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Abstract. Masonry is a material that exhibits distinct directional properties because the mor-

tar joints act as planes of weakness. To define failure under biaxial stress, a three-

dimensional surface in terms of the two normal stresses and shear stress, or the two principal 

stresses and their orientation to the bed joints, are required. 

Researchers have long been aware of the significance of the bed joint angle to the applied 

load and many experimental tests have been carried out on brick masonry discs to produce 

indirect tensile stresses on joints inclined at various angles to the vertical compressive load. 

The highest strength of masonry is observed for cases when the compressive load is perpen-

dicular to the bed joints or in other words when the principal tensile stress at the center of the 

disc is parallel to the bed joints. In this case failure occurs through bricks and perpendicular 

joints. The lowest strength is observed when the compressive load is parallel to the bed joints 

or when the principal tensile stress at the center of the disc is perpendicular to the bed joints. 

In this case failure occurs along the interface of brick and mortar joint. 

In the present study Neural Networks (NNs) are used in order to approximate the experi-

mental failure curves of a brittle anisotropic material such as masonry.  First, for each angle 

θ of the joints to the vertical compressive load, a Neural Network is trained with the experi-

mental data of Page [7] as its inputs. Each one of the three NNs is asked to produce the whole 

2D failure curve for each angle as its output, filling also the gaps between the experimental 

points with appropriate approximations. Then another bigger, “global” NN is trained which 

takes the results of the three NNs as inputs with the angle θ as an input, also. The new NN is 

then asked to fill also the gaps between the angles θ, providing the whole 3D failure surface 

for any angle θ. The results show the great potential of using NN for the approximation of the 

masonry failure under biaxial compressive stress. 
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1 INTRODUCTION AND METHODOLOGY 

Masonry exhibits distinct directional properties due to the influence of the mortar joints. 

Depending upon the orientation of the joints to the stress directions, failure can occur in the 

joints alone or simultaneously in the joints and the blocks. The failure of masonry under uni-

axial and biaxial stress state has been studied experimentally in the past by many researchers 

but to the authors' knowledge there have not been many attempts to apply a Neural Network 

(NN) for the prediction of masonry behavior in general. 

Despite the fact that masonry is one of the oldest structural materials and, actually, the 

main element in monumental structures such as churches, castles, mosques etc., our 

knowledge regarding its mechanical behavior is not as thorough as it should be and many as-

pects of its behavior remain to be investigated. One reason for this lack of knowledge is the 

highly anisotropic brittle nature of masonry, which makes complicated, difficult and expen-

sive, the realization of reliable experimental tests under conditions of biaxial stress, and, even 

more, under conditions of biaxial tension or heterogeneous stress. Taking into account the 

numerous uncertainties of the problem, a computational model, describing the masonry failure 

surface in a simple manner should be an efficient tool for the investigation of the behavior of 

masonry structures. Many analytical criteria for masonry structures have been already pro-

posed [1][2][3][4][5][6]. Experimental investigations can also be considered as an important 

support to the aforementioned efforts [7][8][9][10]. 

Researchers have long been aware of the significance of the bed joint angle to the applied 

load and many experimental tests have been carried out on brick masonry discs to produce 

indirect tensile stresses on joints inclined at various angles to the vertical compressive load. 

The highest strength of masonry is observed for cases when the compressive load is perpen-

dicular to the bed joints or in other words when the principal tensile stress at the center of the 

disc is parallel to the bed joints. In this case failure occurs through bricks and perpendicular 

joints. The lowest strength is observed when the compressive load is parallel to the bed joints 

or when the principal tensile stress at the center of the disc is perpendicular to the bed joints. 

In this case failure occurs along the interface of brick and mortar joint. 

The present work utilized the experimental data reported by Page [7], referring to a total of 

102 panels, which have been already used by many other researchers [2][11]. Ratios of verti-

cal compressive stress σΙ to horizontal compressive stress σΙΙ of 1, 2, 4, 10 and  (uniaxial σΙ) 

have been used in conjunction with a bed joint angle θ with respect to σΙ, in directions of 0, 

22.5, 45, 67.5 and 90. A minimum of four tests were performed for each combination of 

σΙ/σΙΙ and θ. 

This data set has been used in the framework of a novel methodology, which applies Neu-

ral Networks in order to approximate the experimental failure curves of a brittle anisotropic 

material such as masonry [12]. The aim of the study was to introduce an anisotropic (ortho-

tropic) Neural Network – generated 3D failure surface under biaxial stress for masonry for 

any angle of the joints to the vertical compressive load, as described in detail in the next para-

graphs. First, for each angle θ (0º, 22.5º, 45º) of the joints to the vertical compressive load, a 

Neural Network was trained with the experimental data of Page as inputs (3 NNs in total). 

Then each one of the three NNs was asked to produce the whole 2D failure curve for each an-

gle as its output, filling also the gaps between the experimental points, thus "enriching" the 

experimental data with appropriate approximations. Then another bigger, “global” NN was 

trained using the results of the three NNs as inputs with the angle θ as an input, also. The new 

NN was then asked to fill also the gaps between the angles θ, providing the whole 3D failure 

surface for any angle θ and any ratio of σI/σII. 
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2 BIAXIAL TESTING PROCEDURE 

Masonry as a composite material consisting of bricks-and-mortar joints is a multi-phase 

material that depicts distinct brittle and strongly anisotropic nature. This anisotropic nature 

makes complicated, difficult and expensive, the realization of reliable experimental tests un-

der conditions of biaxial stress, and, even more, under conditions of biaxial tension or hetero-

geneous stress. In the next paragraphs, the process of both the preparation of test specimens 

and the tests conducted under biaxial stress state are presented in detail, with special attention 

to the parameters that affect the results. Furthermore, this detailed presentation will contribute 

to better understanding the masonry failure as well as to the better understanding of the meth-

od (simulation) since the results of the masonry failure are used as inputs to the NN model. 

2.1 Preparation of Test Specimens 

There are only a limited number of experiments on masonry under biaxial stress in the lit-

erature; among them are the classical experimental works of Samarasinghe [8], Page [7], and 

Tasios and Vachliotis [13], the findings of which have been used widely by the research 

community in the last 30 years for various purposes. A common characteristic of these works 

is that the final specimens with the correct shape and size are derived by one of the following 

two ways:  

 

First way: According to Samarasinghe [8], specimens with horizontal and vertical joints 

(Figure 1a) are initially constructed with dimensions greater than those of the final specimens. 

Then a square with the desired dimensions is drawn on the surface of the wall by a pencil at 

the appropriate orientation to achieve the correct lay-up angle as shown in Figure 1a.  

 

  
(a) (b) 

Figure 1. Preparation of specimens. (a) Wall panel before saw cut, (b) Saw cut specimen. 

The lay-up angle is defined as the angle between the direction of the bed joints and one of 

the edges of the finished test specimen. Therefore, bed joints run at oblique incidence to the 

edges of the finished saw-cat specimen. Five lay-up angles were selected for biaxial tests of 

the present study, namely 0, 22.5, 45, 67.5 and 90.  

After a time-span of fourteen days the larger wall panels were cut to the required size and 

shape by a ‘Clipper’ saw (Figure 1b). Specimens in which the lay-up angle was 0 or 90, 

were constructed directly without having to be derived from larger ones since they were of 

correct shape and size. The ‘Clipper’ saw has the capacity to hold impregnated diamond edge 

circular blades of varying thickness and diameters. 
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It is worth noting that circular blades of different thickness must be used on trial walls to 

find out the most suitable blade which gives a perfectly smooth cut without damaging the 

bonds of the wall. As the thickness of the blade becomes larger, more force is transmitted to 

the wall which causes bond failure.  

Generally, two days prior to the date of testing, the ‘compressive edge’ of the panel (the 

side on which the compressive loads was going to be applied) was capped with 1:1 (cement : 

sand) mortar. 

 

Second way: According to Page [7] all specimens are constructed directly to their final shape 

and size as follows: All brickwork is constructed horizontally on a rigid form with bricks 

glued to a Perspex backing sheet to ensure a constant joint thickness. Panels are made with 

varying bed joint angles by cutting individual bricks to the required shape before casting. 

2.2 Testing rig 

The biaxial testing rig is shown schematically in Figure 2. A biaxial stress state is induced 

in the panel by loading with hydraulic jacks in two orthogonal directions (A and B). A con-

stant load ratio is maintained during each test by means of the spreader beam. The load in 

each direction is monitored by load cells immediately adjacent to the specimen. 

 

 
Figure 2. Biaxial testing rig. 

3 BIAXIAL COMPRESSION TESTS 

A total of 102 panels were tested by Page in 1981 [7]. Ratios of compressive stress σI to 

horizontal compressive stress σII of 1, 2, 4, 10 and infinity (i.e. uniaxial σΙ) were used in con-

junction with bed joint angle θ with respect to the σΙ direction of 0, 22.5, 45, 67.5 and 90. 

Figure 3 shows the saw-cut specimens and stress directions for the three cases ϑ=0.0, 

ϑ=22.5 and ϑ=45.0. Principal stress ratios of 0 (i.e. uniaxial σΙI), 0.1, 0.25, 0.5 and 1 were 

obtained from the results using the symmetry of the panels and the loading. A minimum of 

four tests were performed for each combination of σΙ/σΙΙ and θ. The failure envelopes that 
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Page obtained by plotting mean curves for each bed joint angle are shown in Figures 4-6. 

These failure envelopes are based on the peak strength values obtained from running bond 

masonry panel tests in which a uniform loading was applied proportionally. It should be noted 

that in these figures, and also in all other similar figures of this paper, positive stress denotes 

compression. 

 

   
Figure 3. Saw-cut specimens and stress directions: (a) ϑ=0.0, (b) ϑ=22.5, (c) ϑ=45.0 [7]. 

 

 
Figure 4. Failure curve of brick work under biaxial compression (ϑ=0) [7]. 
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Figure 5. Failure curve of brick work under biaxial compression (ϑ=22.5) [7]. 

 
Figure 6. Failure curve of brick work under biaxial compression (ϑ=45.0) [7]. 

 

4 ARTIFICIAL NEURAL NETWORKS 

The development of artificial Neural Networks (NNs) was initially inspired and motivated 

by insights into how biological brains – and in particular mammalian brains – function. It was 

found that mammalian brains learn as connections between neurons are strengthened – the 

result of electrochemical processes triggered by external or internal stimuli (experiences). As 

in biological systems, learning involves adjustments to the synaptic connections that exist be-

tween the neurons. NNs, like human beings, learn by example. 

Although parallels with biological systems are often described, there is still so little known 

(even at the lowest cell level) about biological systems, that the models being used for artifi-

cial neural systems seem to introduce an oversimplification of the 'biological' models. The 

real, biological nervous system is highly complex and includes some features that may seem 

superfluous based on the understanding of artificial networks. 

In the first work on the processing of neural networks [14], it was shown theoretically that 

networks of artificial neurons could implement logical, arithmetic, and symbolic functions. 
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Simplified models of biological neurons were set up, now usually called perceptrons or artifi-

cial neurons. These simple models accounted for neural summation, i.e. potentials at the post-

synaptic membrane would sum in the cell body. Later models also provided for excitatory and 

inhibitory synaptic transmission. 

Artificial Neural Networks are made up of fully or partially interconnecting artificial neu-

rons (programming constructs that mimic the properties of biological neurons). Artificial NNs 

may either be used to gain an understanding of biological neural networks, or for solving arti-

ficial intelligence problems without necessarily creating a model of a real biological system. 

Artificial Intelligence (AI) and cognitive modeling try to simulate some properties of neural 

networks. While similar in their techniques, AI has the aim of solving particular tasks, while 

cognitive modeling aims to build mathematical models of biological neural systems. In the AI 

field, artificial neural networks have been trained to perform complex functions in various 

scientific fields and have been applied successfully to identification, classification, simulation, 

inverse simulation, speech recognition, pattern recognition, image analysis and adaptive con-

trol, and also in order to construct software agents (in computer applications) or autonomous 

robots. 

4.1 Neural Networks architecture 

In the present study, we use Back-Propagation Neural Networks (BPNNs). In this type of 

NNs, the output values are compared with the correct answer to compute the value of a prede-

fined error-function. By various techniques, the error is then fed back through the network. 

Using this information, the algorithm adjusts the weights of each connection in order to re-

duce the value of the error function by some small amount. After repeating this process for a 

sufficiently large number of training cycles, the network will usually converge to some state 

where the error of the calculations is small. In this case, one would say that the network has 

learned a certain target function. As the algorithm's name implies, the errors propagate back-

wards from the output nodes to the inner nodes. So technically speaking, back-propagation is 

used to calculate the gradient of the error of the network with respect to the network's modifi-

able weights. To adjust weights properly, one applies a general method for non-linear optimi-

zation that is called gradient descent. In order to minimize the error, the derivative of the error 

function with respect to the network weights is calculated, and the weights are then changed 

such that the error decreases (thus going downhill on the surface of the error function). For 

this reason, back-propagation can only be applied on networks with differentiable activation 

functions. Back-propagation usually allows quick convergence on satisfactory local minima 

for error in the kind of networks to which it is suited. 

A BPNN is a feed-forward, multilayer network of standard structure, i.e. neurons are not 

connected in the layer but they join the layer neuron with all the neurons of previous and sub-

sequent layers, respectively. A BPNN has a standard structure that can be written in short as 

 1 2 1NLN H H H M      (1) 

where N is the number of inputs, Hl is the number of neurons in the l-th hidden layer, NL is 

the number of layers (including the output layer) and M is the number of output neurons. Fig-

ure 7 depicts an example of a BPNN composed of an input layer with 4 neurons, two hidden 

layers with 3 neurons each and an output layer with 2 neurons, i.e. a 4-3-3-2 BPNN. 
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Figure 7. A three-layer 4-3-3-2 BPNN (input not counted as a layer). 

4.2 Transfer functions 

The choice of the transfer function may strongly influence complexity and performance of 

neural networks. Sigmoidal transfer functions are the most commonly used, while a large 

number of alternative transfer functions have been also described in the literature [15]. The 

transfer function used in the present study is the hyperbolic tangent function, the same for all 

the hidden and the input layer, while the transfer function for the output layer is a linear func-

tion. This scheme has been used in all the NNs of the present study. The output of the hyper-

bolic tangent function and its derivative are given by 

 
2

2

1
( ) tanh( ) tan( )

1

n

n

e
a f n n n

e


     


i i  (2) 

 
2

2

2 2
'( ) 4 1

( 1)

n

n

e
f n a

e
  


 (3) 

This transfer function yields output values in the interval [-1, 1], while its derivative yields 

output values in the interval [0, 1]. 

 

5 THREE NN MODELS (FOR EACH ANGLE Θ) 

5.1 NN Architecture 

We used a Back-Propagation Neural Network with two hidden layers, one input layer and 

one output layer for all three NNs. The input layer had one node (neuron) which corresponds 

to the angle φ which defines the ratio σII/σI, while the output layer had also one node which 

corresponds to the radius r of the point on the failure curve. These two important parameters 

(φ and r) will be described in detail in the following paragraphs. The two hidden layers had 8 

nodes each for the first two cases (θ=0° and θ=22.5°), ending in a 1-8-8-1 BPNN architecture. 

For the third case (θ=45°) the two hidden layers had 12 nodes each, ending in a 1-12-12-1 

BPNN architecture. These values have been chosen after some trial tests on various network 

architectures. The reason that the third NN requires more nodes in the hidden layer has proba-
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bly to do with the number of the input data, which is different in the third case (10 points as 

opposed to 9 points for the first two cases, as shown in Figures 8-10. 

The input and output values are normalized before the NN training and the inverse normal-

ization is performed in order to take the NN results for other data afterwards.  

5.2 Preparation of the NN Input data 

The experimental data of Page [7] have been used as inputs for the first three NN models 

of the present study. The figures below show the original data (in a normalized form) together 

with the average values (as red “squares”) that attempt to fit these data for each bed joint an-

gle. 
 

 
Figure 8. Normalized experimental data and average values for the θ=0° case. 

 
Figure 9. Normalized experimental data and average values for the θ=22.5° case. 
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Figure 10. Normalized experimental data and average values for the θ=45° case. 

It should be noted that the data for θ=45° are symmetric to the 45° line (σI=σII), due to the 

nature of the loading, while the cases θ=67.5° and θ=90° are “equivalent” to the cases θ=22.5° 

and θ=0° (“mirrored” results), respectively and should not be examined separately. 

Table 1 shows the analytical data for the θ=0° case, where only the averages of σΙ/fwc and 

σII/fwc (out of four tests for each loading case) are shown, corresponding to the red “squares” 

points in the above figures. The quantity fwc is the masonry strength for the case σΙ=0. The 

value of fwc has been calculated as the average of the four test values as 7.56 MPa. 

For the data to be suitable for the Neural Network training, a conversion to polar coordi-

nates (r, φ) is needed, where the radius r is given by 

 
2 2

, ,I aver II averr     (4) 

where σI,aver and σII,aver are the average stresses for each loading case. The polar angle φ is 

given by 

 Arc tan II

I






 
  

 
 (5) 

The polar radius r is given in the last column of the table. For each of the three angles θ 

(θ=0°, 22.5°, 45°), a Neural Network is trained with the angle φ as its input and the radius r as 

its output. Only these average values of each test (denoted as “square” points in Figures 8-10) 

are used as training data for the Neural Network. 

Tables 2 and 3 show the corresponding data (average values) for the other two cases 

(θ=22.5° and θ=45°). 
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Average 

σI/fwc 

Average 

σII/fwc 

Angle φ = 

Atan(σΙΙ/σΙ) 
Radius r 

0.57 0.00 0.0000 0.5717 

1.32 0.12 0.0909 1.3210 

1.30 0.31 0.2353 1.3398 

1.32 0.66 0.4672 1.4761 

1.08 1.07 0.7820 1.5222 

0.60 1.13 1.0836 1.2792 

0.31 1.18 1.3156 1.2148 

0.11 1.10 1.4737 1.1074 

0.00 1.00 1.5708 1.0000 

 

Table 1. Failure of Brickwork under Biaxial Compression, θ=0° [7] and relevant calculations. 

 

 

 

Average 

σI/fwc 

Average 

σII/fwc 

Angle φ = 

Atan(σΙΙ/σΙ) 
Radius r 

0.38 0.00 0.0000 0.3752 

0.68 0.09 0.1352 0.6890 

1.18 0.29 0.2382 1.2132 

1.38 0.73 0.4843 1.5581 

1.08 1.09 0.7927 1.5359 

0.61 1.20 1.1018 1.3493 

0.28 1.07 1.3178 1.1053 

0.12 1.04 1.4580 1.0467 

0.00 0.75 1.5708 0.7508 

 

Table 2. Failure of Brickwork under Biaxial Compression, θ=22.5° [7] 

and relevant calculations. 

 

 

 

Average 

σI/fwc 

Average 

σII/fwc 

Angle φ = 

Atan(σΙΙ/σΙ) 
Radius r 

0.67 0.00 0.0000 0.6666 

0.99 0.10 0.1012 0.9905 

1.11 0.26 0.2301 1.1379 

1.20 0.61 0.4677 1.3446 

1.14 1.08 0.7565 1.5675 

1.08 1.14 0.8143 1.5675 

0.61 1.20 1.1031 1.3446 

0.26 1.11 1.3407 1.1379 

0.10 0.99 1.4696 0.9905 

0.00 0.67 1.5708 0.6666 

 

Table 3. Failure of Brickwork under Biaxial Compression, θ=45° [7] 

and relevant calculations. 
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5.3 Approximation results of the three NNs 

The three NNs were trained with the input and output data of Tables 1, 2, 3 (last two col-

umns) and then each NN was asked to produce the full curves for each bed joint angle, for a 

set of 100 segments (101 points). The results are shown in the figures below. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Theta=0

σI/fwc

σ
II
/f
w
c

 
Figure 11. NN approximation result for the case θ=0°. 
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Figure 12. NN approximation result for the case θ=22.5°. 
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Figure 13. NN approximation result for the case θ=45°. 

 

In the above figures, the black dots denote the input data, i.e. the data corresponding to the 

last two columns of Tables 1, 2, 3. The blue curve denotes the NN prediction of the fitting 

curve. 

It can be seen that the NN managed to fit all the training data with excellent accuracy, 

while the approximation between the training data points appears to be adequate. An im-

portant characteristic is that for the third case (θ=45°) the NN managed to produce results that 

are symmetric (with good accuracy) to the line of 45° (σΙ=σΙΙ), an expected outcome due to the 

symmetry that masonry exhibits with respect to the 45° axis. 

 

6 "GLOBAL" NEURAL NETWORK MODEL 

In the previous part of the study, three NN Models were trained, each NN for an angle θ 

(0°, 22.5° and 45°). The final purpose of the study is to add also the angle θ as a parameter of 

the problem, thus creating a model that will be able to predict the failure curve not only for 

the predefined angles, but for any angle θ. 

In order to achieve this, after the three NNs were trained and they had provided their re-

sults, another bigger, “Global” NN was trained which took the results of the three NNs as in-

puts with the angle θ as an input, also. The new NN was then asked to fill also the gaps 

between the angles θ, providing the whole 3D failure surface for any angle θ and any ratio of 

σII/σI. 

The Global NN is also a BPNN with 9 nodes per hidden layer (2-9-9-1). The two inputs are 

the angles φ (0° - 90°) and θ (0° - 45°), while the output is the radius r. The transfer function 

of the global NN is the hyperbolic tangent function that was used also in the first three NNs. 

For the global NN, we use the results of the other three NNs as training patterns. This means 

that we have 101*3 = 303 training patterns, as we use 101 points for every angle θ (0°, 22.5° 

and 45°). 
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6.1 Global NN results 

The global NN was trained and then it was asked to produce the whole 3D failure surface. 

The NN was asked to produce points where the angle φ was divided again in 100 segments 

(101 points, each segment is equivalent to 0.45°), while angle θ was divided in 64 segments 

(65 points, each segment is equivalent to 0.703125°). Figure 14 shows the result of the NN 

approximation in 3D. The red points (dots) denote the initial training set of the first three NNs, 

i.e. the average values gathered from the experimental results and used for the training of the 

initial NN. 

 
Figure 14. Global NN approximation result of the 3D failure surface (a). 

 

Then the NN was asked to produce the 2D failure curves for five cases of angle θ (0°, 

11.25°, 22.5°, 33.75° and 45°). The results are shown below, where for the three cases 0°, 

22.5° and 45°) there are available experimental data (training sets of the first three NNs), that 

are denoted with red points (dots). 

In [16], the NN-generated failure surfaces have been compared to failure surfaces generat-

ed by other well-known analytical and semi-empirical criteria, with great success. 
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Figure 15. Global NN approximation for the θ=0° case and corresponding training points (red 

dots). 
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Figure 16. Global NN approximation for the θ=11.25° (no training points available). 
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Figure 17. Global NN approximation for the θ=22.5° case and corresponding training points 

(red dots). 
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Figure 18. Global NN approximation for the θ=33.75° (no training points available) 
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Figure 19. Global NN approximation for the θ=45° case and corresponding training points 

(red dots). 

 

7 CONCLUSIONS 

In the present study, results on the NN prediction of the failure of anisotropic brittle mate-

rials such as masonry are presented. In particular, Neural Networks are used in order to ap-

proximate the experimental results for masonry failure. First, for each angle θ a NN is trained 

with the experimental data as inputs and then each NN is asked to produce the whole failure 

curve for each angle as its output, filling also the gaps between the experimental points. Then, 

another “global” NN is trained which takes the results of the three original NNs as inputs with 

the angle θ as an input, also. The new NN is then asked to fill also the gaps between the an-

gles θ, providing the whole failure 3D surface for any angle θ. 

The NNs showed great performance in fitting the experimental input data, while they man-

aged to fit all the training data with very good accuracy, also producing results that are sym-

metric (with good accuracy) to the line of 45° (σΙ=σΙΙ) for the third case (θ=45°). This is in 

very good agreement with the characteristic symmetry of masonry. The results show the great 

potential of using NN for the approximation of the masonry failure under biaxial compressive 

stress. 

Being aware that masonry is a multi-phase material that depicts distinct brittle and aniso-

tropic nature with wide scatter in the values of its mechanical characteristics, the following 

conclusions can be drawn from this investigation: 

 

 The first three NNs managed to fit the average values of the experimental data with great 

accuracy. The error for the training data itself is very small, while the NN prediction for 

data that do not belong to the training set set appears to be also very good, providing 

smooth curves. 

 The curves that are generated by the NNs are continuous and smooth. It should be noted 

that the NN curves are not necessarily convex, as most curves based on other failure cri-

teria. 
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 For the case θ=45°, the NN manages to provide results that are approximately symmetric 

to the line σI=σII. 

 The “Global” NN manages to give us valuable information about angles that have not 

been investigated until now. The fit of the experimental data is excellent, while the NN 

prediction for other points appears to be also very good, providing smooth surfaces in 3D. 

 The reliability of the global NN is in general high. In this paper we proposed a computa-

tional procedure for approximating failure curves in 3D, rather than giving the final re-

sults for this kind of problems. If more dense data were provided to the NN, then it could 

give even better results. In any case, the quality and quantity of the experimental data is 

very important in such problems. 
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