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Abstract 

This study focuses on investigating the free vibration of porous functionally graded (FG) beams 
and the impact of porosity distribution on the properties and performance of materials. To 
achieve this, the study assumes that the beam’s material characteristics vary continuously 
along its thickness direction. The volume fraction of constituents is specified using the modified 
rule of the mixture, which includes porosity volume fraction with changed porosity patterns 
across the cross-section. The study uses the hyperbolic shear deformation theory without shear 
correction factors to derive the equations of motion by applying Hamilton’s principle. The study 
employs Navier’s method to obtain analytical results for the free vibration of porous/non-po-
rous FG beams under simply supported boundary conditions at both ends. To verify the pro-
posed formulation, the study compares the results with relevant findings from the literature. 
The study also examines the relationship between frequency of vibration and grading parame-
ter in homogeneous porosity distributions, as well as the frequency of vibration in beam struc-
tures with different porosity patterns. Additionally, numerical examples are provided to 
investigate the impact of parameters like power-law index, span to depth ratio, porosity distri-
bution pattern, and porosity volume fraction on the natural frequencies of FG beams. The anal-
ysis provides significant insights into the behavior of different porous materials and can be 
useful for designing and selecting materials with porosities. 

Keywords: Free Vibration, Functionally Graded Materials, Porosity, Hyperbolic Shear Defor-
mation Theory, Navier Solution. 

4427

COMPDYN 2023 
9th ECCOMAS Thematic Conference on 

Computational Methods in Structural Dynamics and Earthquake Engineering 
M. Papadrakakis, M. Fragiadakis (eds.) 

Athens, Greece, 12-14 June 2023 

Available online at www.eccomasproceedia.org 
Eccomas Proceedia COMPDYN (2023) 4427-4438

ISSN:2623-3347 © 2023 The Authors. Published by Eccomas Proceedia.
Peer-review under responsibility of the organizing committee of COMPDYN 2023. 
doi: 10.7712/120123.10730.20985



Lazreg Hadji, Vagelis Plevris and Royal Madan 

1 INTRODUCTION 
Composite materials are materials that are made up of two or more different materials that 

are combined together to form a single material with unique properties. The different materials 
used in a composite material are called constituents, and they can be selected based on their 
specific properties, such as strength, stiffness, durability, and others. In most cases, composites 
exhibit consistent material properties throughout their structure, meaning that the properties do 
not change significantly in any direction [1]. On the other hand, functionally graded materials 
(FGMs) are advanced materials that have a continuously varying composition or structure, typ-
ically from one end of the material to the other. This variation can be controlled to produce 
specific functional properties in different regions of the material. FGMs are typically designed 
to have properties that vary gradually from one region to another, rather than abruptly changing 
at a boundary. This gradual change in properties can result in improved performance and dura-
bility compared to homogeneous materials, making them more suitable for applications where 
the properties of the material need to vary to achieve optimal performance [2]. To prevent de-
lamination caused by differences in thermo-mechanical properties, FGMs are fabricated in a 
way that ensures a gradual transition of material properties from one layer to another. This 
gradual transition helps to reduce the mismatch in the thermal expansion coefficients of differ-
ent layers and minimizes the formation of interfacial stresses that can cause delamination [3]. 

The differential quadrature method (DQM), a numerical method used to approximate the 
solution of differential equations, was used to calculate the frequencies of FG plates with dif-
ferent boundary conditions (BCs) [4]. This technique was later applied to other studies, such as 
analyzing the free vibration of micro circular plates under thermal loads and 3D free vibration 
analysis [5, 6]. In the work of Alipour et al. [7], the free vibration behavior of 2D FGMs under 
various boundary conditions was investigated. The authors found that clamped boundary con-
ditions resulted in the highest frequency, simply supported conditions resulted in the lowest 
frequency, and free-free conditions resulted in intermediate frequencies. Nie and Batra [8] used 
a semi-analytical numerical method to analyze the bending behavior of 2D FG circular and 
annular plates and the bending and thermal deformations of FG beams with various end condi-
tions. Additionally, an impact analysis using a similar numerical method was performed [9]. 

The distribution of porosity in a structure can be uniform or non-uniform depending on how 
it is fabricated. To avoid negative effects on performance, researchers are exploring ways to 
eliminate porosity [10]. Pores may form in powder metallurgy due to improper sintering and 
different reinforcement shapes, with irregular shapes leading to more pores than rounded or 
elliptical ones. The elastic modulus of a material also depends on the reinforcement shape, with 
spherical particles having the highest elastic modulus. Improper solidification during centrifu-
gal casting and rapid heating and solidification during additive manufacturing may also lead to 
porosity, as noted in several studies [11-14]. 

The free vibration behavior of functionally graded beams was investigated by utilizing the 
finite element method. The findings suggest that alterations in material distribution along the 
axial direction can affect the stiffness of the beam, leading to changes in mode shapes and 
frequencies. The fundamental frequencies and mode shapes were not impacted by the slender-
ness ratio due to the limitations of the Euler-beam theory. Moreover, the natural frequencies 
either increased or decreased with a change in the power exponent, depending on the material 
distribution [15]. Apart from these, various methods have been employed by researchers to 
study the free vibration of FG beams such as dynamic stiffness method [16], Rayleigh–Ritz 
method [17], higher-order shear deformation beam theories [18], among others. 

A detailed dynamic analysis of a functionally graded beam can pose significant computa-
tional challenges [19]. In a previous work, the authors attempted a static and free vibration 
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analysis of porous FG beams [20]. The main objective of the present research work is to inves-
tigate how the distribution of voids affects the free vibration characteristics of FGM beams by 
utilizing an advanced shear deformation model. This model takes into account the impact of 
voids by employing a modified mixture law that incorporates void phases introduced by previ-
ous studies from [21, 22]. The study also investigates the effects of various parameters on the 
free vibration of FGM beams. These parameters include the power index, pore volume fraction 
(amount and distribution of voids or pores), geometry ratio (dimensions of the FGM beam), 
porosity distribution pattern, and thickness ratio. By studying the effects of these parameters, 
the study aims to understand the behavior of FGM beams under free vibration conditions. The 
variation of material properties in the FGM beam is assumed to follow a power-law distribution 
of the volume fraction of the constituents. To derive the equation of motion for FGM beams, 
Hamilton’s principle is used. The results of the study can be useful in designing FGM structures 
that results in higher frequency. 

2 GEOMETRIC CONFIGURATION AND MATERIAL PROPERTIES 
An FG beam is considered with geometry dimensions as shown in Figure 1. The material 

properties vary in a graded manner in the thickness direction (along h). In this study, we inves-
tigate an imperfect functionally graded beam that contains a specific volume fraction of porosity 
α (α 1), which is distributed differently between the metal (denoted as m) and ceramic (c) 
components. To account for this porosity distribution, we utilize the modified mixture rule de-
veloped by Wattanasakulpong and Ungbhakorn [23]. 
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The assumed relationship for the volume fraction of ceramic is a power law, as shown below: 
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The relation obtained can be written as: 
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where k  is the power law index. The FGM beam can transform into a fully ceramic or fully 
metal beam, depending on the value of k. If k  is zero, then the beam is fully ceramic, while for 
large values of k, it becomes fully metal. The elastic modulus E  for porous FG plate can be 
written as [24, 25]. 
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2 2
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To determine the material properties of a perfect functionally graded beam, the volume frac-
tion of porosity, α, is assumed to be zero. Since the Poisson ratio, ν, only varies slightly, it can 
be considered constant. The current study investigates various forms of porosity, including the 
patterns “O”, “V”, and “X”, as shown in detail in Table 1. 
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(a) (b) 

Figure 1. Geometry of the FG beam: (a) 3D view, (b) Cross section. 

3 KINEMATIC, STRAIN AND STRESS RELATIONS 
The displacement field of the present higher order shear deformation model is given by the 

following expression [26]: 

( )0( , , ) ( , ) b sw wu x z t u x t z f z
x x

 
= − −

 
(5) 

( )( , , ) ( , ) ,b sw x z t w x t w x t= +  (6) 

The study uses a refined shear deformation theory where the axial displacement of a point 
on the mid-plane of the beam is represented by u0, and the bending and shear components of 
transverse displacement are wb and ws, respectively. The theory employs a shape function, f(z), 
to determine the distribution of transverse shear strain and shear stress throughout the beam 
depth, while satisfying stress-free boundary conditions. 
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The strains associated with the displacements in Eqs (5) and (6) are 
0  ( ) b s

x x x xz k f z k = + + (8) 

( ) s
xz xzg z =  (9) 
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( )( ) 1 '( ) and '( ) df zg z f z f z
dz

= − = (11) 

The generalized Hooke’s law expresses the state of stress present in the beam in the follow-
ing manner: 

11 55( ) and ( ) x x xz xzQ z Q z   = =  (12) 

where 
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( )
11 55
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4 EQUATIONS OF MOTION 
In order to obtain the equations of motion, the method of Hamilton’s principle is applied, as 

shown in the following equation [27]. 
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The variables used in this equation are the time, t, the time instances t1, t2, representing the 
initial and final times, respectively, the potential strain energy, U, and the kinetic energy, T. 
The strain energy variation of the beam can be expressed as: 
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where xN , bM , sM  and xzQ  are the stress resultants defined as 
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The change in the kinetic energy can be stated as: 
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where the dot-superscript convention indicates the differentiation with respect to the time vari-
able t; ρ(z) is the mass density; and (I1, I2, I3, I4, I5, I6) are the mass inertias defined as 
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By plugging in the equations for δU and δT from Eqs (15) and (17) into Eq. (14), and per-
forming integration by parts with respect to both spatial and temporal variables, while grouping 
together the coefficients of δu0, δwb, and δws, we can obtain the equations of motion for the 
functionally graded beam: 
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The equations of motion in relation to the displacement can be obtained by replacing the 
stress resultants from Eq. (16) into Eqs (19), (20), (21) (u0, wb, ws) as follows: 
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where the terms A11, D11, etc., denote the beam stiffness, defined by 
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5 ANALYTICAL SOLUTION 
Assuming certain variations, the variables u0, wb, ws can be expressed, and these equations 

of motion can lead to Navier solutions for simply supported beams. 
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Here, Um, Wbm, and Wsm are undetermined parameters that need to be calculated, while ω 
represents the eigenfrequency corresponding to the eigenmode. By substituting the expansions 
of Eq. (27) into the equations of motion (Eqs (22), (23), (24)), we obtain analytical solutions 
through the following equations where ω is the eigenfrequency associated with the mth 
eigenmode, and Lm / = , as follows: 
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where 
2 3 3

11 11 12 11 13 11, , sa A a B a B  = = − = −  (29) 
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4 4 4 2
22 11 23 11 33 11 55, ,s s sa D a D a H A   = = = + (30) 

11 1 12 2 13 3, ,m I m I m I = = − = −  (31) 
2 2 2

22 1 4 23 1 5 33 1 6, ,m I I m I I m I I  = + = + = +  (32) 

6 RESULTS AND DISCUSSION 

6.1 Different porosity distribution patterns 
Table 1 presents a comparison of various porosity distributions that occur as a result of dif-

ferent fabrication techniques. Porosity refers to the amount of void space or empty volume 
within a material. It is a measure of how much of the material is made up of empty spaces or 
pores, relative to the total volume of the material. The distribution of porosity can have a sig-
nificant impact on the properties and performance of the material, such as strength, durability, 
and permeability. As shown in Table 1, different fabrication techniques can result in different 
porosity distributions, and these distributions may be uncertain or difficult to achieve.  
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Table 1: Different distribution forms of porosity. 

The porosity distribution in powder metallurgy depends on several factors such as sintering 
time, sintering temperature, and reinforcement distribution. Sintering is the process of heating 
the compacted metal powders to a temperature below the melting point of the metal to fuse the 
particles together and form a solid, dense component. Sintering time, the duration for which the 
metal powder is heated at a specific temperature during sintering, is an important parameter as 
it can affect the microstructure, mechanical properties, and dimensional accuracy of the sintered 
component. Similarly, sintering temperature can affect the microstructure, mechanical proper-
ties, and dimensional accuracy of the sintered component. Porosity can be controlled by adjust-
ing the sintering time and temperature. Longer sintering times and higher sintering temperatures 
typically lead to lower porosity, while shorter times and lower temperatures result in higher 
porosity. 

The distribution of reinforcement particles can also affect porosity, as the particles can create 
channels or voids in the material. In centrifugal casting, porosity can occur due to incomplete 
or improper solidification of the material due to a number of factors. This can happen when the 
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material cools too quickly, or when there is uneven cooling or solidification due to variations 
in the casting geometry or mold design. 

6.2 Validation of the study 
Table 2 represents the relationship between frequency and grading parameter k for a homoge-

neous porosity distribution, for the case L/h = 5. The L/h parameter refers to the length-to-height 
ratio of the beam structure. In this context, the grading parameter refers to the degree of variation 
in the material’s composition, with higher values of k indicating a greater variation in composition. 
The results show that as a general trend, as k increases, the frequency decreases. This is because 
metal is stiffer than ceramic and larger values of k mean that the metal part of material increases 
over the ceramic part. The method used to generate the results is accurate compared to the results 
obtained using other methods published in the literature. Table 3 demonstrates the corresponding 
results for the case L/h = 20. 

Theory α k = 0 k = 0.2 k = 0.5 k = 1 k = 5 k = 10 
CBT* 0 5.3953 5.0206 4.5931 4.1484 3.5949 3.4921 

FSDBT* 0 5.1525 4.8066 4.4083 3.9902 3.4312 3.3134 
ESDBT* 0 5.1542 4.8105 4.4122 3.9914 3.4014 3.2813 
PSDBT* 0 5.1527 4.8092 4.4111 3.9904 3.4012 3.2816 

Present 
0 5.1529 4.8082 4.4108 3.9906 3.4001 3.2812 

0.1 5.2225 4.8499 4.4044 3.9071 3.1465 3.0284 
0.2 5.3050 4.8998 4.3929 3.7866 2.6946 2.5700 

* Results from Şimşek [28]. 

Table 2: Variation of fundamental frequency   with the power-law index for FG beam for L/h = 5 
(Homogeneous distribution form). 

Theory α k = 0 k = 0.2 k = 0.5 k = 1 k = 5 k = 10 
CBT* 0 5.4777 5.0967 4.6641 4.2163 3.6628 3.5546 

FSDBT* 0 5.4603 5.0827 4.6514 4.2051 3.6509 3.5415 
ESDBT* 0 5.4604 5.0829 4.6516 4.2051 3.6483 3.5389 
PSDBT* 0 5.4603 5.0829 4.6516 4.2050 3.6485 3.5389 

Present 
0 5.4603 5.0815 4.6511 4.2051 3.6484 3.5389 

0.1 5.5341 5.1244 4.6413 4.1118 3.3775 3.2808 
0.2 5.6215 5.1755 4.6254 3.9776 2.8855 2.8019 

* Results from Şimşek [28]. 

Table 3: Variation of fundamental frequency   with the power-law index for FG beam for L/h = 20 
(Homogeneous distribution form). 

6.3 Effect of different porosity distributions on natural frequency 
It is also worth noting that the presence of porosity in a material can increase the frequency of 

vibration by providing a cushioning effect. This is because the presence of pores reduces the effec-
tive stiffness of the material, which in turn can increase the frequency of vibration. Table 4 presents 
the results of a frequency analysis for different porosity patterns in a beam structure. The results 
show that the highest frequency is observed for the homogeneous (“H”) type porosity pattern, 
followed by the “O”, “V”, and “X” type patterns. Interestingly, for the “X” type pattern, the 
frequency is higher than for a perfect, non-porous beam. It is important to note that a perfect 
beam has the lowest frequency in all cases except for the “X” type pattern. This is because a 
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non-porous beam has no voids or openings for energy to dissipate, resulting in a lower fre-
quency of vibration. The results also indicate that the grading parameter and the L/h ratio have 
an impact on the frequency of the beam structure. The grading parameter refers to the variation 
in porosity within each porosity pattern. 

k L/h Perfect 
(α = 0) 

Porosity distribution patterns 
“H” 

(α = 0.2) 
“O” 

(α = 0.2) 
“X” 

(α = 0.2) 
“V” 

(α = 0.2) 

0 
5 5.1529 5.3050 5.2888 5.1425 5.2196 
10 5.3933 5.5525 5.5469 5.3812 5.4627 
20 5.4603 5.6215 5.6193 5.4477 5.5305 

1 
5 3.9905 3.7866 4.0216 4.1574 4.0227 
10 4.1586 3.9364 4.2003 4.3438 4.1954 
20 4.2050 3.9776 4.2499 4.3957 4.2432 

5 
5 3.4001 2.6946 3.2814 3.6526 3.3603 
10 3.5933 2.8431 3.5035 3.8839 3.5721 
20 3.6483 2.8855 3.5683 3.9506 3.6333 

10 
5 3.2812 2.5700 3.1520 3.4641 3.2039 
10 3.4814 2.7493 3.4063 3.6920 3.4289 
20 3.5389 2.8019 3.4823 3.7580 3.4947 

Table 4: Effect of the shape of porosity distribution on the fundamental frequency  . 

Figure 2 shows the trend of variation of the frequency with L/h for different porosity patterns. 
The porosity pattern refers to the arrangement of the voids within the porous layer, which can 
greatly affect the properties of the material. The graph shows that for L/h > 8, the variation in 
the frequency is not so significant. This means that the material properties have reached a point 
of saturation and further increasing the L/h ratio does not significantly affect the frequency. In 
addition, the “O” and “V” shapes yield very similar results, as shown by the red and blue lines 
which overlap for most of the graph. This suggests that these two patterns have similar acoustic 
properties in terms of sound wave frequency variation. Overall, the analysis provides important 
insights into the behavior of different porous materials and can be useful for designing and 
selecting materials with porosities. 

In both composite materials and FGMs, achieving a uniform distribution of reinforcement 
material or composition can be difficult. This is because the reinforcement material or compo-
sition can have a tendency to clump together or settle out during the manufacturing process. 
This can result in regions of the material with higher or lower concentrations of reinforcement 
material or composition, which can have a significant impact on the overall properties of the 
material. To address this issue, various manufacturing techniques and processes have been de-
veloped to ensure a more uniform distribution of reinforcement material or composition. For 
example, in composite materials, the use of high shear mixing processes, such as ultrasonication 
or high-speed mixing, can help to disperse the reinforcement material more evenly throughout 
the matrix material. 
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Figure 2. Effect of the shape of porosity distribution on the non-dimensional fundamental frequency   ver-
sus length-to-thickness ratio L/h of an 𝐴𝑙/𝐴𝑙2𝑂3 FGM beam. 

7 CONCLUSIONS 
In composite materials and FGMs, achieving a uniform distribution of reinforcement material 

or composition can be challenging. Nevertheless, there are various techniques and processes that 
can be used to improve the uniformity and consistency of these advanced materials. Understand-
ing these factors is important for achieving the desired porosity distribution and ensuring the mate-
rial has the desired properties and performance. The conducted analysis highlights the importance 
of porosity distribution and its impact on the properties and performance of materials. The porosity 
distribution can vary depending on the fabrication technique used and may be difficult to control. 
The grading parameter and L/h ratio also affect the frequency of vibration in materials and beam 
structures, with higher values leading to a decrease in frequency. Porosity can increase the fre-
quency of vibration by providing a cushioning effect, while the arrangement of voids within the 
porous layer can greatly affect the properties of the material. These findings provide valuable in-
sights into the behavior of different porous materials and can inform the design and selection of 
materials with specific porosity requirements. 
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