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Abstract: This study proposes the DNN-MVLEM, a novel macromodel for the non-linear analysis of
RC shear walls based on deep neural networks (DNN); while most RC shear wall macromodeling
techniques follow a deterministic approach to find the right configuration and properties of the
system, in this study, an alternative data-driven strategy is proposed instead. The proposed DNN-
MVLEM is composed of four vertical beam-column elements and one horizontal shear spring. The
beam-column elements implement the fiber section formulation with standard non-linear uniaxial
material models for concrete and steel, while the horizontal shear spring uses a multi-linear force–
displacement relationship. Additionally, three calibration factors are introduced to improve the
performance of the macromodel. The data-driven component of the proposed strategy consists of a
large DNN that is trained to predict the force–displacement curve of the shear spring and the three
calibration factors. The training data is created using a parametric microscopic FEM model based on
the multi-layer shell element formulation and a genetic algorithm (GA) that optimizes the response of
the macromodel to match the behavior of the microscopic FEM model. The DNN-MVLEM is tested
in two types of examples, first as a stand-alone model and then as part of a two-bay multi-story frame
structure. The results show that the DNN-MVLEM is capable of reproducing the results obtained
with the microscopic FEM model up to 100 times faster and with an estimated error lower than 5%.

Keywords: shear wall; macromodel; deep neural network; genetic algorithm; OpenSees
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1. Introduction

The modeling of reinforced concrete (RC) shear walls is an essential area of research in
earthquake engineering [1]. Engineers have sought to create numerical models of RC shear
walls that can be reliably used for the analysis and design of structures under earthquake
hazards [2,3]. Over the years, the research and development of modeling strategies have
resulted in two main distinguished categories: macroscopic and microscopic models [4].

Microscopic modeling (micromodels) strategies attempt to create a model with an
elevated level of detail and refinement to reproduce the complex interaction between
the concrete and the reinforcement steel at a microscopic level [5,6]. The most popular
micromodeling technique is the implementation of finite element method (FEM) models
utilizing solid, shell, and beam/truss elements combined with state-of-the-art material
models for concrete and reinforcement steel [7–9]. One such example is the 3D FEM model
developed by Fei-Yu et al. [10], where each reinforcement bar is modeled independently,
including the corresponding contact interaction between steel and concrete. Micromodels
stand out for their good performance in reproducing the realistic behavior of RC shear
walls [11]. Their effectiveness has been extensively demonstrated in various studies [12–15].
However, their main disadvantage is their high computational cost, significantly reducing

Mathematics 2023, 11, 2347. https://doi.org/10.3390/math11102347 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11102347
https://doi.org/10.3390/math11102347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0409-5636
https://orcid.org/0000-0002-7377-781X
https://doi.org/10.3390/math11102347
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11102347?type=check_update&version=1


Mathematics 2023, 11, 2347 2 of 19

their practical applicability for the analysis of large-scale real-world structures. For example,
the model in Figure 1 contains more than 100,000 degrees of freedom and takes 22 h to run
100 steps of a static non-linear pushover analysis on four cores with a computer equipped
with an Intel Core i7-6700HQ CPU @2.60 GHz.

Figure 1. RC shear wall microscopic 3D FEM model using solid elements.

Macroscopic modeling (macromodels) techniques, on the other hand, attempt to re-
produce the overall behavior of RC shear walls at the macro scale with a much simpler
model [16]; thus, their computational cost is significantly lower. These models typically
combine springs and axial bars connected through rigid elements to mimic the wall geome-
try. They implement non-linear material laws for both the concrete and the reinforcement
steel. However, the shear and flexural response in these systems is usually uncoupled,
meaning that the element can experience shear and flexure deformations independently,
which is normally not physically possible. Hence, their efficacy to model certain effects is
limited [17]. Nonetheless, the research and development of macromodeling techniques is a
popular and active area of research as the analysis and design paradigm is shifting towards
performance-based techniques [18], where the assessment of the non-linear behavior of the
structure plays a central role. Therefore, creating reliable macromodels that contribute to
reducing the computational cost of the non-linear analysis of structures is of particularly
high interest.

Macroscopic modeling techniques have been around for a few decades; among the first
proposed macromodels is the three-vertical-line-element model by Kabeyasawa et al. [19]. It
consists of two axial springs, one rotational spring for flexure, and one horizontal spring for
shear deformation; see Figure 2a. Vulcano et al. [20,21] improved the model by removing
the rotational spring and using several vertical axial fibers in parallel instead, creating the
multiple-vertical-lines-element-model (MVLEM); see Figure 2b. Since then, the MVLEM
has become widely popular and has been thoroughly tested and verified in numerous
studies [22–26]. The MVLEM has also been included in various popular FEM packages,
such as in the OpenSees framework [27]. Additionally, it has served as the base and
motivation for developing similar models with enhanced properties, such as the SFI-
MVLEM [28,29] depicted in Figure 2c, the V-MVLEM [30], and others [31,32].

Despite the efforts to find the perfect macromodel, some of their disadvantages are
too difficult to overcome due to the underlying assumptions and simplifications implicit in
their formulations. For instance, they may be unable to fully capture the RC shear wall’s
complex behavior to its full extent. A comparative study by Kolozvari et al. [17] found that
some macromodels were not reliable in predicting the local strains at the base (where the
higher strains are localized). In such cases, the tensile strains were overestimated as much
as a factor of 2.0, while the compressive strains were underestimated up to 2.0–3.0 times.
Overall, RC shear walls’ behavior is a complex phenomenon challenging to model using
simplified methods based on deterministic strategies. Deterministic methods usually can-
not capture complex phenomena to their full extent, becoming subject to many limitations
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that restrict their applicability. In contrast, data-driven strategies that do not follow the de-
terministic road have proven to be a better alternative for complex problems [33], provided
that sufficient and high-quality data are used in their formulation.
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Figure 2. Popular macromodels for RC shear wall analysis. (a) Model proposed by Kabeya-
sawa et al. [19]. (b) The MVLEM, proposed by Vulcano et al. [20]. (c) The SFI-MVLEM proposed by
Kolozvari et al. [28].

In this study, a novel data-driven macromodel for modeling RC shear walls is devel-
oped based on deep learning techniques. The macromodel, referred to as DNN-MVLEM, is
composed of four vertical beam-column elements that implement the fiber section formula-
tion and a non-linear horizontal shear spring. All the elements are connected together with
rigid elements to mimic the RC shear wall geometry. The material models for the vertical
elements are based on well-established non-linear models commonly used for concrete and
reinforcement steel. For the shear spring, a multi-linear material model is implemented.
The final piece of the macromodel is three factors that are introduced to calibrate it and
improve its accuracy. The data-driven component of the macromodel consists of a deep
neural network (DNN) trained in a two-phase procedure. In the first phase, the DNN is
trained to predict the force–displacement curve to define the multi-linear curve for the
shear spring material model. To that end, a parametric microscopic FEM model generates
the corresponding data. In the second phase, several macromodels are built and calibrated
to match the results of the microscopic FEM model using a genetic algorithm (GA). The
results are used to re-train the DNN to add the calibration factors to its predictions. Hence,
the final DNN is able to predict all the required information to construct the macromodel.

The DNN-MVLEM is a novel approach inspired by the effectiveness of data-driven
strategies to substitute intricate hard-computing models for solving complex problems
with reliable approximations that require significantly less computational effort. Notably, in
structural engineering [34], these strategies are quickly gaining momentum and acceptance
for both research and industrial applications [35]. Several recent examples can be found,
such as the following: using artificial neural networks (ANN) to predict the lateral capacity
of RC shear walls [36]; predicting the non-linear response of 3D buildings under seismic
actions with ANNs [37]; using ANNs as non-linear constitutive materials [38]; autonomous
design of structures using optimization algorithms [39–42]; speeding up the solution
procedure of FEM equations [43,44]; surrogate modeling of large FEM structures [45–47];
using the ensemble wavelet-neural networks [48] and physical informed neural networks
(PINN) [49] to estimate the properties of complex materials such as concrete composites;
and many other exciting applications [50,51].

The remainder of the paper is organized as follows. Section 2 presents the basic struc-
ture and components of the DNN-MVLEM. Section 4 explains the data-driven component
of the model, which includes a description of the microscopic FEM model used for the data
generation. Section 5 presents various numerical examples of the DNN-MVLEM compared
to the microscopic FEM model. Finally, the results are discussed in Section 6, and the
conclusions are presented in Section 7.



Mathematics 2023, 11, 2347 4 of 19

2. The DNN-MVLEM
2.1. Base Elements

The DNN-MLVEM has been implemented using the FEM framework provided by the
OpenSeesPy library [52,53]. It is composed of four vertical columns—two columns Keb1
and Keb2 for the boundary elements, and another two Kweb1 and Kweb2 for the web part of
the wall. Each of the columns is positioned at the center of the tributary area of the portion
of the wall that is intended to represent. Additionally, to simulate the shear resistance, there
is a horizontal axial spring Sh in the middle of the model positioned at a distance of 0.4 h
from the bottom. The whole system is held together by rigid beam elements. The resulting
configuration of the macromodel is depicted in Figure 3.
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Figure 3. The DNN-MVLEM macromodel. (a) Main components and geometry. (b) Fiber-based
discretization of the cross section used for all the vertical elements.

The columns are modeled using beam-column elements with the fiber section formula-
tion [54]. Their corresponding commands in OpenSees are the “forceBeamColumn” element
and the “fiber” section. For the four vertical elements, the cross-section is discretized into
20 rectangular fibers in the direction of the wall length for the concrete area. The total
quantity for the reinforcement steel is distributed into six fibers, with four positioned in
the corners and two in the middle of the larger edges. Figure 3b depicts the resulting fiber
section. The shear spring Sh consists of a uni-axial element that provides only stiffness in
the horizontal direction, modeled using the “zeroLenght” element in OpenSees. The rigid
beams at the top and bottom of the macromodel and the additional elements holding the
shear spring are modeled using the “elasticBeamColumn” element command with a large
cross-section assigned to simulate the rigid behavior.

2.2. Material Models for Vertical Elements

The material model for the concrete fibers in the columns is the Kent–Scott–Park model,
which does not include tensile strength in its formulation. It is denoted as “Concrete01” in
OpenSees, and its definition requires four parameters: the concrete compressive strength f ′c ;
the strain at the maximum compressive strength εco, taken as −0.002; the crushing strength
fcu, taken as 0.2 f ′c ; and the strain at the crushing strength εcu, taken as −0.01. A second
concrete material model is defined for the confined regions. The material parameters for
the unconfined concrete model are the same as those previously mentioned but with the
values of fcu = 0 and εcu = −0.005.

For the reinforcement steel fibers in the columns, the Giuffre–Menegotto–Pinto model
that includes the characteristic post-yielding and the Bauschinger effects have been used. It
is identified as “Steel02” in OpeenSees, and its definition requires three parameters: the
yield stress fy; the initial elastic tangent, taken as E0 = 210 GPa; and the strain-hardening
ratio, taken as b = 0.01 (b is the ratio between the elastic tangent E0 and the post-yield
tangent Ep).
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The values for the material parameters for the concrete and the reinforcement steel
sections are taken from well-established studies found in the literature, such as [55–60]. A
representative stress–strain curve for both material models is presented in Figure 4. Note
that the curves are not scaled; their only intention is to provide a visual definition of the
required parameters.

f 'c

f cu

c0
−εε cuε(a)

Compressive stress−σ

f y

E0

Ep

+ε

+σ Tensile stress

StrainStrain

(b)

Figure 4. Illustrative uni-axial curves for the material models. (a) Concrete. (b) Reinforcement steel.

2.3. Material Model for Shear Spring

For the shear spring Sh, a multi-linear material is used with the “MultiLinear” uniaxial
material command in OpenSees. The force–displacement coordinates of the multi-linear
curve are obtained in the following way. Suppose that a more sophisticated FEM model is
used to model the RC shear wall and perform a static non-linear lateral pushover analysis.
Then, the computed pushover curve (horizontal force–displacement relation measured at
the top of the model through the analysis) is discretized into six segments so that six force–
displacement coordinates are obtained. These six force–displacement coordinates define
the multi-linear material model for the shear spring. A representative force–displacement
curve of the multi-linear model is given in Figure 5. Such a curve serves as the basic shape
of the multi-linear model that is later calibrated with a process described in Section 4.

Using the pushover curve obtained with FEM analysis as the curve for the multi-
linear material may seem counter-intuitive as it implies the solution of a computationally
expensive analysis first. However, this is not the case. The six points defining the multi-
linear model are obtained by calling a DNN previously trained with thousands of static
non-linear pushover FEM analyses of RC shear walls. The complete description of the
methodology to develop the DNN is given in Section 4.
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Figure 5. Illustrative force–displacement curve of the multi-linear model used in the shear spring
obtained using an DNN.

2.4. Calibration Factors

The DNN-MVLEM is constructed on top of various assumptions and simplifications,
which, depending on multiple parameters such as the geometry and reinforcement quantity,
may deviate its performance from the actual behavior of the RC shear wall. Thus, a simple
data-driven calibration method has been developed. The strategy consists of using three
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factors to adjust its behavior, namely kc, ks, and km. The factor kc multiplies the thickness t
of the cross-sections, while ks multiplies the strength of reinforcement steel fy. The third
factor km multiplies the six force coordinates used to define the multi-linear model, shifting
the curve up or down.

The calibration is performed by solving an optimization problem using a genetic algo-
rithm. The decision to include these three factors to calibrate the macromodel’s behavior
comes after several attempts to improve its accuracy without sacrificing its simplicity or
computational efficiency. For instance, instead of adding more elements or implementing
more complex material models, the optimization algorithm calibrates its performance by
simply adjusting the response with three factors.

In principle, the macromodel is calibrated to match the results of a more sophisticated
microscopic FEM model. The strategy may seem paradoxical because it implies computing
the solution with an expensive microscopic FEM model to calibrate a simpler macromodel.
However, this is where the benefits of the data-driven paradigm are genuinely harnessed.
Instead of conducting the calibration process each time the macromodel is used, an exten-
sive database of macromodels is calibrated beforehand. Then, that database is used to train
a DNN to predict the calibration factors. Thus, the computationally expensive operation is
transferred to an external process where the database is generated, and the DNN model
is trained. After those processes are finalized, the DNN becomes ready to be used at any
given time, predicting the calibration factors in a few milliseconds. The process is described
in more detail in Section 4.

3. Parametric FEM Model for Data Generation

The required data for the DNN-MVLEM methodology are generated using a micro-
scopic FEM model based on the multi-layer shell element (MLSE) formulation, particularly
the implementation developed by Lu et al. [61,62]. The MLSE has proven to be an effective
and practical modeling approach capable of reproducing the in-plane and out-of-plane
bending and the characteristic in-plane shear and coupled bending–shear behavior of RC
shear walls [63,64]. In the MLSE approach, the shell thickness is discretized into several
fully-bonded layers, including the vertical and transverse reinforcement steel as smeared
orthotropic layers.

The model consists of a rectangular RC shear wall with special boundary elements
(BE) on both sides with a beam element added at the top to distribute the loads to all the
nodes on the top edge. The model is parameterized into 11 different variables that describe
the geometry and properties of the wall. These parameters are described in Table 1.

The model is subjected to a two-stage analysis procedure. In the first stage, a vertical
load is applied to simulate the gravity actions. In the second stage, a static non-linear lateral
pushover analysis with a target displacement of 20 mm applied at the top-left node at a
rate of 0.05 per step is conducted. The final form of the model and an illustration of the
multi-layer shell element discretization is shown in Figure 6.

The chosen bounding values in Table 1 are derived from design guidelines provided
by the American Concrete Institute (ACI318-19) [65] and from engineering criteria. The
bounding values are selected to produce realistic wall geometries and configurations. For
instance, the ACI318-19 specifies that the minimum thickness allowed for a structural wall
is t = 12.5 cm, and the smallest length-to-thickness ratio is lw/t = 6. As a result, the lower
bound for the wall length is set to t · 6. Additionally, Section 18.10.6.4 of the ACI318-19
recommends a transverse reinforcement quantity of ρtbe for the boundary element range
of 0.0075 to 0.020, depending on the material properties. The longitudinal reinforcement
ρlbe

is similar to concrete columns, so a value between 0.01 and 0.05 is reasonably selected.
Note that reinforcement is expressed as a ratio of the corresponding concrete cross-sectional
area. The compressive strength f ′c and yield strength fy range from traditional values
commonly used in the construction of modern buildings. The wall length lw and height h
are based on typical wall dimensions found in medium-rise buildings. The axial load value
qa is expressed as a ratio of the maximum axial strength for concrete sections according to



Mathematics 2023, 11, 2347 7 of 19

Equation 22.4.2.2 of ACI318-19. The range of 0.010 to 0.1 is chosen based on the assumption
that a value of 0.1 represents the loading of a wall in the bottom story of a medium-height
building [66].

Table 1. Parameters that define the properties and dimensions of an RC shear wall.

n Symbol Lower Bound Upper Bound Description

1 f ′c 25 60 Concrete compressive strength [MPa]
2 fy 380 600 Reinforcing steel yield stress [MPa]
3 h 300 350 Wall height [cm]
4 t 12.5 40 Wall thickness [cm]
5 lw t · 6 300 Wall total length [cm]
6 lbe 0.15·lw 0.30·lw BE length [cm]
7 ρlbe

0.01 0.05 BE longitudinal reinforcement ratio
8 ρtbe 0.0075 0.02 BE transversal reinforcement ratio
9 ρlweb

0.0025 0.75·ρlbe
Web longitudinal reinforcement ratio

10 ρtweb 0.0025 0.75·ρtbe Web transversal reinforcement ratio
11 qa 0.005 0.1 Axial load ratio, P = qa · 0.85 · f ′c · t · lw

beam element
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Figure 6. MLSE-based microscopic FEM model. (a) Elevation and mesh. (b) Realistic cross-section.
(c) MLSE discretization of the cross-section.

3.1. Validation

The selected MLSE approach is validated with two numerical examples by comparing
the results to some of the popular experimental tests available in the literature. For the first
case, the specimen labeled as SW22 taken from the study conducted by Lefas et al. [66]
is selected. The input values are: f ′c = 50.6 MPa, fy = 470 MPa, h = 130 cm, t = 7 cm,
lw = 65 cm, lbe = 0.215 (14 cm), ρlbe

= 0.033, ρtbe = 0.008, ρlweb
= 0.025, ρtweb = 0.008,

qa = 0.1. The second case corresponds to the specimen SW1-1 taken from the database [67].
The input values are: f ′c = 20.7 MPa, fy = 392 MPa, h = 200 cm, t = 12.5 cm, lw = 100 cm,
lbe = 0.20 (20 cm), ρlbe

= 0.0188, ρtbe = 0.0028, ρlweb
= 0.0037, ρtweb = 0.0018, and qa = 0.11.

The results for both examples are shown in Figure 7a,b.
The presented numerical examples demonstrate that the implemented RC shear wall

FEM model based on the MLSE formulation reproduces the experimental results reason-
ably, even when two different databases are used. Although only two specimens were
analyzed in this study, the same MLSE implementation has been tested extensively in other
studies [61,62,68].
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(a) (b)

Figure 7. Comparison of the MLSE-based microscopic FEM model to experimental test results.
(a) Specimen SW22 [66]. (b) Specimen SW1-1 [67].

4. Data-Driven Component

The key ingredient of the DNN-MVLEM is adding the data-driven component, which
consists of a large deep neural network trained with thousands of non-linear analyses
of RC shear walls. The DNN is trained to predict the force–displacement curve for the
multi-linear model used in the shear spring and the three factors required to calibrate its
performance, as illustrated in Figure 8.
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Figure 8. A diagram showing the methodology that is followed to create the DNN-MVLEM.

The data-driven component is summarized in eight steps. In the first phase
(Steps 1 to 4), a database is generated that contains thousands of RC shear walls and
their corresponding analysis results obtained with the FEM model described in Section 3.
The database is used to train a temporary DNN to predict the multi-linear model for the
shear spring. In the second phase (Steps 5 to 8), for every RC shear wall in the database,
the corresponding macromodel is generated and calibrated to match the FEM results using
a genetic algorithm. The calibration factors for each data point are added to the initial
database so that a second larger DNN is trained to predict the two parts: the multi-linear
curve for the shear spring and the calibration factors, thus obtaining a single DNN that
predicts the complete information required to define the DNN-MVLEM. The eight steps
are described in more detail in the following paragraphs.
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Step 1. A vector w that contains the 11 input values is generated using a uniform
random distribution based on the bounding values specified in Table 1. The vector has the
following form.

w = { f ′c , fy, h, t, lw, lbe, ρlbe
, ρtbe , ρlweb

, ρtweb , qa}

Step 2. The vector w is used to generate the microscopic FEM model described in
Section 3. The model is subjected to a static non-linear lateral pushover analysis. The
obtained pushover curve is discretized into six segments by reading the force at the dis-
placement values of 0.5, 1.0, 2.5, 5.0, 10.0, and 20.0 mm. Step 2 can be conveniently
summarized into a single function as:

p(w) = {p1, . . . , p6} (1)

where pi are the force coordinates of the discretized pushover curve obtained with the
microscopic FEM model.

Step 3. Steps 1 and 2 are repeated several times until a large database of analysis
results is generated. The database is denoted as 11 × 6 because it contains 11 input and
6 output values per data point.

Step 4. A temporary DNN, referred to as DNNb, is created and trained with the
11 × 6 database; thus, obtaining a DNN that predicts the 6 values corresponding to the
6 force coordinates of the discretized pushover curve.

Step 5. From the 11 × 6 database, a data point is selected, and the 11 input values
are used to build the corresponding macromodel according to the process described in
Section 2. The DNNb is used to obtain the force–displacement curve of the shear spring Sh,
and the calibration coefficients are set to an initial value of kc = ks = km = 1. Similarly to
Step 2, the following function is defined:

q(w, kc, ks, km) = {q1, . . . , q6} (2)

where qi are the force coordinates of the discretized pushover curve obtained with the
macromodel after performing the same static pushover analysis, and applying the same
six-value discretization as in Step 2.

Step 6. The calibration procedure is formulated as an optimization problem:

min e = |p(w)− q(w, kc, ks, km)|

0.1 ≤kc ≤ 2 kc ∈ R (3)

0.1 ≤ks ≤ 2 ks ∈ R
0.1 ≤km ≤ 5 km ∈ R

The calibration coefficients are computed by solving the optimization problem with a
genetic algorithm. To that end, the genetic algorithm in the multi-objective optimization
Python library known as “pymoo” [69] is used. The GA is run for a total of 50 generations
using the default parameters provided by the library, which include a population size of
100 and the genetic operators of SBX crossover, polynomial mutation, and tournament
selection. The optimization problem is unconstrained, but the solution vector is limited to
the space dictated by the bounding values of the variables kc, ks, km.

Step 7. Steps 5 and 6 are repeated until the calibration coefficients of all the RC shear
walls in the database are computed, obtaining a larger 11 × 9 database with nine output
values (the six values obtained in Step 2 and the three values obtained in Step 6).

Step 8. With the 11× 9 database, a second larger DNN model is created and trained to
predict the complete information (the six output values used for the multi-linear model and
the three calibration factors). The DNN details, such as the architecture and its performance,
are given in Section 4.1.
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4.1. DNN Architecture and Performance

The DNN has been created using the TensorFlow library [70]. The chosen architecture
is a back-propagation neural network with 11 input neurons at the input layer, 3 hidden
layers with 250 neurons each, and an output layer with 9 neurons. Its size can be expressed
in the following way: 11− 250− 250− 250− 9. The total number of trainable parameters
is equal to (11 + 1)× 250 + (250 + 1)× 200 + (250 + 1)× 250 + (250 + 1)× 9 = 130,759.

The database is composed of 3000 data points that are generated using the procedure
described in Section 4. The inputs and the outputs are normalized to add flexibility and
stability to the DNN. A validation subset of 10% of the training data is used to monitor
the training process and avoid over-fitting. Other relevant characteristics are the usage of
the Adams optimizer, ReLu activation functions, a batch size of 5, and a random uniform
initialization of the weights.

After the training, the DNN is tested using a freshly generated data set containing
200 new data points. The testing set is processed by the DNN and the predictions are
compared with the ground truth using two metrics, the correlation coefficient (R) and
the coefficient of determination (R2) [71]. The results are shown in Figure 9 for the first
8 outputs. The average values of R and R2 are 0.9909 and 0.9806, respectively. Such results
indicate good correlation values with R and R2 close to 1, implying that the error is low
and that the DNN predicts the results with high accuracy.
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Figure 9. Results of the correlation coeficients R and R2 of the first 8 output variables for the testing set.

The temporary DNNb model defined in Step number 4 of the process described in
Section 4 uses the same parameters described in this section, with the only difference that
its size is 11-200-200-200-6.
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5. Numerical Examples

This section presents a series of numerical examples to demonstrate the effectiveness
of the macromodel. For simplicity, the parameters used to build the microscopic and
macroscopic models of the tested walls are presented in Table 2.

Table 2. Properties of all the RC shear walls used in the numerical examples.

Parameters Wall Identifier
n var. Unit A B C D E F

1 f ′c MPa 45.1 33.7 55 35 40 30
2 fy MPa 530 462 580 420 558 400
3 h cm 320 335 342 320 340 330
4 t cm 21 27 36 25 30 20
5 lw cm 187 242 165 200 275 160
6 lbe cm 41 48 40 50 68 40
7 ρlbe

- 0.031 0.039 0.045 0.035 0.025 0.03
8 ρtbe - 0.0092 0.0102 0.0087 0.0075 0.006 0.0085
9 ρlweb

- 0.011 0.009 0.013 0.0125 0.01 0.0095
10 ρtweb - 0.0078 0.0067 0.0091 0.005 0.0075 0.0060
11 qa - 0.025 0.018 0.02 0.05 0.075 0.075

1 v1 kN 206 377 350 263 676 106
2 v2 kN 361 651 601 459 1184 190
3 v3 kN 605 1131 1071 790 2009 324
4 v4 kN 810 1447 1381 1047 2476 435
5 v5 kN 1086 2035 2101 1393 3357 601
6 v6 kN 1189 2177 2278 1501 3539 673
7 kc - 1.65 1.47 1.57 1.63 1.27 1.51
8 ks - 0.43 0.49 0.38 0.41 0.54 0.44
9 km - 4.65 4.63 3.44 3.32 4.81 4.15

5.1. Stand-Alone RC Shear Wall

The first testing round consists of three numerical examples (A, B, C) where the wall is
modeled as a stand-alone structure subjected to a static non-linear pushover analysis. The
dimensions and properties for the three examples are generated randomly and correspond
to the walls labeled as A, B, and C according to Table 2. The analysis is performed using
both the microscopic FEM model described in Section 3, and the developed DNN-MVLEM.
The boundary conditions are set so that the wall is fixed at the bottom, and a vertical
load equal to P = qa · 0.85 · f ′c · t · lw is added at the top-middle node. The prescribed
displacement for the pushover analysis is set to 20 mm, which is applied at a rate of 0.1 mm
per step (200 total steps). The results for each example are presented and compared in
Figure 10 and Table 3.

Table 3. Scenario A, B, and C error and computational cost comparisons.

Scenario Error Computational Efficiency
MAE
[kN]

Peak Force
[kN]

Total % FEM
8 × 10 [s]

FEM
12 × 15 [s]

DNN-MVLEM
[s]

Speed Factor
(8 × 10)/(12 × 15)

A 37 1320 2.8 27 81 0.247 109/327
B 109 2622 4.16 36 97 0.245 146/395
C 107 2292 4.66 30 86 0.252 119/341

Averages - - 3.87 31 88 0.248 125/355
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Figure 10. Comparison of results between the microscopic FEM model and the developed DNN-
MVLEM for the three stand-alone analysis examples labeled A, B, and C.

5.2. Multi-Story Frame

For the second round of tests, three additional numerical examples (D, E, F) are pre-
pared in which the macromodel has been incorporated into a larger structure that consists
of a two-bay multi-story frame. Each structure is modeled using both approaches—the
microscopic FEM model and the DNN-MVLME macromodel. The additional columns and
beams that form the framed structure are modeled using the same fiber section approach
and the non-linear material models described in Section 2.3. For scenarios D and E, the
column dimensions are set to 40 × 40 cm with rc = 3 cm of concrete cover and a quantity
of reinforcement steel equal to qc = 3% of the concrete cross-section gross area. The beam
dimensions are 30 × 50 cm with rc = 3 cm and qc = 1%. For the third scenario F, the
structure is intentionally made softer to test the methodology under extreme deformations.
For such a scenario, the column dimensions are 25 × 25 cm with rc = 2.5 cm and qc = 2%;
the beam dimensions are 20 × 30 cm with rc = 2.5 cm and qc = 1%. A static-nonlinear
pushover analysis is performed for each scenario and each model. For the D and E sce-
narios, the prescribed displacement for the pushover analysis is 60 mm applied at a rate
of 0.5 per step (120 total steps). For the third scenario, a larger target displacement of
600 mm applied at a rate of 1 mm per step is used (total 600 steps). The boundary condi-
tions for all scenarios are set so that the bottom of the frame is fully fixed. Additionally, the
vertical point load is added at the top-middle node of the top story with a magnitude equal
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to P = qa · 0.85 · f ′c · t · lw according to the values specified at Table 2. The results for each
example are presented and compared in Figure 11 and Table 4.
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Figure 11. Comparison of results between the microscopic FEM model and the developed DNN-
MVLEM for the three multi-story frame analysis examples labeled as D, E, and F.

Table 4. Scenario D, E, and F error and computational cost comparisons.

Scenario Error Computational Efficiency
MAE
[kN]

Peak Force
[kN]

Total % FEM
[s]

DNN-MVLEM
[s]

Speed
Factor

D 50 1757 2.85 82 0.979 83
E 62 1243 4.99 214 2.01 106
F 24 889 2.70 1578 10.75 146

6. Discussion of the Results
6.1. Accuracy

From the numerical examples, it can be appreciated that the computed pushover curve
using the microscopic FEM model follows a highly non-linear path with a different shape
in each case, thus illustrating the complex non-linear behavior of RC shear walls under
intense lateral loading. However, despite the curves’ complex shape, the DNN-MVLEM
can approximate the results with reasonable accuracy every time. The mean average error
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(MAE) between the pushover curve obtained with the microscopic FEM model and the one
obtained with the DNN-MVLEM is computed as follows:

MAE =
nStep

∑
i=1

| f orceFEMi − f orceDNNi|
nStep

(4)

etotal =
MAE

PeakForce
(5)

where nStep is the total number of steps in the pushover analysis; the term f orceFEMi
is equal to the base shear obtained with the microscopic FEM model at Step i; the term
f orceDNNi is equal to the base shear obtained with the DNN-MVLEM at the Step i;
PeakForce is the maximum base shear measured in the entire pushover analysis. Hence,
the value etotal is a normalization of the mean average error and provides a reasonable
estimation of the overall error. With that in mind, the obtained results show that etotal <
5% in all scenarios, which indicates a reasonably good approximation from an engineering
point of view; see Tables 3 and 4.

The accuracy referred to in this section is the approximation of the DNN-MVLEM to
the reference microscopic FEM model. As it is well-known in FEM analysis, the reference
FEM model is itself an approximation of the actual behavior of the structure. In Section 3.1,
the accuracy of the reference FEM model is discussed.

6.2. Calibrated vs. Uncalibrated Response

In the first three scenarios, A, B, and C, the uncalibrated response of the DNN-MVLEM
is also presented (i.e., the response when kc = Ks = Km = 1); see Figure 10. It can be
appreciated that the calibration process is an essential step, as the uncalibrated version
deviates from the actual response. Such a deviation in the uncalibrated response may be
explained by the inability of the macromodel to simulate the coupled shear and flexural
behavior properly, among other disparities, such as using different material models for the
concrete. Nonetheless, the proposed calibration procedure using an optimization algorithm
has proven to be a simple and effective solution that does not increase the complexity of
the model, transferring the added computational cost to an external process to generate the
database and train the DNN model.

6.3. Computational Efficiency

This study’s computational operations have been performed with a conventional
PC with the following characteristics: CPU Intel Core i7-6700HQ @2.60 GHz with 16 GB
RAM. These operations include creating the database, solving the calibration optimization
problem using GA, training and testing the DNN, and solving the numerical examples.

The gains obtained by using the DNN-MVLEM are evident regarding the computa-
tional efficiency. For the first three scenarios, the computational cost is compared using
two different mesh sizes for the microscopic FEM model, a mesh of 8 × 10 and another of
12 × 15 elements. Each pushover analysis using 200 steps takes, on average, 31 and 88 s for
each case, respectively. In contrast, the DNN-MVLEM takes an average of 0.248 s. Thus,
the analysis is accelerated by 125 and 355 for each case. The results are equally impressive
for scenarios D, E, and F, where the speed acceleration factors obtained are 83, 106, and
146 for each case, respectively. The results are presented in Table 3 and 4 in the columns are
labeled as “Computational Efficiency”.

On the other hand, generating the database may be a computationally expensive
operation. However, the proposed microscopic FEM model based on the MLSE formulation
is significantly faster than other microscopic models and poses a viable option for creating
large data quantities. Each data point in the database takes approximately 1 min to be
generated (30 s for the FEM analysis and 30 for the genetic algorithm). Therefore, generating
the 3000 data points to train the DNN model would take about 50 h using a single PC and
a single core. Nonetheless, the procedure can be significantly accelerated using parallel
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processing with multiple cores and computers. For example, for this study, using two
computers with the same characteristics described above and running the process on
multiple cores, the 3000 data points are generated in 14 h. The training of the DNN with
130,759 features takes an additional 30 s. Once the DNN is trained and ready to be used, it
can be serialized into a file with a digital size of less than 5 megabytes. Loading the DNN
from a file takes merely 678 milliseconds, and predicting the output for a set of input values
takes less than 1 millisecond.

6.4. Advantages Summary

The advantages of the DNN-MVLEM can be summarized as follows.

• Computational Efficiency. The DNN-MVLEM can substantially speed up the non-
linear analysis of large structures. In the presented numerical example labeled scenario
D, a five-story frame is analyzed using both approaches. The analysis for the struc-
ture where the walls are modeled with the DNN-MVLEM is 116 times faster, taking
10.75 s to finalize compared to the 1253 s (or about 20 min) for the analysis with the
walls modeled with the microscopic FEM model.

• Simplicity. The full DNN-MVLEM can be created based only on the basic properties
of the RC shear wall and the pre-trained DNN model. There are no difficult-to-obtain
parameters required for its definition. Furthermore, the implemented material models
and element formulations are typically included in most commercial FEM packages.

• Adaptability. The methodology developed to create the DNN-MVLEM could be easily
enhanced or adapted to tackle new challenges. For instance, increasing the lower and
upper bound of the input values or adding additional variables to the problem. These
improvements are relatively easy to implement by adding more data points to the training
data and re-training the model. Similarly, the same strategy could be adapted to other
types of RC shear walls, such as L-shaped or T-shaped geometries.

• Improved convergence rate. The DNN-MVLEM has been shown to have fewer conver-
gence problems than those encountered with the microscopic FEM model. This can be
appreciated in example F, where the FEM model failed to converge to the target displace-
ment of 600 mm, but the DNN-MVLEM reached the target without issue. One potential
explanation is that the elements conforming to the macromodel are based on simpler
element and material formulations, making them less sensitive to convergence problems.

6.5. Scope and Applicability of DNN-MVLEM

In order to fully assess the advantages and limitations discussed in this section, it is
essential to mention the objectives and motivations that led to the creation of the proposed
strategy. Although the results are highly promising, DNN-MVLEM is not designed to
replace traditional FEM models of RC shear walls that are grounded in well-established
theoretical frameworks and have been extensively tested and verified over time. Instead,
DNN-MVLEM is conceived as a more straightforward and significantly more compu-
tationally efficient alternative for certain types of analyses and problems. For example,
uncertainty analysis, failure analysis, and risk assessment of structures. In these types
of studies, the structure must be modeled multiple times under various conditions to
determine quantities such as failure probabilities. Hence, a simpler and significantly faster
model approximating the results is preferred as long as the approximation quality is good
enough. For DNN-MVLEM, the obtained error for the tested examples is between 2% and
5%, which is within a reasonable range for such engineering applications.

Similarly, during the preliminary stages of a building’s design process, numerous
iterations are typically needed to identify the optimal shape or layout of walls and braces
to achieve the best possible performance of the building under lateral loads. Trading
some accuracy for a simpler and much faster model is usually preferred at this stage. The
faster model may be used for the pre-design, and once the ideal configuration has been
established, the structure can be re-analyzed using a more sophisticated (and precise) model
to ensure higher confidence in the final design.
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6.6. Current Limitations and Future Enhancements

There are some limitations that one needs to be aware of when using DNN-MVLEM
in its current form. For instance, the calibration factors slightly adjust the model’s stiffness
to match the FEM results in terms of displacements. This has turned out to be a simple
and straightforward solution. However, other properties of the structure, such as modal
frequencies, have not been taken into account. In future versions of DNN-MVLEM, such
additional quantities may be considered by including them into the optimization problem
that is solved to obtain the calibration coefficients.

Another inconvenience may be encountered when defining the axial load required as
input in the DNN. However, one simple solution is to perform a linear static analysis for
the gravitational load case with the uncalibrated form of the macromodel (i.e., kc = ks =
km = 1), thus obtaining an estimate of the axial load, which can then be used to define the
calibrated macromodel prior to the non-linear procedure.

There are also two common concerns for applying data-driven strategies in practical
applications. One is the availability of the data to train the model. Nonetheless, for DNN-
MVLEM that is not the case, as the data are generated using a parametric microscopic FEM
model and the quantity of data is only limited by the time or computational resources,
which have been discussed in Section 6.3. The second concern is the expertise that the user
requires to fully comprehend and apply these methodologies. However, in this regard,
big tech companies are constantly developing multiple tools that facilitate the application
of machine learning techniques. Hence, nowadays, it is becoming easier to build reliable
data-driven solutions.

7. Conclusions

In this study, a macromodel denoted as DNN-MVLEM has been developed for the analy-
sis of RC shear walls. The model is created based on a novel data-driven methodology using
deep neural networks. The DNN-MVLEM is composed of two main parts. The structural
part, which is comprised of four vertical elements and one horizontal shear spring, and the
data-driven part, which is a DNN trained to predict the properties of the shear spring and
three coefficients required to calibrate the macromodel’s behavior. The data utilized to train
the DNN have been generated in a two-step procedure using a microscopic FEM model based
on the multi-layer shell formulation, and a genetic algorithm that determines the calibration
coefficients. The DNN-MVLEM was tested in two sets of examples: as a stand-alone wall in
cantilever mode and as part of a multi-story frame structure subjected to a static non-linear
lateral pushover analysis. The results obtained with the DNN-MVLEM were compared to
those from the microscopic FEM model, showing an estimated error of less than 5% between
the two pushover curves. Moreover, the DNN-MVLEM demonstrated significantly improved
computational efficiency, being up to 140 times faster than the microscopic FEM model,
depending on the total number of elements in the FEM model.

This study has shown that alternative methods based on data-driven solutions are
exceptionally effective in reducing the computational time of the non-linear analysis of
structures with a minimum compromise in accuracy with respect to more sophisticated
FEM models. In essence, the computational effort is transferred to the database creation
and the DNN model’s training process. However, these heavy-duty operations can be
conveniently automated using parametric modeling techniques and high-performance
computing systems. Hence, significantly speeding the workflow process and enabling the
practical application of such data-driven techniques. In particular, the DNN-MVLEM is
suitable for applications where a large number of analysis are needed, and the engineer
(or designer) is willing to sacrifice a bit of accuracy for significantly greater computational
efficiency. Some examples of such applications are uncertainty analysis, failure analysis,
risk assessment of structures, and optimization of buildings in preliminary design stages.

We are entering an era where artificial intelligence and data-driven solutions are be-
coming much more efficient and mature, thus quickly taking over traditional deterministic
approaches, while the full implications of such fast phased progress is still uncertain for
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structural engineering, its effect is already taking place notoriously. This study serves as an
example of how AI-driven techniques could revolutionize the analysis and simulation of
structures in the future.
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