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Abstract

Dams are one of the most important and biggest critical infrastructures of any country. The 
failure of a dam can be a major catastrophic event, causing irreparable environmental, human 
and financial losses. The low overflow capacity of the spillway is considered a major failure 
mode for dams. Generally, the design of spillways is carried out based on deterministic ap-
proaches. However, there are many uncertainty factors in the design parameters, which have 
a crucial influence on the spillway performance. In this study, a new framework is presented 
for the accurate design of the spillways considering the surrounding uncertainty factors of the 
effective parameters on spillway failure causes. Therefore, the length and height of an ogee-
crested spillway is considered as the design variables to be optimized. For this purpose, a meta-
heuristic algorithm based on machine learning techniques is used. This latter consists of the 
grey wolf optimizer (GWO), while the combination of GWO and the Monte Carlo simulation 
(MCS) with the Kriging meta-model are utilized as a new framework for the optimum design of 
spillway under uncertainties. The proposed framework is investigated on the spillway redesign 
of a real case study in Iran.  

Keywords: Dam spillway, machine learning, optimum design, Monte Carlo simulation, grey 
wolf optimizer, Kriging. 
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1 INTRODUCTION
Ensuring a safe passing of the water in dams from the upstream to the downstream requires 

an important class of structures called spillways. These important components have several 
advantages, such as when the water surface arises and they are also used as controlling tools 
for the flow managements in water transmission channels [1]. To date, several types of spill-
ways have been constructed based on the shape of these structures, including Ogee Spillways, 
Drop Spillways, Siphon Spillways, Trough/Chute Spillways, Shaft Spillways, Stepped Spill-
ways and Side Channel Spillways. The choice of the spillways type depends on many factors 
such as the topographic conditions of the construction site to limit the option number of the 
crest length and to increase the discharge capacity [2]. Therefore, an inadequate design of these 
structures can lead to the failure of the dam, which catastrophic consequences. Thus, it is of 
fundamental importance to accurately design an optimal shape of the spillways taking into ac-
count the involved uncertainty [1,2]. The optimal design should also take into consideration the 
implementation costs of the construction project that account for 20%-80% of the total dam 
construction cost, while the safety levels of the design should meet the integrity criteria [3,4].   

Structural optimization can serve as a suitable framework to solve design problems such as 
the shape design of spillways or other infrastructures [5]. Among the recent used tools for such 
purposes is the application of meta-heuristic algorithms. These techniques have been proved to 
be highly efficient compared to classical gradient-based methods for solving complex and 
highly nonlinear problems, especially in the civil engineering field. Meta-heuristic algorithms 
have been successfully used to deal with optimization problems, including, hydraulic-, con-
crete-, building- and energy-related problems and to optimize machine-learning performance 
[6–9]. More recently, the structural reliability-based design optimization (RBDO) approaches 
have shown significant improvements as a viable alternative to deterministic optimization (DO) 
design method to solve complex optimization problems [10–12]. Using RBDO as a framework 
for optimal design of structures aims to achieve an accurate optimum design with the consider-
ation of the uncertainty related to the design parameters that are both cost-effective and satis-
factory to a certain level of safety.  

Based on the above arguments, a new framework using the RBDO concept will be developed 
in this work by using the benefits of the meta-heuristic algorithms and the machine-learning 
based reliability approaches. To do so, the Grey Wolf Optimizer (GWO) is utilized as the main 
optimization approach, while the Monte Carlo simulation (MCS) is used to determine the fail-
ure probability of the obtained design. Moreover, to ensure accurate computation, the Kriging 
(KR) is employed to estimate the performance function response. The proposed framework is 
applied in a real case to determine the length and height of ogee-crested spillway in Iran. 

2 PROBLEM FORMULATION
The main purpose of optimizing the length and height of the ogee-crested spillway, is to 

reduce the cost associated with the spillway construction. Thus, the optimization problem can 
be formulated mathematically in terms of the objective function and the associated constraints, 
according to the literature, as follows [13]: 
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Objective function:

 

(1) 

Constraints:

 

 
(2) 

In the above equations, CPI represents the commodity price index, while L and P denote the 
length and height of the ogee-crested spillway, respectively. These variables represent the de-
cision variables for the ogee-crested spillway optimization problem, which are the main varia-
bles that will be optimized in order to minimize the construction cost and maintain the reliability 
levels of the ogee-crested spillway. Therefore, the objective function aims to find the optimum 
values for reducing the cost, while the constraints are for maintaining the safety levels. To that, 
Q is determined as follows [13]:  

 (3) 

where C and H denote the discharge coefficient and the head, respectively. During the un-
certainty-based optimization process of the length and height of the ogee-crested spillway L, P 
and H are considered as random variables with normal distribution to take into account the 
uncertainty related to the design. Thus, in the probabilistic analysis, the used performance func-
tion to estimate the probability of failure for ogee-crested spillway can be given as [1]: 

(4) 

In which X denotes the vector of the previously mentioned random variables 

3 PROPOSED METHODOLOGY 
The proposed methodology in this work consists of two frameworks based on the meta-

heuristic Grey Wolf Optimizer (GWO) Algorithm. The first method utilizes the Deterministic 
Optimization (DO) approach, in which there is no consideration of the uncertainties (L, P and 
H are taken as deterministic values) and GWO is used to solve the optimization problem (Eqs. 
(1) and (2)). The second method is by applying the concept of Reliability Based design Opti-
mization (RBDO). In this framework, GWO will be used to find the optimal values of the design 
variables at the first stage, then these variables will be treated as random variables, while a data-
driven approach, called Kriging technique will be used to reproduce the performance function 
(Eq. (4)) response. Thereafter, the Monte Carlo Simulation (MCS) will be employed to calcu-
late the failure probability of the system. The following subsections detail briefly the GWO, 
Kriging and MCS approaches.  

3.1 Grey wolf optimizer (GWO)
This algorithm has been introduced by Mirjalili et al [14] by imitating the search and hunting 

process of grey wolves. In this algorithm, the solutions are divided into: the best solutions, 
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designed by α, the second one by β, the third by δ, while the rest of the solutions are referred to 
by ω. Thus, the three best solutions, or in other words the best wolves guide the rest ones during 
the optimization process. During the hunting process, after the prey is found, α, β and δ wolves 
will lead the rest of the wolves (i.e., solutions) to pursue and encircle the prey. Thus, the hunting 
process can be described as follows: 

  (5) 

(6) 

In the above equations, XX  represents a circular configuration of the grey wolf position; pXX

describes the prey location vector; t denotes the current moment; A

of the grey

A  and D

wolf poey 

DD  are two coefficient 
vectors that can be given as: 

  (7) 

  (8) 

where aa  is a vector that decreases linearly from 2 to 0, while 1r1r1  and 2r2r2  are random vectors 
with uniform distributions (i.e. between 0 and 1). 

The main wolves during the optimization process are assumed to have previous knowledge 
regarding the prey location, where the next step is the exploitation (hunting) that is achieved 
when a

ing the pre
a  decreases to 0, which means that the wolves are approaching the prey (optimum) loca-

tion. More details regarding the GWO and avoiding minimum locals can be found in [15]. 

3.2 Kriging (KR)
The Kriging (KR) is a surrogate technique that is used to solve complex problems with high 

abilities to describe the relationship between the variables and the outcome response. This ap-
proach has been widely used for dealing with various complex problems such as optimization 
[16,17] and reliability analysis [18–20] problems with high efficiency. This predictive model 
formulates the performance function G(X) response as follows: 

  (9) 

(10) 

where the term f(X)Tβ represents the regression model, while f(X)T is the basic trend function 
vector and β is a regression coefficient vector. S(X) refers to the Gaussian process. For n training 
points with Xi (i=1,…,n) used to construct the KR model, where Y denotes the vector of re-
sponses related to the n training points, the regression coefficient vector and its process variance 
can be determined using the following formulas: 

 (11) 

(12) 

where, R denotes an n×n matrix. More details regarding the KR-model can be found in [21]. 
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3.3 Monte Carlo Simulation (MCS)
Monte Carlo simulation (MCS) represents the most widely used reliability approach for solv-

ing complex problems in several engineering fields [22–24]. The basis of simulation methods 
is the production of random samples in accordance with the random variable distributions, 
where the response of the system is determined for each set of random variables generated. In 
this method, which was proposed by Metropolis and Ulam, all the possible space produced by 
the samples is covered, where these random samples are generated based on different statistical 
distribution functions related to LSF random variables. Thereafter, each possibility is assessed 
based on each set of samples to calculate the associated probability of failure. The overall prob-
ability of the system failure is calculated by dividing the number of states G(X)≤0 by the total 
number of sample sets (Eqs (13) and (14)) [25]. 

, (13) 

where, N is the total number of simulations, I(X1, X2, …, Xn) is a function defined by: 

, (14) 

The proposed RBDO framework is described in Figure 1 and referred to hereafter by 
GWO-KR-MCS. 

Figure 1: Structure of the proposed RBDO framework. 
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4 APPLICATION AND RESULTS

4.1 Case study
In order to apply the proposed frameworks in terms of GWO (i.e., DO) and GWO-KR-MCS 

(i.e., RBDO) a real case study is examined, the spillway of Balarood Dam, located in Iran as 
illustrated in Figure 2. More information about Balarood Dam is presented in Table 1. This 
information includes the type, geometries and the volumes of the Dam [13]. 

Component Quantity 
Dam type  Earth dam with clay core vertical 
Dam crest length  1070 m 
Dam crest width   10 m 
Height from riverbed  75.5 m 
Height from foundation  77.5 m 
Tank total volume  131 million m3 
50-years-old of sediment 52.39 million m3 

Table 1: Technical Specifications of Ballarood Dam [10]. 

Figure 2: Geographical location of the Ballaroud Dam [26]. 

4.2 Results and discussion
In this section, the results obtained from the implementation of the proposed frameworks as 

DO: GWO and  RBDO: GWO-KR-MCS are presented. The two proposed frameworks are used 
to accurately determine the appropriate optimum values of the height and length for the Ogee 
Crested spillway of Ballarood Dam. Before discussing the results, it is worth mentioning that 
three statistical indicators are used to estimate the performance of the Kriging-technique for 
modeling the response of the performance function. These statistical indicators include the 
mean average percentage error (MAPE), standard deviation (SD) and coefficient of determina-
tion (R2), which can be expressed as follows [27,28]: 

(15)
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(16)

(17)

Where actual
i and predicted

i are the ith actual and predicted value of the dam response based on

the performance function, respectively. avg
actual denotes the average of the actual values for the

performance function while n is the total number of samples. 
Table 2 reports the obtained results that describe the performance of the Kriging model, 

where low values of MAPE and SD indicate a high performance of the model. The Kriging 
model yielded a MAPE value of 0.1133 and a SD value of 0.148, which indicate the accuracy 
of the proposed approach for modeling the response of the performance function. On the other 
hand, the coefficient of determination R2 is a powerful indicator for measuring the agreement 
between the actual and predicted results. Thus, a larger value of R2 indicates a high performance 
of the model and that the model is efficient to describe the performance function response. 
According to Figure 3 and Table 2, the Kriging model manages to give a high value of R2=0.985. 

Model MAPE SD R2

Kriging 0.1133 0.148 0.985 

Table 2: Performance metrics of Kriging-model for modeling the performance function response. 

Figure 3: Scatter plots of the performance function predicted by using Kriging model. 
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The convergence results using GWO-KR-MCS model (i.e., RBDO) and GWO model (i.e., 
DO) are illustrated in Figure 4. The figure shows that the RBDO approach converges in a slower 
pace (57 iterations) than the DO approach (8 iterations). These results make sense as the DO 
approach does not account for any uncertainties in the structure during the computation process 
unlike the RBDO approach which does. At the same time, these results indicate the robustness 
of the proposed GWO algorithm as an optimization tool for solving the problem of the Ogee 
Crested spillway. Table 3 details the optimization results using both proposed frameworks, in-
cluding the optimum values of the height and the length of the Ogee Crested spillway for Bal-
larood Dam, the objective function values and the related failure probability estimations. 
Besides, Table 3 includes the current design information. According to the reported results, the 
failure probability using the DO-modeling technique is 72%, whereas the current design has a 
failure probability of 45% given the uncertain parameters and their corresponding distributions. 
On the other hand, the new RBDO design has the highest design reliability with a failure prob-
ability of only 0.01%. Accordingly, the yielded height and length values are 27.8 m and 18.1 
m, respectively, with a total cost of 165.1×CPI.  

 
Figure 4: Convergence curves of DO and RBDO approaches. 

Design P (m) L (m) Cost Probability of 
failure (%)

Current 47.7 20 201.99 × CPI 45 
DO 31.47 14.4 157.75 × CPI  72 

RBDO 27.8 18.1 165.1 × CPI   0.01 
Table 3: Comparison of the proposed approaches and current design. 

 
From the above results, it is clear that the proposed RBDO framework using GWO coupled 

with KR-MCS method provides the safest design with low failure probability and optimum cost 
for the Ogee Crested spillway of Ballarood Dam. To that, Figure 5 represents the probabilistic 
constraint of the discharge under uncertainty. Figure 5 confirms the efficiency of the proposed 
method, where it is clear that the proposed design using GWO-KR-MCS does not violate the 
pre-design limit (1950 L/s) indicated by the dashed red line in Figure 5. 
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Figure 5: The frequency of discharge under uncertainty of design parameter. 

5 CONCLUSIONS
In order to design a safe, reliable and cost-effective Ogee Crested spillway, a new framework 

using reliability-based design optimization (RBDO) approach was proposed, where the optimal 
length and height of the ogee-crested spillway for a real case (i.e. Ballarood Dam) is investi-
gated. The proposed method consists of using the Kriging technique as a powerful meta-model 
to approximate the system response using the performance function. For optimizing the design, 
the Grey Wolf Optimization (GWO) algorithm is used, while the Monte Carlo Simulation (MCS) 
is employed to calculate the failure probability of the system under uncertain conditions during 
the optimization process. The main conclusions that can be drawn based on the results of this 
paper are the following: 

• The proposed Grey Wolf Optimization (GWO) method can be used as an efficient de-
terministic optimization (DO) approach for optimal shape design of the Ogee Crested spillway. 

• The Kriging technique showed an accurate performance in modeling the system re-
sponse, where the obtained R2 is 0.985. 

• Results indicate that the proposed GWO-KR-MCS framework shows a low failure prob-
ability and safe design compared to the DO and current designs. 
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