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1 Introduction 

Functionally graded materials (FGMs) signify a significant advancement in engi-
neering and scientific domains, offering solutions to intricate challenges encountered 
across diverse industries, notably aerospace and biomedical applications [1–3]. It is 
crucial to recognize that porosities may arise within FGMs during the sintering phase 
of fabrication, mainly because of the differences in solidification temperatures 
between the different materials [4, 5]. In the design of FGM structures exposed to 
dynamic loads, accounting for the influence of porosity is paramount [6, 7]. The
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disparity in solidification temperatures between metals and ceramics gives rise to the 
formation of metal phase grains, while ceramics persist as interspersed particles. 
Furthermore, the varied sizes and configurations of the reinforcement (ceramics) 
powders can engender pore formation in proximity to the reinforced particles, 
leading to divergent levels of porosity within both phases [6].
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This investigation examines the repercussions of distinct porosity types within 
both ceramic and metal constituents. Each discussed porosity type manifests differ-
ing percentages of porosity in ceramic and metal phases. The analysis encompasses 
how the stiffness of functionally graded beams is affected by the power-law index, 
furnishing elucidations into their dynamic response. Furthermore, scrutiny of the 
length-to-thickness ratio yields significant insights into the ramifications of geomet-
ric proportions. Collectively, this study offers novel insights into the behavior of 
porous functionally graded beams, considering a spectrum of parameters and 
underscoring their relevance in real-world applications. 

2 Problem Formulation 

2.1 Constitutive Relations of FG Beams Made of Metal 
and Ceramic 

We examine an imperfect FGM characterized by the porosity volume fraction, 
a (where a ≪ 1), evenly distributed between the two constituents. The rule of 
mixture (modified), as proposed by [8], is 

P=Pm Vm -
α 
2 

þ Pc Vc -
α 
2

ð1Þ 

Vc = 
z 
h
þ 1 
2 

k 

ð2Þ 

Vc þ Vm = 1 ) Vc = 1-Vm ð3Þ 

The power law of volume fraction is described in detail in Table 1. The properties 
of the imperfect FGM can be formulated as 

P= Pc -Pmð Þ  z 
h
þ 1 
2 

k 

þ Pm - Pc þ Pmð Þ α 
2

ð4Þ 

The parameter k, a non-negative real number (0 ≤ k ≤1), represents the volume 
fraction or power-law index, while z denotes the distance from the mid-plane of the 
beam. The FG beam transitions to a fully ceramic one as k approaches zero, and to a 
fully metallic one as k becomes large. The equations for Elastic Modulus (E) and the 
density of the material (ρ) of the imperfect FGM beam are detailed in [9]. Table 1 
shows the equations used for E for the various porosity distributions present in the



h 2

Þ

FGMs. The Poisson’s ratio (ν) is assumed to remain constant. In the special case 
where a = 0, we obtain material properties corresponding to a perfect FG beam. 
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Table 1 Porosity distribution in the FGM’s (ceramic/metal): different types 

Types 

Porosity rate distribution 

Elastic modulus, E(z) =Ceramic Metal 

T-1 Perfect FG beam, without porosity 
(a = 0) 

Ec -Emð Þ  z þ 1 k þ Em 

T-2 50% 50% α α 
Em Vm - E V -

2
þ c c 2

z 1 k αð ÞEc -Em h
þ þ Em - ðEc þ E
2 mÞ 2

T-3 60% 40% 2α 3α 
E m Vm -

5
þ E c Vc - 5

z 1 k αð ÞEc -Em þ E 3E
2

þ m - ð c þ 2E
h m 5

T-4 40% 60% 3α 2α 
E m V m -

5
þ E c V c - 5

z 1 k αð ÞEc -Em þ Em - 2Ec þ 3E
h 2

þ ð Þm 5
T-5 75% 25% α 3α 

E m Vm -
4

þ E c Vc - 4
z 1 k αð ÞEc -Em h
þ E
2

þ m - ð Þ3Ec þ Em 4
T-6 25% 75% 3α α 

E m V m -
4

þ E c V c - 4
z 1 k αð ÞEc -Em þ E - ð ÞEc þ 3E
h 2

þ m m 4

2.2 Theoretical Formulation 

2.2.1 Assumptions 

The theory operates under the following assumptions:

. Displacements are significantly smaller in magnitude compared to the height of 
the beam, thus resulting in infinitesimal strains.

. The displacement in the transverse direction, w, comprises two components for 
bending (wb) and shear (ws), which are both solely functions of the coordinates 
x and t: 

w  x, z, tð  Þ=wb x, tð  Þ þ  ws x, tð  Þ ð5Þ
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. Normal stress σz (in the transverse direction) is considerably smaller in magnitude 
compared to the in-plane stresses σx.

. Axial displacement u (in the x-direction), comprises extension, bending, and 
shear components. 

u= u0 þ ub þ us ð6Þ

. The component of bending, ub, is assumed to closely resemble the displacements 
predicted by the beam theory. Hence, ub can be expressed as 

ub = -z 
∂wb 

∂x
ð7Þ

. The combination of the shear component us with ws results in a hyperbolic 
variation of shear strain γxz, causing shear stress τxz to distribute across the 
thickness of the beam. This distribution ensures that shear stress τxz is zero at 
both the top and bottom surfaces of the beam. Thus, the expression for us can be 
stated as follows: 

us = -f zð Þ∂ws 

∂x
ð8Þ 

f zð Þ= -
z 
4
þ 5z

3 

3h2
ð9Þ 

2.2.2 Constitutive Equations and Kinematics 

Utilizing the formulations outlined in the previous section, the field of displacements 
can be derived from Eqs. (5), (6), (7), (8), and (9) as  

uðx, z, tÞ= u0ðx, tÞ- z 
∂wb 

∂x
- f ðzÞ∂ws 

∂x
ð10Þ 

w x, z, tð Þ=wb x, tð Þ þ  ws x, tð Þ ð11Þ 

The strains corresponding to the displacements in Eqs. (10) and (11) are as 
follows: 

εx = ε0 x þ z kb x þ f zð Þ  ks x ð12Þ 
γxz = g zð Þ  γs xz ð13Þ



ð

where 
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ε0 x = 
∂u0 
∂x 

, kb x = -
∂2 wb 

∂x2 
, ks x = -

∂2 ws 

∂x2 
, γs xz = 

∂ws 

∂x
ð14Þ 

g zð Þ= 1- f 0 zð Þ, f 0 zð Þ= 
df zð Þ  
dz

ð15Þ 

Assuming adherence to Hooke’s law for the material of the FG beam, the stresses 
within the beam can be determined: 

σx =Q11 zð Þ  εx ð16Þ 
τxz =Q55 zð Þ  γxz ð17Þ 
Q11 zð Þ=E zð Þ ð18Þ 

Q55 zð Þ=E zð Þ= 2 1  þ νð Þ½ ] 19Þ 

2.2.3 Motion Equations 

In this context, Hamilton’s principle is utilized to end up to the equations of motion, 
as follows [10]: 

δ 

t2 

t1 

U- Tð Þdt= 0 ð20Þ 

Here, t represents the time, t1 is the initial, t2 denotes the final time, δU signifies 
the virtual variation of the strain energy, and δT represents the virtual variation of the 
kinetic energy. The variation in strain energy of the beam is 

δU = 

L 

0 

h=2

- h=2 

σxδεx þ τxzδγxz dzdx 

= 

L 

0 

Nxδε
0 
x -Mb 

xδk
b 
x -Ms 

xδk
s 
x þ Qxzδγ

s 
xz dx 

ð21Þ 

where the four stress resultants can be defined as 

Nx,M
b 
x ,M

s 
x = 

h=2

- h=2 

1, z, f  zð  Þð Þ  σxdz ð22Þ
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Qxz = 

h=2

- h=2 

τxzg zð Þdz ð23Þ 

The kinetic energy variation is given by 

δT = 

L 

0 

h=2

- h=2 

ρ zð Þ  _uδ _uþ _wδ _w½ ] dznsdx 

= 

L 

0 

I0 _u0δ _u0 þ _wb þ _wsð Þ  δ _wb þ δ _wsð Þ½ ]- I1 _u0 
dδ _wb 

dx 
þ d _wb 

dx 
δ _u0 

þI2 
d _wb 

dx 
dδ _wb 

dx
- J1 _u0 

dδ _ws 

dx 
þ d _ws 

dx 
δ _u0 þ K2 

d _ws 

dx 
dδ _ws 

dx 

þJ2 
d _wb 

dx 
dδ _ws 

dx 
þ d _ws 

dx 
dδ _wb 

dx 
dx 

ð24Þ 

In the provided context, the dot-superscript notation means differentiation with 
respect to the time variable t. ρ(z) represents the mass density, and the mass inertias 
are defined as 

I0, I1, J1, I2, J2,K2ð Þ= 

h=2

- h=2 

1, z, f , z2 , zf , f 2 ρ zð Þdz ð25Þ 

By using Eqs. (21) and (24) into Eq. (20), we have 

δu0 : 
dNx 

dx 
= I0€u0 - I1 

d€wb 

dx
- J1 

d€ws 

dx
ð26Þ 

δwb : 
d2 Mb 

dx2 
= I0 €wb þ €wsð Þ þ  I1 

d€u0 
dx

- I2 
d2 €wb 

dx2
- J2 

d2 €ws 

dx2
ð27Þ 

δws : 
d2 Ms 

dx2 
þ dQxz 

dx 
= I0 €wb þ €wsð Þ þ  J1 

d€u0 
dx

- J2 
d2 €wb 

dx2
-K2 

d2 €ws 

dx2 
ð28Þ 

Introducing Eqs. (22) and (23) into Eqs. (26), (27), and (28), the motion equations 
can be expressed as follows, in terms of u0, wb, ws: 

A11 
∂2 u0 
∂x2

-B11 
∂3 wb 

∂x3
-Bs 

11 
∂3 ws 

∂x3 
= I0€u0 - I1 

d€wb 

dx
- J1 

d€ws 

dx
ð29Þ
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B11 
∂3 u0 
∂x3

-D11 
∂4 wb 

∂x4
-Ds 

11 
∂4 ws 

∂x4 
= I0 €wb þ €wsð Þ þ  I1 

d€u0 
dx

- I2 
d2 €wb 

dx2
- J2 

d2 €ws 

dx2 

ð30Þ 

Bs 
11 
∂3 u0 
∂x3

-Ds 
11 
∂4 wb 

∂x4
-Hs 

11 
∂4 ws 

∂x4 
þ As 

55 
∂2 ws 

∂x2 
= I0 €wb þ €wsð Þ þ  J1 

d€u0 
dx

- J2 
d2 €wb 

dx2
-K2 

d2 €ws 

dx2
ð31Þ 

Where the beam stiffnesses are defined by 

Aij,A
s 
ij,Bij,Dij,B

s 
ij,D

s 
ij,H

s 
ij = 

h=2

- h=2 

Qij 1, g
2 zð Þ, z, z2 , f zð Þ, zf zð Þ, f 2 zð Þ  dz ð32Þ 

2.2.4 Analytical Solution 

The analytical solutions in the Navier-type format are derived for the free vibration 
analysis of FG beams. Following this approach, the variables (unknown displace-
ments) are expanded into a Fourier series as follows: 

u0 
wb 

ws 

= 
1 

m= 1 

Um cos λxð Þ  eiωt 
Wbm sin λxð Þ  eiωt 
Wsm sin λxð Þ  eiωt 

ð33Þ 

In the above, Um, Wbm, and Wsm denote arbitrary parameters that are to be 
calculated, ω is the frequency associated with the m-th eigenmode, and λ = m∙π/L. 
By substituting Eq. (33) into Eqs. (29), (30), and (31), the analytical solution can be 
derived through the eigenvalue equations below, for any given value of the eigen-
mode m. 

K½ ]-ω2 M½ ] Δf g= 0f g ð34Þ 

K½ ]= 

a11 a12 a13 
a12 a22 a23 
a13 a23 a33 

, ð35Þ 

M½ ]= 

m11 m12 m13 

m12 m22 m23 

m13 m23 m33 

, ð36Þ
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Δf g= 

Um 

Wbm 

Wsm 

, ð37Þ 

a11 =A11λ
2 , a12 = -B11λ

3 , a13 = -Bs 
11λ

3 , ð38Þ 
a22 =D11λ

4 , a23 =Ds 
11λ

4 , a33 =Hs 
11λ

4 þ As 
55λ

2 ð39Þ 
m11 = I0, m12 = -I1α, m13 = -J1α, ð40Þ 

m22 = I0 þ I2α2 , m23 = I0 þ J2α2 , m33 = I0 þ K2α
2 ð41Þ 

3 Results 

We present the results for the numerical frequencies of imperfect FGM beams with 
various rates of porosity distribution, with the aim of validating the accuracy of the 
present formulation. The properties of the beam’s material are outlined below:

. Ceramic part: Al2O3 (Alumina) with ν = 0.3, Ec = 380 GPa, ρ = 3960 kg/m3 .

. Metal part: Al (Aluminum) with ν = 0.3, Em = 70 GPa, ρ = 2702 kg/m3 . 

The following non-dimensional parameter has been used for simplicity: 

ω= 
ω . L2 
h 

ρm 
Em 

ð42Þ 

The natural frequencies of both imperfect and perfect beams were examined for 
L/h = 5 and L/h = 20 across various power-law indices (k), with results summarized 
in Table 2. The present theory’s outcomes are corroborated and demonstrate excel-
lent alignment with previously published findings. Additionally, the analysis extends 
to different porosity types categorized as T-1 to T-6, as detailed in Table 1. The 
results reveal that the natural frequency attains its maximum for T-6, followed by the 
cases T-4, T-2, T-3, T-5, and T-1. 

When the beam is composed entirely of ceramic (k = 0), an escalation in grading 
indices results in a greater proportion of metal within the beam, consequently 
diminishing its stiffness and subsequently reducing its natural frequency. This 
trend mirrors the behavior observed in the non-dimensional flexural natural frequen-
cies of porous functionally graded beams, as depicted in Table 3 (for L/h = 5) and 
Table 4 (for L/h = 20). Across all instances, the natural frequency is higher for 
porous beams in comparison to non-porous beams. 

Figure 1 shows the evolution of the frequency of imperfect FG beams across a 
range of power-law indices (k). The analysis reveals a decline in frequency with the 
augmentation of the porosity fraction k. Specifically, when k is less than 5, a sharp



Table 2 Non-dimensional frequencies of simply supported porous FG beams (a = 0.1) 

L/h Theory k = 0 k = 1 k = 2 k = 5 k = 10 

5 Bernoulli–Euler (1744) [11] 5.3953 4.1484 3.7793 3.5949 3.4921 

Timoshenko (1921) [12] 5.1524 3.9902 3.6343 3.4311 3.3134 

Simsek (2010) [13] 5.1527 3.9904 3.6261 3.4012 3.2816 

Reddy (1984) [14] 5.1527 3.9904 3.6264 3.4012 3.2816 

Sayyad et al. (2018) [15] 5.1453 3.9826 3.6184 3.3917 3.2727 

T-1 5.1527 3.9904 3.6264 3.4012 3.2816 

T-2 5.2223 3.9070 3.4418 3.1479 3.0292 

T-3 5.2087 3.8712 3.3889 3.0813 2.9627 

T-4 5.2359 3.9419 3.4928 3.2113 3.0924 

T-5 5.1879 3.8158 3.3058 2.9745 2.8561 

T-6 5.2559 3.9929 3.5659 3.3011 3.1819 

20 Bernoulli–Euler (1744) [11] 5.4777 4.2163 3.8472 3.6628 3.5547 

Timoshenko (1921) [12] 5.4603 4.2050 3.8367 3.6508 3.5415 

Simsek (2010) [13] 5.4603 4.2050 3.8361 3.6485 3.5389 

Reddy (1984) [14] 5.4603 4.2050 3.8361 3.6485 3.5389 

Sayyad et al. (2018) [15] 5.4603 4.2050 3.8361 3.6485 3.5389 

T-1 5.4603 4.2051 3.8361 3.6485 3.5389 

T-2 5.5341 4.1117 3.6335 3.3776 3.2809 

T-3 5.5196 4.0732 3.5764 3.3059 3.2113 

T-4 5.5484 4.1494 3.6885 3.4458 3.3470 

T-5 5.4976 4.0137 3.4866 3.1907 3.0993 

T-6 5.5696 4.2042 3.7674 3.5421 3.4405 

Table 3 Flexural natural frequencies (non-dimensional) of porous FG beams (a = 0.1, L/h = 5) 

Mode Theory k = 0 k = 1 k = 2 k = 5 k = 10 

1 Sayyad et al. (2018) [15] 5.1453 3.9826 3.6184 3.3917 3.2727 

T-1 5.1527 3.9904 3.6264 3.4012 3.2816 

T-2 5.2223 3.9070 3.4418 3.1479 3.0292 

T-3 5.2087 3.8712 3.3889 3.0813 2.9627 

T-4 5.2359 3.9419 3.4928 3.2113 3.0924 

T-5 5.1879 3.8158 3.3058 2.9745 2.8561 

T-6 5.2559 3.9929 3.5659 3.3011 3.1819 

2 Sayyad et al. (2018) [15] 17.589 13.754 12.388 11.260 10.748 

T-1 17.881 14.009 12.641 11.543 11.024 

T-2 18.123 13.755 12.049 10.685 10.103 

T-3 18.075 13.635 11.873 10.462 9.870 

T-4 18.169 13.873 12.219 10.898 10.326 

T-5 18.003 13.449 11.596 10.106 9.497 

T-6 18.239 14.044 12.463 11.202 10.642 

3 Sayyad et al. (2018) [15] 32.324 25.538 22.812 20.117 19.003 

T-1 34.209 27.098 24.315 21.716 20.556 

T-2 34.672 26.675 23.276 20.124 18.748 

T-3 34.581 26.453 22.953 19.711 18.301 

T-4 34.761 26.892 23.587 20.519 19.175 

T-5 34.443 26.109 22.446 19.056 17.589 

T-6 34.895 27.209 24.035 21.082 19.783
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Table 4 Non-dimensional flexural natural frequencies of porous FG beams (a = 0.1, L/h = 20) 

Mode Theory k = 0 k = 1 k = 2 k = 5 k = 10 

1 Sayyad et al. (2018) [15] 5.4603 4.2050 3.8361 3.6484 3.5389 

T-1 5.4603 4.2051 3.8361 3.6485 3.5389 

T-2 5.5341 4.1117 3.6335 3.3776 3.2809 

T-3 5.5196 4.0732 3.5764 3.3059 3.2113 

T-4 5.5484 4.1494 3.6885 3.4458 3.3470 

T-5 5.4976 4.0137 3.4866 3.1907 3.0993 

T-6 5.5696 4.2042 3.7674 3.5421 3.4405 

2 Sayyad et al. (2018) [15] 21.571 16.631 15.158 14.370 13.922 

T-1 21.573 16.634 15.162 14.375 13.926 

T-2 21.865 16.270 14.367 13.306 12.898 

T-3 21.807 16.118 14.143 13.024 12.622 

T-4 21.921 16.418 14.584 13.575 13.159 

T-5 21.721 15.884 13.789 12.571 12.178 

T-6 22.005 16.634 14.895 13.954 13.530 

3 Sayyad et al. (2018) [15] 47.569 36.740 33.440 31.543 30.505 

T-1 47.593 36.768 33.469 31.578 30.537 

T-2 48.236 35.979 31.737 29.228 28.239 

T-3 48.109 35.646 31.245 28.609 27.628 

T-4 48.361 36.304 32.211 29.818 28.819 

T-5 47.918 35.131 30.470 27.615 26.646 

T-6 48.546 36.778 32.893 30.652 29.642 

Fig. 1 Fundamental frequency ω of imperfect beams versus power-law index, k (L/h = 5, a = 0.2)



decrease in frequency occurs, whereas beyond k greater than 5, a consistent decrease 
in natural frequency is observed. Furthermore, the investigation into natural fre-
quency encompassed various L/h ratios and different porosity types, demonstrating 
an increase in frequency with higher L/h ratios (Fig. 2).
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Fig. 2 Fundamental frequency ω of imperfect beams versus L/h ratio (k = 5, a = 0.2) 

4 Conclusions 

This study conducted a comprehensive analysis of the free vibration behavior of FG 
beams with porosities, considering various types of porosity. The investigation 
focused on evaluating the impact of differing levels of porosity within ceramic and 
metal components. Specifically, the analysis examined how the power-law index, 
length-to-thickness ratio, and porosity distribution types influenced the natural 
frequency. 

Validation of the obtained results was performed by comparing them with 
existing literature for cases where the beam exhibited no porosity. The findings 
revealed that an increase in the power-law indices resulted in a decrease in the 
stiffness of functionally graded beams, leading to a corresponding reduction in 
natural frequency. Additionally, it was observed that a higher length-to-thickness 
ratio (L/h ratio) was associated with an increase in natural frequency. 

Furthermore, the study demonstrated a significant decrease in the natural fre-
quency as the percentage of porosity increased, regardless of the specific porosity 
types examined. These findings provide valuable insights for industries engaged in 
the manufacturing of porous beams, aiding in the decision-making process for



selecting the most suitable porosity type to achieve optimal performance objectives. 
Overall, this analysis contributes to advancing our understanding of the complex 
interplay between porosity, material properties, and geometric parameters in func-
tionally graded structures, with implications for various engineering applications. 
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