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Bridge infrastructure has great economic, social, and cultural value. Nevertheless,
many of the infrastructural assets are in poor conservation condition as has been
recently evidenced by the collapse of several bridges worldwide. The objective of
this systematic review is to collect and synthesize state-of-the-art knowledge and
information about howbridge informationmodeling, finite elementmodeling, and
bridge health monitoring are combined and used in the creation of digital twins
(DT) of bridges, and how these models could generate damage scenarios to be
used by anomaly detection algorithms for damage detection on bridges,
especially in bridges with cultural heritage value. A total of 76 relevant studies
from 2017 up to 2022 have been taken into account in this review. The synthesis
results show a consensus toward the future adoption of DT for bridge design,
management, and operation among the scientific community and bridge
practitioners. The main gaps identified are related to the lack of software
interoperability, the required improvement of the performance of anomaly-
detection algorithms, and the approach definition to be adopted for the
integration of DT at the macro scale. Other potential developments are related
to the implementation of Industry 5.0 concepts and ideas within DT frameworks.

KEYWORDS

bridges, digital twins, anomaly detection algorithms, finite element method, cultural
heritage conservation, bridge information modeling, bridge health monitoring

1 Introduction

In 2018 the Morandi bridge collapsed in Genova, Italy, killing 43 people, forcing the
displacement of 200 families living below the bridge, causing damages of EUR 422 million
and yearly losses of EUR 784 million to the industry sector in the region (Xuequan, 2018).
During the last 2 decades, the collapse of more than 120 bridges worldwide has caused major
economic losses and casualties (Wang et al., 2022). A total of 9 661 structures representing
12.4% of all bridges and tunnels in Canada are reported to be in poor/very poor condition
(Canada Infrastructure, 2019), whereas 46 ,154 bridges, equivalent to 7.5% of this kind of
asset in the United States are considered structurally deficient (ASCE, 2021). In comparison,
the percentages of deficient bridges in European countries such as France, Germany, and the
United Kingdom are even higher, 39%, 30%, and 37%, respectively (European Commission
et al., 2019). Besides, many old bridges are considered to have a Cultural Heritage (CH) value
(Jiménez Rios and O’Dwyer, 2019) and some of them are even included in the UNESCO
World Heritage List (World Heritage Centre, 2023) thanks to their outstanding universal
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cultural value. In addition to human and economic losses, the
damage or collapse of a historical bridge also entails the painful
loss of a cultural asset.

Because of the large number of existing bridges and the
limited availability of human and economic resources (PIARC,
2023), it is not feasible to continuously inspect and assess the
structural condition of every bridge using conventional
methods. In the current practice, bridge inspections are
performed on a code-prescriptive fixed-scheduled periodic
basis varying between two to 6 years (EuroStruct, 2020).
However, these periodic revisions have proven to be
ineffective, as damage could appear after a periodic
inspection and not be detected until the next one, leading to
further deterioration of the bridge and increased cost of its
eventual repair or replacement, if not to its collapse. In
addition to the particular condition of a bridge, other factors
can be considered in scheduling and performing bridge
inspections. Most approaches consider the current and future
usage of the bridge, its role in the transportation network, as well
as other environmental, political, and social factors. It is of
paramount importance to integrate CH values with bridge
management methodologies, in agreement with international
principles of conservation (Petzet, 2004), otherwise
irreplaceable parts of our built environment may be lost forever.

A theoretical way to tackle the issue of insufficient resources at a
network level, while adequately considering the CH value of a
bridge, is to adopt a novel Digital Twin (DT) paradigm (Shabani
et al., 2022). A DT of a bridge contains a virtual replica of a real-
world bridge and a connectivity module that allows both the physical
and virtual assets to be synchronized along the life cycle stages of the
asset. The 3D geometry of the bridge can be created through a Bridge
Information Modelling (BrIM) approach, whereas a structural twin
can be constructed in Finite Element (FE) software. Sensors installed
during a Bridge Health Monitoring (BHM) process can provide data
about the environmental conditions, loads and response of the
structure to those loads, either at local-element or global bridge
scale. A series of damage and decay scenarios can be simulated on
the virtual asset, which will reproduce the structural response of its
physical counterpart through a series of FE models. This digital
approach allows testing the bridge and generating the required data
under several “normal” and “damaged” scenarios necessary for
training Artificial Intelligence (AI) data-driven models such as
Anomaly Detection Algorithms (ADAs) capable to detect damage
in quasi-real time. The bridge management team or other
stakeholders use the generated information to make an informed
decision, thus optimizing the resources they have at their disposal.
Therefore, the employment of a DT methodology leads to improved
bridge performance and CH conservation, an increase in the bridge
service life, and an eventual reduction of the maintenance and
operation costs of the bridge network.

This systematic review aims to collect and synthesize state-of-
the-art knowledge and information about how BrIM, FE, and BHM
are combined and used in the creation of DTs of bridges and how the
use of these models could generate damage scenarios to be employed
by AI ADAs for damage detection on bridges (especially for bridges
with high CH value). To this end, the proposed systematic review
answers the following questions: i) what are the available ways to
build bridge DTs based on BrIM, FEs, and BHM?; and ii) what are

the available ADAs that could be used in the damage detection of
conventional and CH bridges?

The value of this study lies in the need of having a
comprehensive perspective of the current state of the art as the
keystone for further research and development. The rest of this
paper is organized as follows: Section 2 presents the methodology
applied for the search strategy, bibliometric analysis, and synthesis
of the found information, Section 3 contains the bibliometric results,
and Section 4, the narrative synthesis. Finally, in Section 5 some
conclusions are drawn, highlighting the gaps and further research
suggestions derived from the systematic review work.

2 Methodology

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) 2020 methodology (Page et al., 2021a)
was adopted. Thus, this systematic review has followed the checklist
provided by PRISMA and a protocol was developed in accordance
with the guidelines of the PRISMA-P Explanation and Elaboration
(Page et al., 2021b). Following the guidelines, our systematic review
protocol was registered in the Open Science Framework (OSF)
Registries with registration number sh9b2 (Jiménez Rios et al.,
2023b). The protocol of this systematic review can be consulted
in Jiménez Rios et al. (2023d).

2.1 Search strategy

The quality of systematic reviews heavily relies on the search
strategy implemented for the information retrieval process.
Nevertheless, search strategies are commonly not adequately
reported. This systematic review has adopted a search strategy
methodology based on the PRISMA-S checklist (Rethlefsen et al.,
2021) and it can be consulted in Jiménez Rios et al. (2023e).

The search strategy implemented was performed in Scopus
because of its wide coverage of the literature, its high-quality
content and its advanced data extraction capabilities (Elsevier,
2023). Initially, seven main keywords of interest were selected,
namely, “bridge,” “digital twin,” “bridge information modeling,”
“finite element methods,” “bridge health monitoring,” “anomaly
detection algorithms” and “cultural heritage”). These keywords (and
similar terms such as “bridge” and “bridges”) were combined to obtain
six search queries in which every search combined a keyword with the
“bridge” keyword. Thus, the queries obtained were.

• bridge* AND “digital twin*”
• bridge* AND (BrIM OR “bridge information model*“)
• bridge* AND (FEMOR FEA OR “finite element method*”OR
“finite element analy*“)

• bridge* AND (“bridge health monitoring” OR “structural
health monitoring”)

• bridge* AND (ADA OR “anomaly detection algorithm*“)
• bridge* AND (“cultural heritage”OR “monument* bridge*”OR
“old bridge*” OR “ancient bridge*” OR “historic* bridge*“)

where * represents the wild character, AND and OR are
Boolean operators, “·” are used to group individual words into
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multi-word keywords and (·) are used to group several similar
terms. The six searches were limited to journal articles,
conference papers, reviews, and book chapters, written in
English, that were published after 2017, on the subject of
Engineering. The searches were performed within the fields of
title, abstract, and keywords. Table 1 presents the full queries used
in the search, which was performed on 10/12/2022, and the
respective number of records found for each one of them.

A total of 8 673 records were found. Detailed bibliometric
information about all these records was downloaded from Scopus
both in. ris and. csv format and has been made available in the open-
source database Jiménez Rios et al. (2023a). Deduplication, filtering,
screening, and eligibility assessment of all those records were carried
out following PRISMA flow chart (Page et al., 2021a) (see Figure 1).

All duplicated records (based on the DOI number) and those
records without a DOI number were removed. In total, 1 838 records
were discarded after this first filtering. As a second filter, a search
combination was performed. The initial six searches were combined
using the AND operator (resulting in 15 new searches) to obtain
relevant records dealing with at least three of the initially selected
keywords (as the “bridge” keyword was used in all original six
searches). Thus, 6 446 records were excluded and only
389 records remained, including the top-ten most cited papers
from each one of the original searches (60 papers in total). The
most cited papers were deemed to be of paramount importance to

the state-of-the-art of the field due to their major impact on all
related publications.

The selection phase (according to PRISMA 2020 item checklist #8)
started at this point by manually screening the title and abstract of the
remaining 389 records based on the authors’ criteria and previous
knowledge of the field. Those records that did not fully fit within the
scope of the review were excluded. Thus, 108 works remained and were
subjected to full paper examination to assess their eligibility. From this
list of 108 works, 2 were removed as they were duplicates, another
2 were excluded as they only dealt with the construction of new bridges,
12 more were not considered as they did not deal with DTs, and lastly,
16 papers were rejected as they were not related to bridges. As a result, a
total of 76 studies were finally included in this systematic review.

2.2 Bibliometric analysis methodology

A bibliometric analysis represents a quantitative methodology by
whichmeaningful insights can be obtained from large quantities of data
(Broadus, 1987). The main outcomes of a bibliometric analysis are the
identification of emerging research trends in a field, collaboration, and
publication patterns, and exploration of literature structure
(Koutsantonis et al., 2022). The approaches of a bibliometric
analysis could be categorized into two main groups: performance
analysis and science mapping (Solorzano and Plevris, 2022).

TABLE 1 Full queries used for the search and the respective number of records found.

# Query # Of records
found

1 TITLE-ABS-KEY ( bridge* AND “digital twin*“) AND ( LIMIT-TO ( PUBYEAR, 2022) OR LIMIT-TO ( PUBYEAR, 2021)
OR LIMIT-TO ( PUBYEAR, 2020) OR LIMIT-TO ( PUBYEAR, 2019) OR LIMIT-TO ( PUBYEAR, 2018) OR LIMIT-
TO ( PUBYEAR, 2017)) AND ( LIMIT-TO ( SUBJAREA, “ENGI”)) AND ( LIMIT-TO ( LANGUAGE, “English”)) AND ( LIMIT-
TO ( DOCTYPE, “ar”) OR LIMIT-TO ( DOCTYPE, “cp”) OR LIMIT-TO ( DOCTYPE, “re”) OR LIMIT-TO ( DOCTYPE, “ch”))

178

2 TITLE-ABS-KEY ( bridge* AND ( brim OR “bridge information model*“)) AND ( LIMIT-TO ( SUBJAREA, “ENGI”)) AND ( LIMIT-
TO ( DOCTYPE, “ar”) OR LIMIT-TO ( DOCTYPE, “cp”) OR LIMIT-TO ( DOCTYPE, “re”) OR LIMIT-TO ( DOCTYPE, “ch”))
AND ( LIMIT-TO ( PUBYEAR, 2022) OR LIMIT-TO ( PUBYEAR, 2021) OR LIMIT-TO ( PUBYEAR, 2020) OR LIMIT-
TO ( PUBYEAR, 2019) OR LIMIT-TO ( PUBYEAR, 2018) OR LIMIT-TO ( PUBYEAR, 2017)) AND ( LIMIT-
TO ( LANGUAGE, “English”))

56

3 TITLE-ABS-KEY ( bridge* AND ( fem OR fea OR “finite element method*” OR “finite element analy*“)) AND ( LIMIT-
TO ( SUBJAREA, “ENGI”)) AND ( LIMIT-TO ( DOCTYPE, “ar”) OR LIMIT-TO ( DOCTYPE, “cp”) OR LIMIT-
TO ( DOCTYPE, “re”) OR LIMIT-TO ( DOCTYPE, “ch”)) AND ( LIMIT-TO ( PUBYEAR, 2022) OR LIMIT-
TO ( PUBYEAR, 2021) OR LIMIT-TO ( PUBYEAR, 2020) OR LIMIT-TO ( PUBYEAR, 2019) OR LIMIT-TO ( PUBYEAR, 2018)
OR LIMIT-TO ( PUBYEAR, 2017)) AND ( LIMIT-TO ( LANGUAGE, “English”))

5137

4 TITLE-ABS-KEY ( bridge* AND ( “bridge health monitoring” OR “structural health monitoring”)) AND ( LIMIT-
TO ( SUBJAREA, “ENGI”)) AND ( LIMIT-TO ( DOCTYPE, “ar”) OR LIMIT-TO ( DOCTYPE, “cp”) OR LIMIT-
TO ( DOCTYPE, “re”) OR LIMIT-TO ( DOCTYPE, “ch”)) AND ( LIMIT-TO ( PUBYEAR, 2022) OR LIMIT-
TO ( PUBYEAR, 2021) OR LIMIT-TO ( PUBYEAR, 2020) OR LIMIT-TO ( PUBYEAR, 2019) OR LIMIT-TO ( PUBYEAR, 2018)
OR LIMIT-TO ( PUBYEAR, 2017)) AND ( LIMIT-TO ( LANGUAGE, “English”))

2941

5 TITLE-ABS-KEY ( bridge* AND ( ada OR “anomaly detection algorithm*“)) AND ( LIMIT-TO ( SUBJAREA, “ENGI”))
AND ( LIMIT-TO ( DOCTYPE, “ar”) OR LIMIT-TO ( DOCTYPE, “cp”) OR LIMIT-TO ( DOCTYPE, “re”) OR LIMIT-
TO ( DOCTYPE, “ch”)) AND ( LIMIT-TO ( PUBYEAR, 2022) OR LIMIT-TO ( PUBYEAR, 2021) OR LIMIT-
TO ( PUBYEAR, 2020) OR LIMIT-TO ( PUBYEAR, 2019) OR LIMIT-TO ( PUBYEAR, 2018) OR LIMIT-TO ( PUBYEAR, 2017))
AND ( LIMIT-TO ( LANGUAGE, “English”))

10

6 TITLE-ABS-KEY ( bridge* AND ( “cultural heritage” OR “monument* bridge*” OR “old bridge*” OR “ancient bridge*” OR “historic*
bridge*“)) AND ( LIMIT-TO ( SUBJAREA, “ENGI”)) AND ( LIMIT-TO ( DOCTYPE, “ar”) OR LIMIT-TO ( DOCTYPE, “cp”)
OR LIMIT-TO ( DOCTYPE, “re”) OR LIMIT-TO ( DOCTYPE, “ch”)) AND ( LIMIT-TO ( PUBYEAR, 2022) OR LIMIT-
TO ( PUBYEAR, 2021) OR LIMIT-TO ( PUBYEAR, 2020) OR LIMIT-TO ( PUBYEAR, 2019) OR LIMIT-TO ( PUBYEAR, 2018)
OR LIMIT-TO ( PUBYEAR, 2017)) AND ( LIMIT-TO ( LANGUAGE, “English”))

351
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In this systematic review, the performance analysis was carried
out by querying, filtering, and sorting the bibliographic database
obtained from the search strategy, namely, using the 6835 records
obtained after the first filtering phase, whereas the science mapping
was performed using the VOSviewer v1.6.18 software (https://www.
vosviewer.com/). Performance analysis is presented in terms of
publications per year, most cited authors, most cited records,
documents per country, keyword occurrence, and most used
source for publication. On the other hand, science mapping
focuses on analyzing the co-authorship relationships in terms of
authors and countries, as well as the co-occurrence relationships
between keywords (both author and index keywords). Keywords
mapping allows visualizing the interconnections of core concepts
and topics within a certain research area. For further insights into
how the maps are created interested readers can consult (van Eck
and Waltman, 2014) and the software manual (van Eck and
Waltman, 2022).

2.3 Synthesis methodology

The information of the studies included in this systematic review
has been qualitatively summarized in a narrative synthesis as the

findings are characterized by heterogeneity. Data has been analyzed
and classified within 5 major themes, namely,: i) Bridge DTs; ii)
BrIM and FE modeling; iii) BHM, AI and ADAs; iv) Unmanned
Aerial Vehicles (UAVs), satellite monitoring, and other DT-related
emerging technologies for bridge inspection; and v) historical and
CH bridges. Based on this classification, the findings of the
systematic review are presented, the strengths and limitations of
the studies are highlighted, their influence on practice and research
is discussed, and future research recommendations are suggested.

3 Bibliometric analysis results and
discussion

3.1 Performance analysis

Regarding the number of publications per year, Figure 2 shows
that over 1 000 papers containing the keywords of interest of this
systematic review were constantly published per year between
2017 and 2020. The trend though shows an increase in the
number of publications from the last 2 years, with 25% and 50%
increments on the number of yearly publications for the years
2021 and 2022, respectively.

FIGURE 1
PRISMA flow diagram.
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Table 2 presents the top 20 most cited works (as of 10/12/
2022, the day the search was conducted). The paper with the most
citations is “Shaping the DT for design and production
engineering” (Schleich et al., 2017) with a total of
644 citations. Nevertheless, after the filtering process shown in
Figure 1, this paper was not included in this systematic review as
it is not directly related to bridges. The paper included in this
systematic review with the most citations is the second in the list,
“Structural Health Monitoring Using Wireless Sensor Networks:
A Comprehensive Survey” (Noel et al., 2017) with a total number
of 273 citations in Scopus.

Another interesting metric related to citations is that of the most
cited authors. This parameter considers the accumulated number of
citations for all papers of an author. Thus, Wang, H., Li, H. and Bao,
Y. are the most cited authors with 1308, 1276, and 1222 citations,
respectively (see Figure 3).

Research is normally fostered at a national level by the National
Research Council of each country. Figure 4 presents the countries
with at least 100 publications in the field over the past 6 years. China
is the country with the most publications (2599) followed by the
United States and the United Kingdom with 1282 and
420 publications, respectively. The last country on the list is
Turkey (out of the top 16 countries with more publications),
with 105 publications. Note that the number of publications per
country is based on the country of the authors’ affiliations, not on the
nationality of the authors.

In terms of keywords occurrence, it is not surprising to find out that
“bridges,” “FEM” and “SHM” are among the most frequently used
keywords (based on the graphical information presented in Figure 5), as
they were explicitly included in the search queries. On the other hand,
the absence of terms such as “digital twins” and “bridge information
modeling”may be explained by their relatively new adoption in the field,
whereas the absence of keywords related to “cultural heritage” or
“conservation” is directly tracked to the generalized lack of attention
towards these topics by the engineering research community.

Most of the research considered in this systematic review has
been published in three main scientific journals, namely,
Engineering Structures, Journal of Bridge Engineering, and
Lecture Notes in Civil Engineering, 445, 254, and 182 works in
each one, respectively (see Figure 6). The total number of works
concentrated in only these three main sources of publication
represents 12.9% of the total number of records after
deduplication found from the initial searches of this
systematic review.

3.2 Science mapping

Co-author relationships are qualitatively analyzed using a
network visualization map. Each circle in Figure 7 represents one
of the top 100 authors with the most publications, as found after
performing the search strategy described previously. The size of
each circle depicts its strength or weight within the network,
where larger circles correspond to authors with a larger number
of publications. Moreover, the lines that are observed in this
figure represent co-authorship links, in other words, who works
mostly with whom. Analogously to the size of the items, the
thickness of the links represents their strength, i.e., the strength
of the co-authorship links of a given researcher with other
researchers.

The items in Figure 7A are color-coded into nine different
clusters based on network connectivity. Furthermore, Figure 7B
shows an overlay visualization of the co-author relationships color-
coded in terms of average publication year based on the scores
assigned to each item of the network. It can be observed in Figure 7A
that Liu Y. (green, 121 publications), Li J. (orange, 100 publications),
Li Y. (red, 90 publications), Zhang Y. (pink, 90 publications) and
Wang H. (yellow, 88 publications) are the centroids of the five more
prominent clusters identified in the network. From these five
networks, it can be seen in Figure 7B that the research group

FIGURE 2
Publications per year.
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spear-headed by Zhang Y. is the one with the most recent average
year of publication (2020.3).

Another interesting co-authorship relationship, now in terms of
countries, is showcased in Figure 8. In this instance, three main clusters
can be observed from Figure 8A where the strongest items are; China
(pink, 2599 publications), United States (red, 1282 publications),
followed by the United Kingdom and Italy (green, 420, and
415 publications, respectively). Among them, Italy is the country
with the most recent average publication year (2020.09, see Figure 8B).

The co-occurrence relationships between keywords have similarly
been analyzed through network and overlay visualization maps as
displayed in Figure 9. The “bridges” keyword plays a predominant role
in this network, which is not surprising because it is the main topic of
interest in this systematic review. It is closely related to “SHM” and
“Damage detection” as they belong to the same cluster (red) and have
thick link lines (see Figure 9A). Regardless of its relatively small
strength, “AI” has one of the most recent average publication years
(2020.36), which shows its relatively new adoption in the field of
bridge engineering (see Figure 9B).

4 Narrative synthesis and discussion

4.1 Bridge digital twins

The life-cycle stages of a bridge include: i) Planning and design;
ii) Construction; iii) Inspection and maintenance; iv) Rehabilitation
or replacement; and v) Demolition or decommissioning.
Accounting for the entire life-cycle of a bridge within the DT
paradigm requires the parallel evolution of both the digital and
physical assets from the planning and design phase (inspection and
maintenance for existing bridges) until the final demolition or
decommissioning of the structure. For such purposes,
deterioration models that can predict the progressive decay of the
structural performance of the physical asset are of paramount
importance (Cervenka et al., 2020; Jiang et al., 2021). Thus,
Giorgadze et al. (2022) suggest an ontological modeling approach
that includes not only components related to the structural elements
of the bridge itself but also resources, processes, and risks related to
the management and operation activities along the life of a bridge.

TABLE 2 Most cited records.

# Title References # Citations

1 Shaping the digital twin for design and production engineering Schleich et al. (2017) 644

2 Structural Health Monitoring Using Wireless Sensor Networks: A Comprehensive Survey Noel et al. (2017) 273

3 A Digital Twin-Based Approach for Designing and Multi-Objective Optimization of Hollow Glass Production Line Zhang et al. (2017) 266

4 Computer vision and deep learning–based data anomaly detection method for structural health monitoring Bao et al. (2019b) 228

5 Building Information Modeling (BIM) for transportation infrastructure—Literature review, applications, challenges, and
recommendations

Costin et al. (2018) 216

6 Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system Liu et al. (2019) 193

7 Experimental validation of cost-effective vision-based structural health monitoring Feng and Feng (2017) 190

8 The State of the Art of Data Science and Engineering in Structural Health Monitoring Bao et al. (2019a) 173

9 A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering
structures

Na and Baek (2018) 170

10 Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment
to Damage Detection

Sun et al. (2020) 170

11 Autonomous UAVs for Structural Health Monitoring Using Deep Learning and an Ultrasonic Beacon System with Geo-
Tagging

Kang and Cha (2018) 156

12 Convolutional neural network-based data anomaly detection method using multiple information for structural health
monitoring

Tang et al. (2019) 154

13 Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural
performance assessment

Ubertini et al. (2017) 135

14 Digital twin in smart manufacturing Li et al. (2022) 128

15 A review on deep learning-based structural health monitoring of civil infrastructures Ye et al. (2019) 128

16 Structural Displacement Measurement Using an Unmanned Aerial System Yoon et al. (2018) 126

17 A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions Moughty and Casas (2017) 125

18 Structural health monitoring of bridges: a model-free ANN-based approach to damage detection Neves et al. (2017) 124

19 Investigation of dynamic properties of long-span cable-stayed bridges based on 1-year monitoring data under normal
operating condition

Mao et al. (2018) 118

20 Recent progress and future trends on damage identification methods for bridge structures An et al. (2019) 114
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In terms of maturity, Shim et al. (2019) group DTs into three
progressive categories based on their Level of Detail (LOD): i) partial
DT (LOD 200–300, used during conceptual and detailed design/

analysis); ii) clone DT (LOD 400, which provides construction
information); and iii) augmented DT (LOD 500, capable of
assisting during operation and management stages). Analogously,

FIGURE 3
Most cited authors.

FIGURE 4
Documents per country.
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Kang et al. (2021) classify DT maturity into three progressive levels
of complexity: functional, connected, and intelligent. Yet another
classification based on the DT features and scopes is identified by
Saback de Freitas Bello et al. (2022). In this threefold classification, a
digital model replicates a physical asset but lacks data connectivity
between the two, a digital shadow possesses automated one-way data
connectivity between the physical and digital counterparts, and
finally, in a digital twin the real-time data connectivity is granted
in both directions and the digital asset evolves along with the
physical one through its service life.

The multi-scale nature of DTs is explored in the work presented
by Lu et al. (2020), where they develop a hierarchical architecture to
build a DT at both city and building levels. According to the authors’
vision, the DT of a bridge could as well be integrated within the DT
of a city, and this city DT would eventually form part of a DT at a

national level. Although this vision makes sense for urban bridges,
the integration of most bridges as part of transportation networks in
rural or natural areas would perhaps be more appropriate if a DT is
created at the transportation network level (including DTs of roads,
tunnels, etc.) which could additionally be benefited from traffic data
sharing tools, as explored by Dan et al. (2022). This suggests that the
direction for the creation of macro-DTs that integrate DT of
individual infrastructure assets is still not clearly defined and it
needs to be determined whether a geographical, systemic, or another
kind of ontological integration approach would be more favorable
for grouping bridge DTs into the macro-DT of an entire
transportation network, country, or continent.

A key component for the successful implementation of the DT
paradigm in bridge monitoring is the integration of Cloud
Computing (CC) within the adopted framework. Jeong et al.
(2019) build on top of the OpenBrIM schema proposed by Jeong
et al. (2017) and develop an Infrastructure as a Service (IaaS)/
Platform as a Service (PaaS) CC environment in theMicrosoft Azure
cloud platform where an open-source distributed NoSQL database
(Apache Cassandra) was employed to ensure scalability, flexibility,
fault-tolerance, and high-performing data management. IaaS was
offered in the form of Virtual Machines (VMs) that can be scaled
either vertically (increasing the computational capabilities of the
VM) or horizontally (by adding extra VMs). Furthermore, Software
as a Service (SaaS) is provided through an online platform from

FIGURE 5
Keyword occurrence.

FIGURE 6
Most used sources for publication.

FIGURE 7
Co-authorship relationships in terms of authors: (A) Authors
clusters and (B) Most recent publication averaged year per author,
Zhang Y.
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where the user can query the information of interest and download
the model that can be regenerated in structural engineering software
such as CSIBridge.

To further improve the performance of a DT, Dang et al. (2022)
propose the implementation of an intermediate level defined as Fog
Computing (FC, computing done in the data generation device
itself), which is capable of filtering the great amount of data
generated by BHM systems before transferring only the relevant
data to the CC layer. They also recognize the need for having several
sub-models as part of the digital replica of a DT, each suitable for
particular tasks, namely, analytical models based on mechanics and
probability theory capable of providing exact and fast results in
terms of structural response, reliability and safety for relatively
simple idealized structures, physics-based numerical models
(i.e., FE) which can replicate the structural response of complex
systems for undamaged/damaged scenarios, be used for prognosis
purposes and to generate synthetically augmented data. These data,
along with the ones collected from the BHM of the physical asset,
can be exploited by a third type of data-driven model, capable of
performing real-time damage detection.

Along with FC intermediate data filtering, the implementation of
enhanced data acquisition techniques such as compressive sampling,
suitable for sparse data signals (Bao et al., 2019a), can drastically reduce
the amount of data that would be stored and analyzed in the DT. In
terms of visual acquisition data, the amount of information required for
processing could be reduced if appropriate compression techniques and
image quality percentages are adequately determined as done, for
example, by Ri et al. (2020). By using a BrIM model in combination
with Genetic Algorithms (GA) and Discrete Event Simulation (DES),
Nili et al. (2021) propose a simulation-based framework to optimize
bridge intervention (maintenance, rehabilitation and replacement)
considering crew limitations. The framework is developed using
Microsoft Visual Studio environment, Microsoft Access for the data
management and data query, Autodesk Navisworks Manage as the
BrIM application software, GA engine for the planning and sequencing
modules, and a DES engine of Symphony core service, with a
customized. Net programming language code. Nevertheless, this
framework lacks consideration for CH conservation philosophy and
methodologies when applied to bridges with CH value.

4.2 BrIM and FE modeling

The concept of BrIM is the adaptation of Building Information
Modeling (BIM) methodologies applied to bridges (McKenna et al.,

FIGURE 8
Co-authorship relationships in terms of countries: (A) Countries
clusters and (B) country with the most recent average publication,
Italy.

FIGURE 9
Co-occurrence relationships between keywords: (A) Keywords
clusters and (B) AI links.
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2017), whereas Historical BIM (HBIM), has been developed having
CH buildings in mind (Pepe et al., 2020). Based on the life-cycle
stage of the bridge in which the BrIM model is built, it could be
classified as either as-designed, if the model is produced since the
planning and design stage, or as-built, if it is created after the
construction phase, or as-is, if the model has been effectively
interconnected with the physical asset and is capable of updating
its status along the further life-cycle stages of the structure (Hosamo
and Hosamo, 2022).

Therefore, by following a multi-level and multi-modal approach
as suggested by Xiao et al. (2017), an augmented As-Is Historical
Bridge Information Modeling (AI-HBrIM), would be the adequate
tool to implement the BIM methodology for existing historical
bridges within the context of the DT paradigm. It is estimated
that the adoption of this approach could result in up to a 30%
reduction in traffic-related costs and a 10% reduction in the overall
management and operation activities along the entire life of a bridge
(Saju, 2022).

A suitable methodology to keep AI-HBrIM digital models
interconnected to the physical asset is through FE model
updating. Using this approach, the FE model is informed by the
actual measured data coming from the physical asset (Yu et al.,
2022). Ramancha et al. (2020) implement an advanced Bayesian
inference approach using Sequential Monte Carlo (SMC)
simulations to update the material and damping model
parameters of a full-scale reinforced-concrete column under
dynamic loading based on the heterogeneous data collected by
accelerometers, strain gauges, GPS displacements, and
potentiometers. Similarly, by applying a Bayesian inference
approach, Ghahari et al. (2022) successfully update an FE model
including soil-structure interaction effects. This was possible thanks
to the motion identification at foundation level based on the
acceleration measurement data obtained from the BHM.

While nowadays there are several data formats (specific
protocols for data storing and retrieving) and schema
(organization and structure such as XML, STEP, etc.) proposed
for achieving AI-HBrIM interoperability, the OpenBrIM Platform
(OpenBrIM, 2023) seems to be the most up-to-date option, whereas
Industry Foundation Classes (IFC) (IFC, 2023) development team is
currently preparing a new standard (IFC5) including data
definitions required for both buildings and bridges over their life
cycle. Both OpenBrim and IFC are XML schema-based. In this
regard, Jeong et al. (2017) expand the OpenBrIM standard by
enriching it with libraries for structural elements (e.g., mesh,
constraints, and coordinate systems), load and analysis
conditions (e.g., vehicle loads, modal, static, and multi-step) and
sensors (e.g., accelerometers, strain gauges, and thermistors). The
input data is organized and stored in a NoSQL database and Python
is used to create the interface between the database and the analysis
software (CSI Bridge) by parsing the XML objects. On the other
hand, Park et al. (2018) propose using the functional meaning of
bridge components (i.e., column, beam, etc.) to improve the usability
of IFC applied to bridges by exploiting IFC’s basic modular structure
and its framework for the sharing of information between various
areas of the construction industry.

Another practicality that has received attention from researchers
is the initial geometry modeling process of the AI-HBrIMmodel. Lu
and Brilakis (2019) propose an automatic geometry modeling

method to advance the creation of HBrIM models characterized
by a slicing-based object-fitting approach. They recreated the
geometry of an existing concrete bridge using 3D solid elements
in IFC format based on a pre-processed labeled point cluster, a work
previously presented by the same authors in Lu et al. (2019).
Although their work was limited to a LOD level of 250 and only
four general bridge elements, namely, slab, pier cap, pier, and girder,
they achieved an impressive time reduction in comparison with
manual geometric modeling techniques currently in practice.

Also in this subject, McKenna et al. (2017) present a case study
where 3D laser scanning was undertaken to capture as-is geometry
and condition data using a Leica P20 pulse-based Terrestrial Laser
Scanner (TLS). Scans are colored using imagery obtained from a
Nikon D200 camera mounted on a Nodal Ninja bracket to create
high-resolution 360° panoramic images and then processed using
Leica Cyclone proprietary software to create a 3D solid Autocad
model of the structure. Two approaches have been followed to
transform the CADmodel into an HBrIM one. Leica CloudWorx for
Revit is used first and then Autodesk ReCap software. Most of the
modeling work is done manually, though.

As an alternative to conventional geometry data capture of
existing bridges necessary to build a DT, Rashidi and Karan
(2018) propose a low-cost, automatic, videogrammetry
methodology. It consists of videotaping the bridge from several
views and directions to reduce occlusions, transforming the 2D
images captured into a 3D points cloud through the use of a Patch-
based Multi-View Stereo (PMVS) algorithm, applying computer
vision algorithms to identify the bridge components and exporting
those elements to an XML format compatible with major BrIM
software (RM Bridge, LEAP Bridge Enterprise, AutoCAD Civil 3D,
Revit Structure, and Tekla Structures).

Although limited to presenting the applications, challenges, and
recommendations of BIM applied to transportation infrastructure
(without integration within the DT methodology), Costin et al.
(2018) present a comprehensive review of BIM. They highlight the
lack of interoperability within the different tools and methodologies
currently in practice (Del Rio et al., 2020; Bouzas et al., 2022; Polania
et al., 2022) as one of the main needs to be addressed to facilitate the
implementation of BIM on the field of transportation infrastructure.
Other significant challenges are the assurance of data quality,
methodology cost reduction, inherent limitations, and
institutional barriers as well as resistance to change by the
industry agents.

4.3 BHM, AI, and ADAs

BHM aims to improve asset performance by measuring and
learning from in-service structural behavior (Ye et al., 2022).
Moreover, in earthquake-prone countries, BHM supports
emergency management actions (Limongelli et al., 2019) and it
can even be used to provide real-time traffic information (Burrello
et al., 2020). BHM systems are usually designed based on the
structural response observed on an a-priori FE model (Ye et al.,
2020). Although model-based BHM approaches (Gonen and Soyoz,
2021; Gonen et al., 2023) can predict future bridges’ structural
response under idealized load scenarios, their use results
unfeasible for real-time damage detection applications (due to the
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high computational resources and the relatively long simulation
periods required). With the rapid surge and adoption of AI, a new
BHM and damage detection paradigm have recently gained
importance: the model-free, also known as data-driven,
paradigm. Data-driven methodologies can provide quasi-real-time
results when damage occurs, on the other hand, they require large
data to be trained and it is difficult to assign physical meaning to the
detected damage. Moreover, databases containing information from
real damaged bridges are scarce, as highlighted by Kim et al. (2021).

Neves et al. (2017) present a data-driven damage detection
approach based on Machine Learning (ML). They test their
methodology and overcome the lack of large data by creating a
synthetic database with the help of an FE model. The data set
consists of accelerations from 300 simulations of healthy and two
damage scenarios of a bridge, of which 150 are used for training of
an unsupervised Artificial Neural Network (ANN) and the
remaining 150 for validation and verification purposes. Even
though their approach is effective, the authors list a series of
necessary improvements before it could be put into practice, such
as considering the effect of environmental and operational
conditions, including multiple damage scenarios, extending it for
damage location and dealing with factors such as minimum
reliability levels (the CH value of the bridge must as well be
considered) for the determination of the threshold value. In that
regard, Kostic and Gül (2017) try to include environmental and
operational effects in their proposed ANN damage detection
methodology by implementing a time series analysis, which
allows for the successful detection of damage under low levels of
temperature-induced noise (< 3%).

By leveraging the mutual advantages of model-based and data-
driven approaches, Zhang and Sun (2021) develop a physics-guided
ML monitoring strategy. Their methodology consists of training an
ANN using a baseline undamaged condition from observations of a
bridge and enriched with damage scenarios data synthetically
generated through a FE model. To detect damage, it uses the
Normalized Frequency Change Ratios (NFCR) and the change of
the first several mode shapes of the bridge, combined in a novel
cross-entropy loss function. According to the authors, this mixed
approach is not only capable of detecting damage, but also of
locating and quantifying it.

While some authors have focused on the development of
damage-detection data-driven methodologies, others have tried to
improve the BHM, which is traditionally based on bridge
instrumentation and results economically unfeasible for short and
medium-span bridges. Sreevallabhan et al. (2017) present a
comprehensive literature review of Structural Health Monitoring
(SHM) using Wireless Sensor Networks (WSNs), which are a low-
cost alternative to the wired sensor networks commonly used
nowadays. Wang et al. (2022) explore the installation and
operation of novel piezoelectric transducers, which use a Coda
Wave Interferometry (CWI) technique, to assess the condition of
existing concrete bridges based on waves generated by the passing
vehicles.

On the other hand, OBrien et al. (2017) propose an indirect
bridge monitoring approach based on the instrumentation of the
vehicles driving through the bridge. This so-called drive-by
monitoring provides acceleration data that can be decomposed
into three main components; vehicle frequency, bridge natural

frequency, and pseudo frequency associated with vehicle speed.
These three components are obtained through the means of
Empirical Mode Decomposition (EMD). Drive-by monitoring
approaches have proved effective not only in damage detection
but also in damage location. A research gap identified by them that
needs to be addressed to improve the effectiveness of drive-by
monitoring is the effect that road roughness has on indirect
monitoring. More recently, Locke et al. (2020) present a drive-by
monitoring approach capable of not only considering road
roughness, which is modeled based on power spectral density
functions (International Organization for Standardization, 2016),
but also variable environmental and operational conditions.

Another alternative proposed for BHM cost reduction consists
of the use of non-contact vision-based displacement sensors to
measure bridge displacements, which is a parameter directly
related to the stiffness of the structure. These approaches exploit
a series of available template matching/registration techniques such
as Up-sampled Cross Correlation (UCC), pattern matching, edge
detection, Orientation Code Matching (OCM), Digital Image
Correlation (DIC), Hough transforms, and RANSAC (Feng and
Feng, 2017). More recently, Shao et al. (2020, 2021) propose a
holographic visual sensor coupled with computer-vision-based
algorithms in a non-contact displacement and vibration
measurement system, capable of capturing bridge full-field
displacement and vibrations. Nevertheless, vision-based
displacement sensors’ efficiency highly relies on image quality,
which is commonly affected by illumination variation, partial
target occlusion, partial shading, and background disturbance,
factors usually present in normal bridge operational conditions.
In this regard, Shao et al. (2020) suggest the use of denoising and
contractive auto encoders to reduce low image-quality errors and
improve visual-based monitoring effectiveness.

The problem of damage detection in bridge monitoring may be
presented like a simple classification problem, i.e., identifying whether
there is or there is not any damage in the bridge. However, the
individual and highly complex nature of bridges may result in
different dynamic responses, which adds complexity to the task.
Conventional classification approaches are rarely successful due to
the important imbalance between normal and anomalous cases,
resulting in too many false negatives. An excessive number of false
negatives may hinder the detection of actual damages or substantial
decay, ultimately affecting the performance of a bridge and, in critical
cases, leading to its collapse. Conversely, a large number of false
positives would lead to unnecessary spending of resources. By
contrast, an acceptable number of false positives may be even
desirable for damage detection on CH bridges, which could be
obtained with the application of a fine-tuned ADA. Table 3 presents
a compilation of the diverse ADAs methodologies found in this
systematic review.

A comprehensive review of supervised learning, unsupervised
learning, novelty detection, and deep neural network methodologies
used for generalized damage detection is provided by Sun et al.
(2020). Furthermore, Ye et al. (2019) list a series of deep learning
techniques specifically used for crack detection, damage detection,
loosened bolt detection, and damage state classification of bridges.
Finally, a comprehensive list of damage detection methods classified
either as model-based (FE model updating) or data-driven (ML and
statistical methods) can be found in Vagnoli et al. (2018).
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4.4 UAVs, satellitemonitoring, and other DT-
related emerging technologies for bridge
inspection

One recurrent topic found in this systematic review is the use
of UAVs both to capture bridge geometry and generate HBrIM
models and to automatically detect damage and decay
mechanisms based on visual computing techniques (Mongelli
et al., 2017; Roselli et al., 2018). Over the past few years, the use of
UAVs has increased thanks to the reduction of their costs,
improvement of stability and maneuverability, as well as the
development of more efficient visual computing techniques. They
provide more advantages than manual inspections in terms of
time, accuracy, safety, and costs (Albeaino et al., 2019).

Furthermore, the GPS signal loss suffered by UAVs below
bridge decks during inspections, has been overcome by the
implementation of an array of navigation sensors such as
optical, infrared, and ultrasonic sensors as proved by Kang
and Cha (2018). The ongoing development of automatizing
UAV flights would further boost the use of UAVs for bridge
monitoring as it would result in operational time reductions and
path re-usability.

For example, Perry et al. (2020) report UAVs as a key element of
an automatic streamlined bridge inspection system capable of
identifying and locating bridge surface defects, and generating as-
built BrIM models for the storage and visualization of damage
information. Their methodology includes photogrammetry
software (Meshroom) for the creation of 3D point clouds and

TABLE 3 Various ADAs found on the works included in this systematic review.

# References Description Type

1 Lu et al. (2020) Cumulative Sum Charts (CUSUM) to automatically detect
vibration deviations on a pump.

Vibration-based

2 Shim et al. (2019) Edge detection algorithms combined with fuzzy logic to
automatically analyse images captured via UVAs.

Visual-based

3 Perry et al. (2020) Black Hat Transform and Canny Edge Detector damage
detection algorithm in conjunction with a module to
automatically track the change of a defect over time based on an
Affine Transform. Damage mapping technique to relate the
defects on 2D images to the 3D point-cloud by applying camera,
intrinsic and extrinsic matrix multiplications

Visual-based

4 Neves et al. (2017) ANN to predict the expected accelerations of a bridge based on
accelerations at previous instant in time.

Vibration-based

5 OBrien et al. (2017) Implementation of Intrinsic Mode Functions (IMFs) and pseudo
frequency component obtained from indirect drive-by
monitoring of a bridge.

Vibration-based

6 Kang and Cha (2018) Deep Convolutional Neural Network (CNN) to analyze the
images captured by an UAV and effectively detect concrete
cracks.

Visual-based

7 Bao et al. (2019b) and Tang et al. (2019) Two-steps computer vision and deep learning-based data-driven
damage detection method: Transformed registries of time series
signals into gray-scale image vectors which were subsequently
labeled and used to train a deep neural network (DNN) capable of
classifying data pattern anomalies.

Mixed-visual-vibration-based

8 García-Macías and Ubertini (2020) Automated ADA based upon the pruned exact linear time
(PELT) method.

Vibration-based

9 Al-Ghalib (2022) Pipe-lined methodology combining Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA).

Vibration-based

10 Meixedo et al. (2022b) PCA combined with autoregressive exogenous input (ARX) and
clustering algorithms.

Vibration-based

11 Meixedo et al. (2022a) ContinuousWavelet Transform (CWT) combined with ARX and
clustering algorithms.

Vibration-based

12 Febrianto et al. (2022) Statistical FE modeling and confidence intervals. Strain-based

13 Weinstein et al. (2018) Bootstrapping scheme for the training of an ANN. Strain-based

14 Soman et al. (2018) Multi-metric data fusion combined with a flexibility index
approach.

Mixed-strain-vibration-baseda

15 Döhler et al. (2018) Subspace-based residual function and a χ2-test for a hypothesis
testing.

Vibration-based

aThe use of heterogeneous data fusion particularly in combination with denoising techniques has resulted in better data quality obtained from BHM, as reported by Ravizza et al. (2020)c, from

which the different proposed damage detection techniques could benefit.
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photorealistic models, Gaussian Mixture Model and Agglomerative
Clustering using Python Scikit-learn for element identification along
with the use of Revit and Dynamo for the creation of the AI-HBrIM
model containing 3D geometry and damage cubes. However, their
approach lacks dealing with the integration of FE and structural
analysis tools.

Yoon et al. (2022) assess bridge condition based on images
captured with a UAV from which damage is automatically detected
through a mask Region-based Convolutional Neural Network
(R-CNN) algorithm. The methodology proposed by these authors
also included a FE model updating module based on a linear
stiffness reduction corresponding to the level of bridge condition
assessment, as per the damage grades defined in South Korean
accepted codes.

The main limitation of visual-based damage detection techniques
is that they can not identify sub-surface damages such as
reinforcement corrosion and concrete delamination. These
techniques need to be complemented with the application of
remote sensing technologies such as Ground-Penetrating Radar
(GPR), Infrared Thermography (IR) (Xu and Turkan, 2020), or
the use of piezoelectric electromechanical sensors that can detect
internal damage in a relatively inexpensive way (Na and Baek, 2018).
Furthermore, in a comparative study between UAV photogrammetry
scanning capabilities against a conventional TLS, Mohammadi et al.
(2021) conclude that TLS provides more accurate results and is more
suitable for the complex implementation of creating an AI-HBrIM
model within the DT paradigm.

Another monitoring technology that has grown in importance
over the past few years thanks to its capability for real-time remote
monitoring of displacements in bridges is the Interferometry
Synthetic Aperture Radar (InSAR). This technology has benefited
from the increased number of available satellites and their
specialized tools capable of performing millimeter-accuracy
measurements. Alani et al. (2020) use InSAR in combination
with GPR to assess the integrity of a historical masonry bridge
and the effects that local floods have on its displacement seasonal
trends. More recently, by taking advantage of the improvements in
data processing techniques and the availability of larger SAR
databases; Gagliardi et al. (2022) manage to detect the seasonal
deformation components of a historical masonry bridge based on an
enhanced Multi-Temporal InSAR (MT-InSAR) methodology. One
more bridge satellite monitoring case, coupled with hydraulic
monitoring of river conditions, is reported by Bianchi et al. (2022).

Regardless of the impressive advancements in UAVs, satellites,
and AI applications experienced over the past few years, it is evident
that the human component can not be entirely removed from any
DT framework. In this regard, Karaaslan et al. (2022) develop a
human-centered approach usingMixed Reality (MR) to improve the
quality and effectiveness of conventional bridge inspections. This is
achieved through the use of Hololens (https://www.microsoft.com/
en-us/hololens), which provides the bridge inspector with visual
information in real-time about the bridge condition and defects.

4.5 Historical and CH bridges

Historical bridges with CH value require an extra layer of care and
special considerations from the part of bridge managers and operators

as they not only play a key role in transportation networks but also hold
important social, cultural, and artistic values (Pachón et al., 2018). Any
intervention performed in this type of bridge must abide by the
principles of evidence-based, minimum and incremental
intervention, removable and distinguishable measures, and material
compatibility established in the Venice Charter (ICOMOS, 1964) and
strive to preserve the bridge’s authenticity (ICOMOS, 1994).
Furthermore, guidelines and recommendations found in the
ISCARSAH documents (ICOMOS-ISCARSAH, 2003a; ICOMOS-
ISCARSAH, 2003b) and in the Annex I of the ISO 13822 standard
(International Organization for Standardization, 2010) must be
followed to ensure the correct conservation of such valuable assets.

Interventions on CH bridges must be performed by a
multidisciplinary team as shown by the work done by Conde
et al. (2017) and Bautista-De Castro et al. (2018). Conde et al.
(2017) carry out a comprehensive field survey fully based on non-
destructive testing techniques, followed by accurate and detailed 3D
FE simulations calibrated using the results obtained from a dynamic
identification campaign based on an operational modal analysis
approach. Bautista-De Castro et al. (2018) perform TLS, ambient
vibration tests, and minor destructive tests. These works result in the
detailed assessment of the corresponding bridges’ structural
condition and the determination of their acceptable safety level.
The full adoption of a DT approach is desirable during interventions
of CH bridges. A DT would have the ability to monitor in real-time
the structure and detect any possible damage induced by the
intervention procedure itself as validated by Andersen et al.
(2019) in the case of the Henry Hudson I89 Bridge in New York,
thus complying with the observational approach suggested by
conservation guidance.

Perhaps one of the most advanced tools for damage
detection of bridges (in which the CH value is also
considered), is the one presented by García-Macías and
Ubertini (2020). Their MOVA/MOSS software is capable of
automatically performing Operational Modal Analysis (OMA)
and system identification through four different techniques:
Enhanced Frequency Domain Decomposition (EFDD) and
Polyreference Least Squares Complex Frequency Domain
method (p-LSCF), both frequency-domain-based, Covariance
driven Stochastic Subspace Identification (COV-SSI) and
DATA-driven Stochastic Subspace Identification (DATA-SSI),
these last two being time-domain-based. Subsequently, it
executes frequency tracking and detects changes in the
dynamic properties of the structure by applying statistical
process control tools, namely, Hotelling, Multivariate
Cumulative Sum (MCUSUM), and Multivariate Exponentially
Weighted Moving Average (MEWMA). Finally, automatic
damage detection is done through the implementation of the
Pruned Exact Linear Time (PELT) Method. Their tool,
unfortunately, is not part of any DT framework and
compatibility issues may arise during integration with other
modules of available frameworks.

Along with the conservation of CH value, a sustainable DT
framework must as well account for robustness and resilience.
Structural robustness is the capability of a structure to sustain a
certain amount of damage without suffering full collapse,
whereas the resilience of a structure refers to its ability to
resist and withstand sudden shocks and sustained stresses, as
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well as its ability to recover from damage and continue to
function effectively (Hajdin et al., 2018). Assessing both the
robustness and resilience of a bridge implies dealing with a
series of uncertainties related to material resistances and
external loads. An adequate assessment methodology could be,
as suggested by Futai et al. (2022), the implementation of
reliability-based and risk-based performance indicators. It has
been proved that modeling uncertainties can greatly be
reduced by the adoption of a DT framework (Rojas-Mercedes
et al., 2022).

5 Conclusion

Although the scope of not all research works found in this
systematic review encompass the digital twin paradigm, and
regardless of all the challenges and limitations still in place for
its full deployment and implementation in real practice, there
seems to be only one school of thought and a consensus toward
the future adoption of digital twins for bridge design,
management, and operation among the scientific community
and bridge practitioners.

A suitable digital twin framework capable of accounting for the
cultural heritage of existing bridges would be primarily based on the
creation of an as-is historical bridge information model with fully
inter-operable data, geometry, finite element, and data-driven
modules. The as-is historical bridge information model would be
kept interlinked to its physical asset counterpart through the
implementation of a multi-metric bridge health monitoring
system that constantly generates data about the structural,
environmental, and operational conditions of the bridge. That
data would be effectively generated by optimized sampling
methodologies and would pass through an intermediate fog
computing layer before its final processing at a cloud computing
service.

Current research gaps in the practical development and
implementation of digital twins are mainly related to i) the
lack of interoperability among the different proprietary and
open-source software used along the digital twin model
generation pipeline; ii) performance improvement of currently
available anomaly detection algorithms; and iii) the direction for
the creation of macro-digital twins that integrate digital twins of
individual infrastructure assets. The latter needs to be
determined and the benefits/drawbacks of whether it is done
at geographical, systemic, or another kind of ontological
integration approach, needs to be assessed.

The digital twin paradigm was born within the Industry
4.0 era. Future potential developments in the field are related
to the implementation of Industry 5.0 concepts and ideas within
digital twin frameworks such as sustainability, human-centrism,
and resilience (European Commission et al., 2022).

We are moving to a digital age where physical assets will
increasingly have digital representations. New opportunities
arise. Looking towards the future, it appears that digital twins
in the built environment have the potential to play a significant
role, in a wide range of applications throughout their entire life

cycle. This is evidenced by the fast-growing occurrence of digital
twin-related articles in the scientific literature during recent
years. This study concludes that although some of the
technologies discussed are relatively new and there are
certainly several challenges to tackle, it has great potential to
become an extremely positive force of change in the architecture,
engineering, and construction industry. As engineers, it is our
responsibility to facilitate the digital transformation of the
architecture, engineering, and construction industry and to
make it ready for the challenges and opportunities of the
future, and digital twins are bound to play a pivotal role in
this transformation.
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Glossary

ADA Anomaly Detection Algorithm

AI Artificial Intelligence

ANN Artificial Neural Network

AI-HBrIM As-Is Historical Bridge Information Modeling

BIM Building Information Modeling

BHM Bridge Health Monitoring

BrIM Bridge Information Modelling

CH Cultural Heritage

CC Cloud Computing

CWI Coda Wave Interferometry

COV-SSI Covariance driven Stochastic Subspace Identification

DATA-SSI DATA-driven Stochastic Subspace Identification

DIC Digital Image Correlation

DES Discrete Event Simulation

DT Digital Twin

EMD Empirical Mode Decomposition

EFDD Enhanced Frequency Domain Decomposition

FC Fog Computing

FE Finite Element

GA Genetic Algorithms

GPR Ground-Penetrating Radar

HBIM Historical BIM

IFC Industry Foundation Classes

IR Infrared Thermography

IaaS Infrastructure as a Service

InSAR Interferometry Synthetic Aperture Radar

LOD Level of Detail

ML Machine Learning

MR Mixed Reality

MT-InSAR Multi-Temporal InSAR

MCUSUM Multivariate Cumulative Sum

MEWMA Multivariate Exponentially Weighted Moving Average

NFCR Normalized Frequency Change Ratios

OSF Open Science Framework

OMA Operational Modal Analysis

OCM Orientation Code Matching

PMVS Patch-based Multi-View Stereo

PaaS Platform as a Service

p-LSCF Polyreference Least Squares Complex Frequency Domain

PRISMA Preferred Reporting Items for Systematic Reviews and
Meta-Analyses

PELT Pruned Exact Linear Time

R-CNN Region-based Convolutional Neural Network

SMC Sequential Monte Carlo

SaaS Software as a Service

SHM Structural Health Monitoring

TLS Terrestrial Laser Scanner

UAVs Unmanned Aerial Vehicles

UCC Up-sampled Cross Correlation

VM Virtual Machine

WSN Wireless Sensor Network.
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