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Abstract
Thedamages in reinforced concrete (RC) beamsdue to reinforcement corrosion is amajor problem in theRC industry.Accurate
prediction of the residual bearing capacity of RC beams can effectively prevent structural failures or unwanted over-costs
of inspections and rehabilitations. This paper proposes a novel machine learning-based prediction framework that combines
the adaptive neural fuzzy inference system (ANFIS) with several metaheuristic algorithms for the effective estimation of the
flexural strength capacity. Five optimization algorithms are employed for auto-selection of the optimum ANFIS parameters,
includingdifferential evolution (DE), genetic algorithm, particle swarmoptimization, artificial bee colony, andfirefly algorithm
(FFA). A comprehensive experimental database of the flexural capacity of corroded steel reinforced concrete beams obtained
from the literature, consisting of 177 tests, is used as a case study to evaluate the prediction performance of the proposed
hybrid models. The results demonstrate that the proposed hybrid models transcend the previously developedmodels, while the
optimized ANFIS using FFA represents the highest accuracy and strong stability among the proposed models. It is concluded
that the proposed framework using ANFIS-FFA can be effectively employed as a useful tool for the accurate estimation of
the flexural strength capacity of corroded reinforced concrete beams.

Keywords Flexural strength capacity · Prediction · Machine learning · Adaptive neural fuzzy inference system · Nature-
inspired algorithms · Firefly algorithm

Abbreviations

X, Y Input variables
f 1, f 2 Output
A1, A2, B1, B2 Membership functions
a1, a2, b1, b2, r1, r2 Linear output parameters
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E Experimental values
P Predicted values
f Concrete strength
b Beam section width
h Beam section depth
ρl Section ratio of the longitudinal steel

reinforcement
εy Steel yield strength
λ Beam shear span-to-depth ratio
hwt Weight loss ratio due to corrosion
hsn Section loss ratio due to corrosion
Mfx, exp Ultimate flexural strength
Pfx,exp Ultimate concentrated load
RC Reinforced concrete
CRC Corroded reinforced concrete
AI Artificial intelligence
ML Machine learning
ANFIS Adaptive neural fuzzy inference sys-

tem
FL Fuzzy logic
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ANN Artificial neural network
DE Differential evolution
GA Genetic algorithm
PSO Particle swarm optimization
ABC Artificial bee colony
FFA Firefly algorithm
RMSE Root mean square error
MAE Mean absolute error
MAPE Mean absolute percentage error
NSE Nash and Sutcliffe efficiency index
R2 Coefficient of determination
AE Average error
FB Fractional bias
IA Index of agreement
FE Fractional error
r(Ik , O) Relevancy factor

1 Introduction

It is well understood that reinforced concrete (RC) beams
are important components in the construction industry for
several structures such as buildings and bridges. However,
the durability of RC beams is highly influenced by corro-
sion phenomena [1–3]. This means that deterioration may
occur which could result in excessive cost of inspections,
maintenance, or rehabilitation operations [4–6]. Several
experimental studies have been conducted to investigate
the behavior of RC beams under reinforcement corrosion,
including the flexural behavior by Almusallam et al. [7], the
bending resistance at different rates of reinforcement corro-
sion and stirrup spacing by Rodriguez et al. [8], the residual
bending strength under the influence of corrosive environ-
ments byMangat andElgarf [9], the residual flexural capacity
of corroded reinforced concrete (CRC)beams, and the related
failure modes by Hui et al. [10]. Most of these studies are
focused on three main aspects: the steel reinforcement, con-
crete, and the bond performance between concrete and steel.
In addition, previous studies have indicated that the corrosion
reduces the mechanical properties of steel reinforcement and
decreases the concrete effective areas. Thus, increased cor-
rosion would highly decrease the bond performance between
concrete and steel [11]. Therefore, it is crucial to provide an
accurate quantification of the residual bearing capacity of RC
beams under deterioration caused by corrosion.

In recent years, various models have been proposed to cal-
culate the residual flexural strength capacity for CRC beams
based on experimental procedures. There are three different
methods utilized for carrying out these experiments in the
laboratory; (a) using accelerated corrosion, including elec-
trochemical or salt corrosion, (b) using a beam exposed to

the natural environment, and (c) using damaged components
of beams removed, from the structure. Most of the experi-
mental tests carried out in the literature have used the first
method, due to the higher cost and processing time associ-
ated with the other alternatives. Moreover, according to the
existing empirical correlations used for the estimation of the
residual flexural strength capacity of CRC beams, two main
strategies are followed during their developments. The first is
to use results from experimental tests to determine the bend-
ing moment of the CRC beam following the corresponding
specification, which will be multiplied by a reduction factor
that takes into account the effect of the corrosion. The sec-
ond strategy consists of first multiplying the yield stress of
the longitudinal steel reinforcement by a reduction factor to
account for the corrosion influence, with the consideration
of the cross-sectional areas. Thereafter, the ultimate bending
moment is determined according to its specification.

Among the drawbacks of the existing empirical correla-
tions for modeling the flexural strength capacity of CRC
beams are the followed analytical development basis and
the used techniques for fitting, including linear or nonlinear
regression methods. Moreover, according to a recent study
by Zhao-Hui et al. [12], the previously developed models
may exhibit an over- or under-estimation for cases of data
other than the ones used for the model development. Thus,
these models become less accurate when a new dataset is
used which was not included in the original database for
developing the models. Therefore, there is need to introduce
advanced techniques which are more powerful and robust for
the estimation of the flexural strength capacity of CRCbeams
[13]. In recent years,machine learning (ML) approaches have
gained significant attention for solving engineering prob-
lems, includingmodeling the behavior of the shear strength of
reinforced concrete beams [14–16], predicting the corrosion
phenomena in different steel components [17–19], and other
applications, such as prediction problems, failure modes
classification, and life assessment in structural engineering
[20–22]. For these applications, the artificial neural network
(ANN), adaptive neural fuzzy inference system (ANFIS),
and support vector regression (SVR) are among the most
well-known and widely used machine learning techniques.
The ANFIS model has become very popular lately, due to
its simplicity and its capability of dealing with uncertainty
when a large database is used during the modeling process
[23–25]. However, most of the known ML models suffer
from the lack of an appropriate and efficient approach for
the optimum selection of their parameters, which makes the
prediction process less accurate [26]. Therefore, to deal with
this problem, hybrid models are proposed, in which meta-
heuristic algorithms are combined with the main MLmodels
for the auto-selection of the optimum parameters. This sug-
gests that combining the ANFIS model with metaheuristic
algorithms may be a robust and efficient technique to solve
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the problem of estimation of the flexible strength capacity of
CRC beams.

This paper aims at introducing new frameworks for the
accurate and reliable estimation of the flexural strength
capacity of CRC beams using advanced machine learning
techniques. A set of novel hybrid models are developed by
combining the ANFIS and five metaheuristic algorithms,
including differential evolution (DE), genetic algorithm
(GA), particle swarm optimization (PSO), artificial bee
colony (ABC), and firefly algorithm (FA). The ANFIS
approach is employed due to its excellent performance
in dealing with modeling problems with high surrounding
uncertainties, whereas the metaheuristic algorithms are used
as powerful algorithms for the auto-selection of the optimum
parameters. Moreover, real experimental tests including the
flexural strength capacity are used from the open literature
for creating and validating the proposed hybrid models. The
present study is structured as follows: Sect. 2 describes the
employed methodology, which is based on a hybrid ANFIS
andmetaheuristicmodel (i.e.,DE,GA,PSO,ABC, andFFA),
as well as the evaluation metrics. Section 3 contains infor-
mation about the CRC beams flexural capacity database.
Section 4 analyzes the results obtained with the proposed
framework, followed by a detailed discussion, comparison,
and the variables influence analysis. Section 5 contains the
conclusions of the study, as well as limitations and recom-
mendations.

Figure 1 illustrates the structure of the proposed study for
using hybrid machine models to solve the flexural capac-
ity prediction problem in corroded steel reinforced concrete
beams.

2 Methodology

2.1 Hybrid Predictive ANFIS Models

This section presents the theoretical details of the novel mod-
els proposed in this paper for the estimation of the flexural
strength capacity (Mfx). A recall of the theoretical back-
ground related to the ANFIS and the five metaheuristic
algorithms is detailed.

2.1.1 Adaptive Neural Fuzzy Inference System (ANFIS)

The ANFIS model was first proposed by Jang in 1993 [27].
It is generally considered as a useful tool for solving predic-
tion problems by providing low uncertainties [28]. Unlike
other approaches that deal with linear correlation, the ANFIS
model is a powerful approach for situations where predic-
tion problems present a highly nonlinear form [29]. As a
fast-learning algorithm, ANFIS integrates the ANN as a soft

computing approach with the fuzzy logic (FL) as an infer-
ence system, where the role of the first part is the pattern
recognition of the immediate environment, while the role of
the second part is to mimic the human-like expertise. Several
nodes are used as directional connectors between the ANN
and FL algorithm in order to estimate the fuzzy parameters.
This allows the ANFIS model to combine the advantages of
both the ANN and the FL in a single framework. It should
also be noted that the operation mechanism of the ANFIS
model is based on Takagi–Sugeno fuzzy inference system
[30]. Various parameters are normally employed as inputs
to estimate one output where several rules are defined based
on the membership functions to stipulate the input–output.
These rules can be given for a two-variable example (X and
Y ) as follows:

Rule 1 : If X is A1 and Y is B1, then f1 = a1X + b1Y + r1
(1)

Rule 2 : If X is A2 and Y is B2, then f2 = a2X + b2Y + r2
(2)

where A1, A2, B1, and B2 are the membership functions for
the inputs X and Y . f 1 and f 2 denote the related output from
the respected rule, while the linear output parameters from
the first and second rules are represented bya1, a2, b1, b2, r1,
andr2. In this study, the ANFIS approach consists of five lay-
ers, which are connected using nodes as illustrated in Fig. 2.
These layers can be briefly described as follows [31]:

• Layer 1 Using the membership functions described in
Eqs. (3) and (4), X and Y (input variables) are trans-
formed into linguistic terms, noting that the membership’s
grades are created using square nodes, whereas the Gaus-
sian membership function [29] is used in this work.

O1, i = μAi(X) (3)

O1, i = μBi(Y ) (4)

In the above, the linguistic terms and their related mem-
bership functions are represented by Ai(X), Bi(Y ) andμAi(X),
μBi(Y ), respectively.

• Layer 2The output of this layer, O2, i is calculated by using
Eq. (5) as follows:

O2, i = wi = μAi (X)μBi (Y ) (5)

• Layer 3 The normalization of the output, O3, i is deter-
mined in this layer as follows:

O3, i = wi = wi
∑2

j=1 w j
(6)
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Fig. 1 Proposed hybrid machine
learning framework

Fig. 2 The structure of adaptive
neuro-fuzzy inference system
(ANFIS) technique for modeling
flexural strength capacity (Mfx)

• Layer 4 The nodes become adaptive nodes in this layer,
O4, i , and can be calculated as illustrated in Eq. (7):

O4, i = wi fi = wi (ai X + biY + ri ) (7)

• Layer 5 The final output is computed in this layer based
on the previous outputs in each layer, as incoming single
nodes that have gathered, using Eq. (8) as follows:

O5, i =
∑

i

wi fi =
∑

i wi fi
∑

i wi
(8)

2.1.2 Metaheuristic Algorithms

Differential Evolution (DE) The DE algorithm is a sophis-
ticated metaheuristic that utilizes genetic operators such as
selection, recombination, and mutation to solve optimization
problems. It was first introduced by Storn and Price [32].
Since then, it has been extensively used for the solution of
optimization problems in various scientific areas, including
applications in structural engineering [33, 34]. DE is utilized
in this work to determine the optimum ANFIS parameters,

referred to as ANFIS-DE. The process starts with the ini-
tialization of the population and the DE control parameters.
The fitness function is used to evaluate each individual, and
then, the stopping criterion is checked to determine whether
convergence has been achieved. In case the termination cri-
terion is not met, three steps are repeated. First, by applying
the mutation operation using the following equation:

TXi , j = Xk
a1, j + F

(
Xk
a2, j + Xk

a3, j

)
∀ j and ∀i (9)

where a1, a2, anda3 are selected random indices from the
population size, while F is the mutation factor.

Second, by applying the crossover operation on the
mutated individual by using Eq. (10):

Ui , j =
{
T Xi , j if rand ≤ CR or j = Irand
Xk
i , j if rand > CR or j �= Irand

(10)

where rand stands for a random value uniformly distributed
between 0 and 1, while CR denotes the crossover probability
and Irand ∈ (1, 2, . . . , d) is a random selected index.
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Fig. 3 The genetic algorithm’s cycle process

Third, by calculating the trial fitness, themutation is deter-
mined on the trial solution as follows:

Xk+1
i , j =

{
Ui , j i f f

(
Ui , j

) ≤ f
(
Xk
i

)

Xk
i , j otherwise

(11)

Finally, the process continues until the selected conver-
gence (stopping) criterion is satisfied.

Genetic Algorithm (GA) GA is a very well-known optimiza-
tion technique that was inspired by the theory of evolution
and proposed by Holland and his colleagues [35]. Over the
years, GAhas been extensively utilized to solve various types
of complex optimization problems, including applications in
structural engineering [36], given its efficiency and accuracy
[37]. In this study, theGA is combinedwith theANFISmodel
as an auto-optimized framework which starts with the ran-
domgeneration of the initial population called chromosomes.
The main goal of the optimization process for this study is
to select the best outperforming chromosomes for solving
the flexural strength capacity problem. To do so, the fitness
function is used to evaluate the performance of each indi-
vidual. In every iteration (generation), three main operations
are used to update the chromosomes by better ones, starting
with the roulette wheel process (selection operation), then
the crossover and mutation operations are followed succes-
sively, and the fitness function is evaluated again. The process
is repeated, while the convergence (stopping) criterion is not
met. Figure 3 depicts the cycle process of the GA.

Particle Swarm Optimization (PSO) PSO is a metaheuristic
optimization algorithm inspired from the swarmbehavior and
animal dynamic movement of birds and fish, proposed orig-
inally by Eberhart and Kennedy [38]. PSO has been utilized
by many researchers to solve complex engineering problems
[39–41]. In this study, PSO is coupled with the ANFISmodel
as a novel solution for the problem of CRC beams. The PSO
algorithm normally starts with the random generation of the
initial population. Each member of the population (particle)
is characterized by two factors, namely its location in the

search space and its velocity. Similar to GA, the fitness func-
tion is employed to evaluate the performance of each particle.
Until the convergence criterion is satisfied, the velocity and
the location of each particle in the population are updated
using Eq. (12) and Eq. (13), respectively, as follows [42, 43]:

Vi+1 = ωVi + c1r1(Pibest − Xi ) + c2r2(gibest − Xi ) (12)

Xi+1 = Xi + Vi+1 (13)

where Xi , Vi , Xi+1, and Vi+1 denote the particle location
and velocity at the ith and (i + 1)th iterations, respectively.
c1 and c2 are learning factors, while r1 and r2 are two ran-
dom numbers with uniform distribution in the range [0, 1].
ω represents a weighting factor to accelerate the algorithm
convergence. The next step is to evaluate the performance of
the new particles using the fitness function and the process
continues until the optimum results are achieved.

Artificial Bee Colony (ABC) TheABC is a swarm intelligence
algorithm that mimics the behavior of honeybees during the
collecting of nectar sources in the area of their hives, pro-
posed by Karaboga in 2005 [44]. This algorithm has been
gainingmuch interest recently for solving complex optimiza-
tion problems [45]. Similar to the previous algorithms, the
ABC is also used for the optimum selection of the ANFIS
parameters in this work. The algorithm starts with the gen-
eration of the initial population of food sources, whereas
each bee is designated to a food source. The fitness function
is evaluated for each solution, and three steps are consid-
ered during the iterations of the method. The first step is to
renew the position of the bees to discover a new food source
(Employed bees’ step). To do so, Eq. 14 is employed [46].

x j , t+1 = x j , t + ξ j
(
x j , t − xηt

)
(14)

where η denotes an arbitrary number from (1, 2, …, colony
size) and distinct from j , while ξ j is a random variable in the
range [0, 1]. The new positions replace the old ones using
the fitness function, in case they contain more nectar. The
second step consists of changing the nectar information using
onlooker bees, according to the fitness function values. The
probability P of the solution selection can be given as:

Pj = fit j
∑NE

j=1 fit j
(15)

where the number of the employed bees is represented by
NE, and the fitness values of the j th bee are denoted by
fit j . The same process as the first stage is used by onlooker
bees for the actual position. The last step is introduced when
there is no amelioration in the food sources. The employed
bees become scout bees and search for new random solutions
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and then turn to employed bees again if a better solution is
achieved. These stages continue until the stopping criterion
is fulfilled and the optimum solution is achieved.

Firefly Algorithm (FFA) The FA is a new population-based
algorithm, which mimics the dynamic movements of fire-
flies and was introduced by Yang [47]. FA has been proven
to be a powerful technique to tackle numerous optimization
problems [48]. Similar to the previously mentioned tech-
niques, FA is used to find the optimal ANFIS parameters
for the estimation of the flexural strength capacity of CRC
beams and the corresponding model is denoted as ANFIS-
FA model. The FA is initialized with the random generation
of the initial fireflies’ population in terms of original light
intensity (β0), adsorption coefficient (γ ), and attractiveness.
According to the concept of this algorithm, eachfireflymoves
toward the brighter ones, and using this mechanism, the pop-
ulationmoves to “brighter” locations of the search space, i.e.,
locations with better values of the objective function which
symbolizes the brightness. This is a repeated, iterative pro-
cesswhich stopswhen the convergence (stopping) criterion is
met and the optimum solution has been obtained. The update
of the fireflies’ location is made using Eq. (16):

Xi = Xi + β0e
−γ r2i , j

(
Xi − X j

) + α

(

rand − 1

2

)

(16)

In the above formula, β0e
−γ r2i , j denotes the attractiveness,

α
(
rand − 1

2

)
indicates the randomization in a range of [−

0.5, 0.5] where α stands for the randomization coefficient,
β0 represents the intensity of light, and γ is the coefficient
of adsorption. Moreover, the Cartesian distance is used to
determine the distance ri , j between the fireflies Xi and Xj,
as shown in Eq. (17):

ri , j =
√
√
√
√

D∑

k=1

(
Xi , k − X j , k

)2 (17)

Thereafter, the fireflies are ranked based on their fitness
values and the process continues until the stopping condition
is fulfilled and the optimum solution has been found.

2.2 Implementation Procedure

2.2.1 Proposed Framework

The framework proposed for the novel hybridANFISmodels
in this study for the flexural strength capacity (Mfx) predic-
tion is illustrated in Fig. 4. The framework is programmed
using the MATLAB programming language. It should be
noted that for all optimization algorithms, the maximum
number of iterations has been set to 100, which was proven

enough in order to achieve stable results (e.g., convergence)
and can serve as a comparison point between the different
hybridMLmodels. For the same reason, the five optimization
algorithms listed above were assigned the same initial pop-
ulation size (i.e., 50 members). Furthermore, Table 1 reports
the proper control parameters obtained by the tuning method
for each nature-inspired algorithm used in this study (i.e.,
GA, DE, PSO, ABC, FFA).

2.2.2 Performance Evaluation Metrics

In this section, the accuracy and efficiency of the results
obtained from the proposed ML techniques (i.e., ANFIS-
FFA, ANFIS-ABC, ANFIS-PSO, ANFIS-GA, and ANFIS-
DE) are evaluated. Nine statistical indices are used to verify
the performance of the developed models for the prediction
of the flexural strength capacity of CRC beams (Mfx,exp).
The adopted evaluation criteria include five indices for com-
paring the models’ performance, which are the root mean
square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), Nash and Sutcliffe effi-
ciency index (NSE), and coefficient of determination (R2)
[49, 50]. In addition, another four criteria are used to verify
the models’ performance, which are the average error (AE),
fractional bias (FB), index of agreement (IA), and fractional
error (FE). The mathematical formulas of these indices are
given as described in Eqs. 18–25 as [51, 52]:

RMSE =
√
√
√
√1

n

n∑

i=1

(Ei − Pi )2 (18)

MAPE = 1

n

n∑

i=1

|(Ei − Pi )/Ei | × 100% (19)

MAE = 1

n

n∑

i=1

|Ei − Pi | (20)

R2 =
∑n

i=1

(
Pi − P

)(
Ei − E

)

√
∑n

i=1

(
Pi − P

)2
.
∑n

i=1

(
Ei − E

)2
(21)

NSE = 1 −
∑n

i=1(Ei − Pi )2
∑n

i=1

(
Ei − Eavg

rate
)2 − ∞ ≤ NSE ≤ 1 (22)

AE = 1

n

n∑

i=1

(Pi − Ei ) (23)

FB = 2

n

n∑

i=1

(Pi − Ei )/(Pi + Ei ) (24)

IA = 1 −
∑n

i=1(Ei − Pi )2
∑n

i=1

(∣
∣Pi − E

∣
∣ + ∣

∣Ei − E
∣
∣
) (25)
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Fig. 4 The detailed structure of
the proposed hybrid machine
learning model framework
implementation and evaluation

FE = 2

n

n∑

i=1

|Pi − Ei |/(Pi + Ei ) (26)

In the above equations, Ei andPi denote the ith experi-
mental and predicted values of the flexural strength capacity
(Mfx) of CRC beams, respectively, and n indicates the sam-
ple size. It is worth mentioning that the best predictive model
is the one with the lowest values of RMSE, MAE, MAPE,
AE, FB, and FE. In addition, the closer the values of R2 and
IA are to unity, the more efficient the model is in predicting
the experimental values.

3 Description of the CRC Beams Flexural
Capacity Database

A comprehensive experimental database of CRC beams is
used for the computation, which consists of 177 tests, gath-
ered from several references and collected systematically by
Zhao-Hui et al. [12]. It has to be noted that these experi-
mental tests were carried out using CRC beams subjected
to concentrated loads with residual flexural capacity (Mfx).
Considering that, the latter (i.e.,Mfx) is significantly influ-
enced by the beams state under corrosion phenomena and the
applied load. The CRC beams characteristics collected dur-
ing the experimental tests include the concrete strength (f ),
the beam section width b and depth h, the section ratio of the
longitudinal steel reinforcement (ρl ), the steel yield strength
(εy), the beam shear span-to-depth ratio (λ), and the weight
and section loss ratios due to corrosion (i.e., ηwt and ηst).
Besides, for the recorded tests results at failure, the ultimate

flexural strength capacity (Mfx) and the ultimate concentrated
load (Pfx) are utilized.

In this study, eight parameters are used as inputs for the
modeling process, namely the parameters: f , b, h, ρl , εy, λ,
ηwt, and Pfx. Since ηwt and ηst are strongly correlated with
each other, only the weight loss ratio ηwt due to corrosion is
used as a parameter, as suggested in [12]. Statistical infor-
mation about the database, including the mean, maximum,
minimum, range, median, and standard deviation values is
reported in Table 2.

Due to the fact that there are no specific guidelines in
machine learningmodeling for splitting the database between
a training and a testing set, researchers have taken different
approaches for different problems. In general, the portion of
data points used for training the model should be sufficiently
larger than the portion for testing it as machine learning
models require more comprehensive data to understand and
replicate the phenomenon. In our study, we used the trial-
and-error method to determine the best data splitting. Thus,
the data were divided as 90–10%, 80–20%, 75–25%, and
70–30% between training and testing, respectively. We then
ran themodeling, and based on the results, a balance between
training and testing with superior results was obtained by the
75–25% splitting scheme, which was finally chosen.

4 Results and Discussion

This section presents the results obtained using the proposed
machine learning-based algorithms. The performance of the
models is evaluated based on the prediction effectiveness,
the model’s efficiency and accuracy, and the uncertainties
related to the predicted results obtained from the proposed
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Table 1 Setting parameters of the metaheuristic optimization algo-
rithms

Optimization
algorithm

Parameters Setting values

GA Population size 50

Crossover’s
probability

90%

Mutation’s probability 10%

Type of replacement Elitism (10% of
the population)

Type of selection Roulette wheel

Maximum number of
iterations

100

DE Population size 50

Crossover’s constant 0.95

Maximum number of
iterations

100

PSO Number of particles 30

C1, C2 2.05

ωmax 1.2

ωmin 0.1

Maximum number of
iterations

100

ABC Number of employer
bees

50

Number of onlooker
bees

50

Number of iterations
to the scout bees

6

Maximum number of
iterations

100

FFA Number of fireflies 50

α 0.5

β 5

γ 1

Maximum number of
iterations

100

ML models and compared to the pre-existing correlations in
the literature. The obtained results from the hybrid ANFIS
models are evaluated firstly by the aforementioned four sta-
tistical indices, namely RMSE (kNm),MAE (kNm),MAPE
(%), and NSE. The obtained results during the training, test-
ing, and overall phases are reported in Table 3. It should be
noted that the closer the RMSE,MAE, andMAPE values are
to zero, the more the predicted results agree with the exper-
imental results, and the more accurate the prediction model
is. The results reported in Table 3 show that, as expected, the
error associated with the training data is in most cases lower
that the error associated with the test data, but the differences

are not very big, which shows the validity of the methodol-
ogy. The highest relative difference (i.e., training to testing)
is recorded in the ANFIS-DE model with an RMSEDiff (%)
= 35.53% and MAEDiff (%) = 40.87%. The ANFIS-PSO
shows the lowest relative differences between the training
and testing phases results with RMSEDiff (%) = 12.51% and
MAEDiff (%) = 13.12%.

Among others important findings, Table 3 shows that the
ANFIS-FFA model shows the best results for predicting the
flexural strength capacity Mfx of CRC beams, in both train-
ing and testing phases compared to the other ANFIS-based
hybrid models. The provided metrics values by utilizing the
ANFIS model coupled with the FFA algorithm for auto-
selection of its optimum parameters are RMSE = 2.3049
kN m, MAE = 1.7755 kN m, MAPE = 11.9696%, and NSE
= 0.9667 for the overall performance (training and testing).

Besides, the ANFIS-DE outcome is RMSE = 4.5318
kNm,MAE= 3.3952 kNm, andMAPE= 19.9448%,which
shows the worst performance, compared to the other models.
Moreover, the ANFIS-ABC, ANFIS-PSO, and ANFIS-GA
models achieved RMSE values equal to 2.9116 kNm, 3.2454
kN m, and 3.89 kN m, respectively. Comparing the best per-
former (ANFIS-FFA) with the other four algorithms in terms
of the RMSE values and the overall performance, we end
up that the results of ANFIS-FFA show a relative improve-
ment of 26.32%, 40.8%, 68.77%, and 96.61%, in comparison
with the corresponding results ofANFIS-ABC,ANFIS-PSO,
ANFIS-GA, and ANFIS-DE. These results indicate the very
good performance of ANFIS-FFA for the accurate prediction
of the flexural strength capacity (Mfx) of CRC beams.

The results related to the excellence validity criteria are
listed in Table 4 including the training and testing phases, as
well as the overall results for both of them for each hybrid
model.

An in-depth analysis of the obtained results from the var-
ious methods can reveal the following findings:

• Unlike the first group of criteria presented in Table 3, the
ones of the second group compare the effectiveness of the
hybrid models performance in terms of predicted results
to experimental tests as fractions. Thus, the performance
of the hybrid ANFIS models is compared to reference val-
ues (i.e., zero for the AE, FB, and FE criteria and one
for IA). The obtained responses using the hybrid ANFIS
models’ performances are clearly different fromonemodel
to another, depending on the used metric. It is shown that
among all the different models, ANFIS-FFA gives the best
result for the AE, FB, and FE metrics.

• By taking into consideration the IAmetric, it is shown that
ANFIS-DE exhibits the best overall value (closest to one)
with IAANFIS-DE = 0.7671, followed by ANFIS-FFA with
IAANFIS-FFA = 0.7626 andANFIS-ABCwith IAANFIS-ABC

= 0.7614. The ANFIS-PSO model yielded an IA value
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Table 2 Statistical information of the used database for the flexural capacity (Mfx) prediction

Parameter Notation Unit Minimum Maximum Range Mean Median Std

Concrete strength f MPa 22.13 62.62 40.49 33.78 33.4 9.45

Beam section width b mm 120 200 80 156.37 150 25.70

Beam section depth h mm 150 315 165 207.29 200 46.26

Section ratio of the longitudinal steel reinforcement ρl % 0.58 1.84 1.26 1.21 1.22 0.34

Steel yield strength εy MPa 293 593 300 481.76 500 101.14

Beam shear span-to-depth ratio λ 1.35 4.88 3.53 2.87 2.78 0.91

Weight loss ratio due to corrosion hwt % 0 34.8 34.8 7.71 5.84 7.18

Section loss ratio due to corrosion hsn % 0 47.77 47.77 10.40 7.16 10.06

Ultimate flexural strength Mfx,exp kN m 2.84 65.98 63.14 21.13 19.5 12.82

Ultimate concentrated load Pfx,exp kN 7.1 188.51 181.41 49.16 35.62 35.54

StD denotes the standard deviation

Table 3 Performance indices’
values for the ANFIS-based
hybrid models in the training,
testing, and overall phases

Model Phase RMSE MAE MAPE NSE

ANFIS-DE Training 4.1620 3.0805 19.4314 0.8869

Test 5.6411 4.3395 21.4848 0.8360

Overall 4.5318 3.3952 19.9448 0.8742

ANFIS-GA Training 3.9502 2.9405 17.5475 0.9126

Test 3.7093 2.9102 22.2550 0.8684

Overall 3.8900 2.9329 18.7244 0.9015

ANFIS-PSO Training 3.1470 2.4500 15.8471 0.9397

Test 3.5408 2.7716 18.2943 0.9224

Overall 3.2454 2.5304 16.4589 0.9354

ANFIS-ABC Training 2.7164 2.0799 12.9908 0.9542

Test 3.4969 2.5924 15.8086 0.9289

Overall 2.9116 2.2080 13.6952 0.9479

ANFIS-FFA Training 2.1587 1.7088 11.2934 0.9723

Test 2.7435 1.9755 13.9983 0.9498

Overall 2.3049 1.7755 11.9696 0.9667

The best results among the others, for each index, are indicated in bold

of 0.7605, while the worst performance was the one of
ANFIS-GA (0.7496).

• The values of both the fractional bias (FB) and the
fractional error (FE) metrics are closest to zero for the
ANFIS-FFAmodel, equal to− 0.0005 and 0.1148, respec-
tively. In the case of FB, the value has a negative sign,
indicating an under-estimation.

• For the case of the AE metric, ANFIS-FFA shows the best
overall performancewith a value equal to 0.0941,while the
lowest value is the one of ANFIS-DE, equal to − 0.5209.

• According to the results shown in Table 4, the proposed
hybrid ANFIS-based models show valid prediction results
of the flexural strength capacity (Mfx) for CRC beams,
while the ANFIS-FFA model shows the best performance
in terms of the validation criteria of AE, FB, FE, and IA.

Figure 5 depicts the scatter plots of the estimated results
versus the experimental values of the flexural strength capac-
ity (Mfx) using the data of the training (75%) and testing
(25%) phases. Figure 5 includes the coefficient of determi-
nation (R2) and the linear relationship between the target
values and output results, formulated using the equation y =
ax + b and illustrated in the figures by the dashed red line.
This equation indicates a perfect match between the esti-
mated and observed results when a = 1 and b = 0. Based
on Fig. 5, it is shown that the estimated and experimental
values are in most agreement using the ANFIS-FFA model,
in comparison with the other models. The highest recorded
coefficient of determination value is yielded by using the
ANFIS-FFA model, with R2 = 0.9725 and 0.9503 in the
training and testing sets, respectively. The lowest recoded
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Table 4 Results of the excellence
validity criteria of the flexural
strength capacity (Mfx)
prediction using the hybrid
ANFIS models

Model Phase AE FB IA FE

ANFIS-DE Training − 0.0296 − 0.0386 0.7599 0.2097

Test − 1.9949 − 0.0827 0.7886 0.2223

Overall − 0.5209 − 0.0496 0.7671 0.2128

ANFIS-GA Training 0.0752 − 0.0247 0.7592 0.1813

Test 1.0418 0.0075 0.7209 0.2197

Overall 0.3169 − 0.0167 0.7496 0.1909

ANFIS-PSO Training 0.2264 − 0.0054 0.7581 0.1576

Test 0.2833 0.0156 0.7675 0.1753

Overall 0.2406 − 0.0012 0.7605 0.1621

ANFIS-ABC Training 0.2731 0.0092 0.7580 0.1263

Test 0.8042 0.0502 0.7716 0.1469

Overall 0.4059 0.0195 0.7614 0.1314

ANFIS-FFA Training 0.0333 − 0.0078 0.7549 0.1119

Test 0.2765 0.0213 0.7636 0.1236

Overall 0.0941 − 0.0005 0.7626 0.1148

The best results are indicated in bold

Table 5 Comparison between the performance of the developed hybrid
models and the existing correlations

Model RMSE R2

Previous models

Azad et al.’s model [53] 7.56 0.65

Sun’s model [54] 6.27 0.756

Azad et al.’s modified model [55] 6.03 0.777

Torres-Acosta et al.’s model [56] 5.53 0.813

Xu’s model [57] 5.50 0.815

Zhang et al.’s model [58] 4.48 0.847

Zhao-Hui et al. [12] 3.87 0.908

Proposed models

ANFIS-DE 4.53 0.881

ANFIS-GA 3.89 0.909

ANFIS-PSO 3.25 0.936

ANFIS-ABC 2.91 0.950

ANFIS-FFA 2.30 0.967

The best results among the others are indicated in bold

R2 is the one using the ANFIS-DE model, which is equal
to 0.8869 (training phase) and 0.8651 (testing phase). Using
the best R2 value (R2

ANF I S−FFA = 0.9725, the improve-
ment in the prediction accuracy is 1.8%, 3.2%, 6.0%, and
8.9% compared to the values of ANFIS-ABC, ANFIS-PSO,
ANFIS-GA, and ANFIS-DE models, respectively. Overall,
the proposed hybrid machine learning approaches based on
combining the ANFIS approach with metaheuristic algo-
rithms indicate a good performance in terms of prediction

effectiveness compared to the real experimental values of the
flexural strength capacity (Mfx) for CRC beams, especially
using the ANFIS-FFA model.

Although the above results indicate that the proposed
ANFIS models show promising results for the accurate and
efficient modeling of Mfx, it is crucial to compare these
models to those in the literature. Next, the performance of
the hybrid ANFIS models will be compared with existing
models from the literature, in the terms of the RMSE and
R2 statistical indicators. Zhao-Hui et al. [12] conducted a
study based on the database used here, where a compar-
ative investigation between their model and the previous
correlations is carried out. The same results are extracted
and used in the present study, for comparison purposes.
Table 5 shows the comparison of the results from the five
hybrid models based on ANFIS and the previous correla-
tions from the literature. It is shown that four out of five
of the proposed hybrid models (i.e., ANFIS-FFA, ANFIS-
ABC,ANFIS-PSO, andANFIS-GA) outperform the existing
ones, in terms of accuracy and efficiency, with lower values
of RMSE and higher R2 results (closer to one). The pro-
posed model by Zhao-Hui et al. [12] is the only model that
shows better results than the ANFIS-DE (i.e., the one with
the worst performance among the proposed ANFIS-based
models). The performance improvements of the four models
(ANFIS-FFA, ANFIS-ABC, ANFIS-PSO, and ANFIS-GA)
over the one of Zhao-Hui et al. [12]) are 53.95%, 29.53%,
15.94%, and 0.52% in terms of RMSE values and 6.21%,
4.48%, 3.08%, and 0.11% in terms ofR2 values, respectively.
Subsequently, the proposed approaches are more efficient

123



Arabian Journal for Science and Engineering

Fig. 5 Scatter plots of
experimental values vs predicted
results using the proposed hybrid
models for training (left column)
and testing (right column)
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than previous models developed by researchers for model-
ing the flexural strength capacity (Mfx) of CRC beams.

To investigate the uncertainties related to the modeling
process, two graphical illustrations are used as time series
plot (Fig. 6) during the training and testing phases and the
error histograms (Fig. 7) for the entire dataset. It can be seen
from Fig. 6 that the plotted prediction results are very close
to the experimental values using the proposed models, while
the best agreement is the one of the ANFIS-FFA model, for
both the training and the testing sets.Moreover, themodeling
process using the ANFIS-DE model is clearly showing the
highest uncertainty, compared to the other models.

It is worth mentioning that the error histograms exhibited
in Fig. 7 correspond to the difference between the predicted
results using the proposed ML models and the experimental
values of the flexural strength capacity (Mfx), i.e., the values
Pi − Ei . In addition, the mean and standard deviation are
calculated and reported in each sub-figure, where the lower
the values of the mean and the standard deviation are, the
less uncertainty is provided by the model.

According to the results shown in Fig. 7, the prediction
of the flexural strength capacity (Mfx) using the ANFIS-FFA
model exhibits the lowest uncertainty during the modeling
process compared to the experimental values. The over-
all recorded mean and standard deviation values using the
ANFIS-FFA model are 0.0941 and 2.3234, respectively. The
ANFIS-DE model exhibited the highest overall errors com-
pared to the other models, with mean= 0.5029 kNm and Std
= 4.56. The difference between the estimated results using
the ANFIS-FFA and the worst model (i.e., ANFIS-DE) is
around 40.9% in terms of the mean value and 49.1% in terms
of the standard deviation, respectively. It is proven based
on the above results that the ANFIS-FFA-based machine
learning model is the most suitable choice for modeling the
flexural strength capacity (Mfx) of CRC beams using real
experimental data.

In the final step, the Taylor diagram plot is illustrated
in Fig. 8 using the five hybrid models’ results against the
real experimental values of the flexural strength capacity
(Mfx). It should be noted that in these figures, the black
(radius) lines refer to the Pearson correlation coefficient R,
whereas the circles correspond to circumferences with equal
standard deviations, while the dash lines are for circumfer-
enceswith equal centerednormalized rootmean square errors
(NRMSE). Thus, the predictive ML models accuracies are
compared based on the correlation coefficient, the standard
deviation, and the NRMSE using the overall data. It is clear
from the plotted results of theTaylor diagram that theANFIS-
FFA model (red circle) exhibits the best performance as it is
closest to the experimental data point (green circle), com-
pared to the others models.

The relevancy factor analysis is a sensitivity analysis pro-
cess that allows the evaluation of the influence of the variables

considered in the construction of the hybrid ML models for
predicting the flexural strength capacity (Mfx) ofCRCbeams.
According to Chen et al. [59] and Hajirezaie et al. [60], the
higher the obtained relevancy factor value, the stronger the
relationship between the model’s output and that variable.
The relevancy factor is calculated using the following for-
mula:

r(Ik , O) =
∑N

i=1

(
Ik, i − Ik

)(
Oi − O

)

√
∑N

i=1

(
Ik, i − Ik

)2 ∑N
i=1

(
Oi − O

)2
(27)

In the above equation, I represents the sample index,
whereas Ik is the kth input variables with an average value Ik .
O and O are the predicted value and its average, respectively.

Figure 9 depicts the results of the relevancy factor analysis
in the formof bar andpie charts using the best outcomehybrid
model (i.e., ANFIS-FFA).A negative value is a strong indica-
tion of an opposite influence on the outcome; in other words,
an increase in the variable values will result in a decrease in
the outcome (the flexural strength capacity of CRC beams).
The obtained results clearly show an interesting finding, with
the beamsection depth (h) having the highest relevancy factor
value (0.81), indicating a high impact on the flexural strength
capacity, followed by the beam section width (b) with 0.59,
and then the steel yield strength (εy) with r = 0.44. This is a
logical result because the dimensions of the beam are impor-
tant factors, particularly the beam depth to resist corrosion
penetration, where a decreasing value will eventually reduce
the strength of the beam. In addition, the greater the yield
strength value, the greater the flexural strength capacity of
CRC. The weight and section loss ratios due to corrosion
(i.e., ηwtandηst ) and the beam shear span-to-depth ratio (λ)
on the other hand indicated a negative impact on the flexural
strength capacity, which means that increasing the values of
these variables will result in a decrease in the output result
(the flexural strength capacity). In general, the relevancy fac-
tor analysis revealed that the developed hybrid ANFISmodel
in conjunction with FFA yielded logical and coherent sensi-
tivity analysis results.

5 Conclusions

An accurate prediction of the flexural strength capacity (Mfx)
of CRC beams will provide engineering or field operators
with valuable information not only about the state of the
structure, but also on the most suitable inspection procedures
to follow using cost-effective strategies for maintenance and
rehabilitation.However, obtaining reliable predictions for the
flexural strength capacity is a very challenging task due to
the influence of various parameters such as the corrosion rate
and the applied loads on the CRC beams. In this paper, five
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Fig. 6 Time-series plots of the
experimental values versus the
estimated results using the
proposed machine learning
models in the training and testing
phases
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Fig. 7 The prediction error related to the ANFIS-based hybrid models using the overall data
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Fig. 8 Statistical comparison of the proposed hybrid models based on the ANFIS approach with the experimental values, using the Taylor diagram

Fig. 9 Sensitivity analysis using the relevancy factor. a Bar chart, b pie chart results

novel predictive hybridmodels based on theANFIS approach
are proposed to introduce an accurate and stable prediction
framework for the flexural strength capacity of CRC beams.
A comprehensive database including 177 real experimental
tests is employed to illustrate the proposed methodologies.
Multiple evaluation criteria are utilized to evaluate the valid-
ity and the performance of the novel hybridmodels. Based on
the results presented in the paper, the following conclusions
can be drawn:

• Results of the performance accuracy metrics (i.e., RMSE,
MAE, MAPE, and NSE) indicated acceptable results dur-
ing the testing phase with different outcomes using the
proposed models based on the hybrid ANFIS and the
five metaheuristic algorithms. Specifically, a performance

pattern was noticed as ANFIS-FFA > ANFIS-ABC >
ANFIS-PSO > ANFIS-GA > ANFIS-DE, where “ > ”
denotes the better performance. Besides, the respective R2

values were estimated as 0.9503, 0.9365, 0.9251, 0.8997,
and 0.8651 during the testing phase.

• Excellence validity results indicated a similar pattern
for the hybrid models’ performance. Again, ANFIS-FFA
yielded the highest excellence among the other developed
hybrid models with FB and FE values equal to − 0.0005
and 0.1148, respectively.

• The proposed hybrid models proved to outperform pre-
vious models that have been developed by researchers,
in terms of accuracy and efficiency. The results revealed
that four out of five hybrid ANFIS-based models (namely
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ANFIS-FFA, ANFIS-ABC, ANFIS-PSO, and ANFIS-
GA) achieved superior results, with 53.95%, 29.53%,
15.94%, and 0.52% improvements in terms of RMSE and
6.21%, 4.48%, 3.08%, and 0.11% in terms of R2 com-
pared to the best previousmodel (i.e., Zhao-Hui et al. [12]),
respectively.

• All the hybridmodels show low uncertainties related to the
modeling process, with ANFIS-FFA model exhibiting the
best performance in this criterion. Besides, the Taylor dia-
gram confirms the superior performance of ANFIS-FFA
model for the accurate estimation of the flexural strength
capacity of CRC beams.

Finally, given its performance ability in Mfx prediction,
the newly developed ML framework can serve as a useful
engineering tool. However, it should be noted that this study
is based on a limited number of samples (i.e., 177 samples)
and input variables (i.e., eight factors). It is strongly rec-
ommended that future works investigate the applicability of
the proposed hybrid models using a larger database with the
examination of additional influencing factors, such as the
age of the CRC beams, and others. Furthermore, comparing
the obtained results with other machine and deep learning
approaches can provide different insights into the prediction
of CRC beam flexural strength capacity and the behavior of
the factors that influence it the most.
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