (Eurocode 8); Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for
Buildings. European Committee for Standardization: Brussels, Belgium, 2004.

19. Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67.
[CrossRef]

20. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
21. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
22. Prokhorenkova, L.O.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features.

In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada,
4–6 December 2018; Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; pp. 6639–6649.

23. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

24. Plevris, V.; Solorzano, G.; Bakas, N.; Ben Seghier, M.E.A. Investigation of performance metrics in regression analysis and machine
learning-based prediction models. In Proceedings of the 8th European Congress on Computational Methods in Applied Sciences
and Engineering, Oslo, Norway, 5–9 June 2022. [CrossRef]

25. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing
Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2017; Volume 30.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fbuil.2022.1049616
http://dx.doi.org/10.1007/BF02736645
http://dx.doi.org/10.3389/fbuil.2022.876077
http://dx.doi.org/10.1177/8755293020919419
http://dx.doi.org/10.1016/j.strusafe.2017.12.001
http://dx.doi.org/10.1016/j.engstruct.2021.112518
http://dx.doi.org/10.1016/j.engstruct.2020.111582
http://dx.doi.org/10.3390/buildings8040061
http://dx.doi.org/10.1016/j.compstruc.2021.106584
http://dx.doi.org/10.1007/s43452-023-00631-9
http://dx.doi.org/10.1016/j.compstruc.2022.106886
http://dx.doi.org/10.1016/j.istruc.2022.08.023
http://dx.doi.org/10.1016/j.engstruct.2020.111222
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.23967/eccomas.2022.155

	Introduction
	Problem Formulation
	Response Analysis of MDOF Systems
	Response Spectrum
	Response Spectrum Method for MDOF Systems

	Dataset Description and Exploratory Data Analysis
	Dataset Description
	Exploratory Data Analysis

	Overview of ML Algorithms
	Ridge Regression (RR)
	Random Forest Regressor (RF)
	Gradient Boosting Regressor (GB)
	CatBoost Regressor (CB)

	ML Pipelines and Performance Results
	Cross Validation and Hyperparameter Tuning
	Model Evaluation Metrics

	ML Interpretability
	Feature Importance
	Summary Plots

	Test Case Scenarios
	Web Application
	Conclusions
	References

