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Abstract. Retaining walls are used in many geotechnical engineering applications, e.g. sup-

porting deep excavations, bridge abutments, harbor-quay walls, anchored retaining walls, etc. 

Although they are generally simple structures, their static and dynamic interaction with the 

supporting and/or retained soil is a subject of ongoing research. Apart from this, seismic de-

sign of retaining walls is primarily based on rules of thumb and the designer’s experience, in 

order to set the initial dimensions and make the necessary checks to comply with the design 

codes. In addition, the calculation of the seismic earth pressures is done in a rather simplistic 

way which may lead to either conservative or unsafe designs. In the present study, after a 

comprehensive literature review, optimum design is performed for cantilever walls retaining 

soil layers of two different heights, using numerical two-dimensional simulations and a genet-

ic algorithm. Numerical simulations are performed using the finite element code ABAQUS [1] 

whereas for optimization purposes, the genetic algorithm provided with MATLAB [2] is uti-

lized. For the calculation of the seismic earth pressures, linear elastic soil, retaining wall 

stem and wall foundation are assumed. The optimization procedure involves four design vari-

ables that have to do with the wall geometry, while the soil and wall material parameters and 

the frequency range of interest are kept fixed. Structural and geotechnical constraints as well 

as upper and lower bounds for the design variables are imposed to ensure technical feasibil-

ity of the solutions. The results on the optimum solutions are presented and comparisons are 

made with the corresponding results according to conventional seismic design methods. The 

numerical results of the study provide a clear indication of the direct dynamic interaction be-

tween the retaining wall and the surrounding soil, whereas the complexity of the optimization 

problem itself is evident. This justifies the necessity for a more elaborate consideration of the 

optimum design of retaining walls, especially if material and geometric non-linearities are 

taken into account. 
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1 INTRODUCTION 

Cantilever retaining walls are among the simplest and most common geotechnical structures 

intended to support earth backfills. Their main representatives are retaining walls supporting 

deep excavations, bridge abutments, harbor-quay walls, anchored retaining walls, etc. Their 

design must satisfy two major requirements: internal and external stability. The former en-

sures the structural integrity of the various parts of the retaining wall; the latter ensures that 

the wall – soil system formed after construction will remain in equilibrium, except for some 

displacements of affordable magnitude. 

Retaining walls have to satisfy constraints imposed by the norms, assumptions, preferences 

and the target to be accomplished, and simultaneously have to be as economical as possible. 

The design is based on a trial-and-error procedure, which renders the experience of the de-

signer an important factor to reach a cost-effective design. This manual research for the opti-

mum design may be very time-consuming and tedious, while it is not ensured that the final 

result will be the optimum possible. This necessitates the need for application of various op-

timization procedures in order to achieve the optimum design. 

Relevant optimization methods range from relatively simple mathematical programming 

based (exact) methods to novel heuristic search techniques. The methods belonging to the first 

category are very efficient for cases with a few design variables. Representative studies of this 

category are conducted in [3-6]. In [3] a design aid is compiled from results of an exhaustive 

search, with which simple rules of thumb were developed to provide for minimum cost design 

of cantilever retaining walls. In [4] optimization of reinforced concrete cantilever retaining 

walls is performed and the optimum design problem is posed as a constrained non-linear pro-

gramming problem with seven design variables. Cost and weight of the walls were used as 

objective functions and overturning failure, sliding failure, no tension condition in the founda-

tion base, shear and moment capacities of toe slab, heel slab, and stem of wall as constraints. 

In [5] the problem of optimal cost design of cantilever retaining walls is formulated as a non-

linear programming problem and a sequential unconstrained minimization technique is adopt-

ed. In [6] optimum reliability-based design of cantilever retaining walls was presented by 

considering the parameter uncertainties and evaluating the safety in terms of reliability index 

and not merely by calculating the safety factor.   

However, exact methods require large computational effort when the number of design 

variables increases, and apart from this, they require gradient information and seek to improve 

the solution in the neighborhood of a starting point. So, in order to attain an optimum design, 

one has to resort to more robust optimization techniques, which are capable of searching ef-

fectively the whole design variable domain and not being trapped into local optima. Recently 

developed heuristic methods, such as genetic algorithms, simulated annealing, threshold ac-

cepting, tabu search, ant colonies, particle swarm, etc. provide more attractive alternatives. 

Although these methods use simple algorithms, they require great computational effort. Rep-

resentative studies of optimum design of retaining walls by use of heuristic methods are those 

presented in [7-16]. In [7] an application of a simulated annealing algorithm is reported to 

minimum cost design of reinforced concrete cantilever retaining walls that are required to re-

sist a combination of earth and hydrostatic loading by using only geometric design variables, 

whereas in [8] simulated annealing for optimum design of RC cantilever retaining walls used 

in road construction is utilized, by using more design variables, effectively leading to more 

detailed simulations. In [9] and [10] a modified particle swarm optimization (MPSO) based 

on PSO with passive congregation is proposed, to find the optimum cost design of a cantilever 

RC retaining wall. In [11] an Ant Colony Optimization (ACO) algorithm is applied to arrive 

at optimal design of a RC retaining wall (designed as a gravity wall, i.e. structural integrity is 
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not taken into account while imposing the constraints). In [12] a bacterial foraging optimiza-

tion algorithm is presented whereas harmony search based algorithms were proposed in [13]. 

In [14] a genetic algorithm is applied to reach minimum cost design of three types of retaining 

walls: cantilever retaining wall, counterfort retaining wall and retaining wall with relieving 

platforms. In [15] a random direction search complex method is applied and three heuristic 

algorithms (genetic algorithm, particle swarm optimization and simulated annealing) are used 

to obtain the minimum cost design of a reinforced concrete cantilever retaining wall. Finally, 

in [16] optimum design of gravity retaining walls subject to dynamic loading was performed 

using a charged system search algorithm, while the Mononobe-Okabe method was used to 

determine the dynamic earth pressures.  

Common feature of all the aforementioned studies is the fact that for the design of the re-

taining wall, dynamic earth pressures are ignored (except for [16] in which they are taken into 

account in a simplistic way through a pseudostatic approach). In addition, the static earth 

pressures (resulting from gravity and/or surcharge load) are calculated according to Rankine 

or Coulomb earth pressure theories which assume that a state of plastic equilibrium is devel-

oped in the retained backfill. Moreover, to the authors’ knowledge, no suitable constraint has 

been imposed to any retaining wall optimum design case to ensure that the deformations of 

the retaining wall and the backfill are within acceptable limits. In most studies, this is ensured 

implicitly by avoiding the possibility of overturning and sliding, by controlling the stresses 

within allowable limits and by securing the stability of the retaining wall – retained soil sys-

tem. 

Apart from these, the seismic response of retaining systems is still a matter of ongoing ex-

perimental, analytical and numerical research. The dynamic interaction between a wall and a 

retained soil layer makes the response complicated. The dynamic analysis becomes much 

more complex, as usually material and/or geometry non-linearities have to be taken into ac-

count [17, 18]. Depending on the expected material behavior of the retained soil and the pos-

sible mode of the wall displacement, there exist two main categories of analytical methods 

used in the design of retaining walls against earthquakes: (a) the pseudo-static limiting-

equilibrium solutions which assume yielding walls resulting in plastic behavior of the retained 

soil [19-21], and (b) the elasticity-based solutions that regard the retained soil as a visco-

elastic continuum [22-24]. In most studies presented so far, in order to perform optimum de-

sign of retaining walls, the assumption of pseudo-static limiting equilibrium is made; there-

fore the design is performed in a simplistic way, ignoring the possibility of a linear elastic or 

viscoelastic soil backfill. 

This study is concerned with the optimum design of cantilever retaining walls which are 

subject to earthquake loading and are responding in a linear elastic way. The objective func-

tion which is optimized is the weight of the retaining wall. This is roughly proportional to its 

construction cost, as the latter is generally an increasing function of the weight of the material 

used. This function is minimized subject to design constraints. Apart from the usual con-

straints imposed in most optimization studies, in this study a direct design constraint is im-

posed which controls the rocking response of the retaining wall. The optimization analysis is 

conducted via the use of a genetic algorithm, since in [15] it is shown that GA can be success-

fully applied for the optimal solution of structural optimization problems with many design 

variables and complex constraints. Two numerical examples are presented, in which optimum 

designs are performed for two values of the height of the soil layer to be retained. 

2 NUMERICAL MODELING 

In this section the numerical model used to simulate the dynamic response of a cantilever re-

taining wall is described. This model consists of an infinite soil layer with horizontal base and 
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free surface which is at higher elevation towards +∞ than -∞. These two elevations result in 

the existence of a vertical slope of height H which is retained by a cantilever wall. The wall’s 

foundation is at a depth equal to hemb, relative to the downstream soil surface. Consequently, 

the overall height of the retaining wall stem is H+hemb. The retaining wall is considered to rest 

on a strip foundation which consists of the toe, which is the portion of the foundation extend-

ing downstream from the wall, and of the heel, extending in the opposite direction (upstream). 

The depth of the rigid bedrock from the foundation of the wall is 1.5·H, where H is the thick-

ness of the horizontal layer to be retained, as seen schematically in Figure 1. The distance 

from the wall toe tip to the far field (downstream) vertical boundary of the model is 10·H; the 

same happens with the distance from the wall heel tip to the far field boundary of the model in 

the upstream direction. Shown in Figure 1 is also the local coordinate system to which the 

graphs showing the internal forces and stress distributions along the wall or its components in 

later sections refer. Text in bold denotes the design variables whereas the others either denote 

the variables which are dependent on the design variables or are problem parameters which 

remain fixed during optimum design. 
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Figure 1:  Cantilever reinforced concrete retaining wall model considered in this study. 

The soil layer is fixed on rigid bedrock and along the soil – rock interface horizontal and 

vertical fixity is imposed. In order to simulate sufficiently the one dimensional dynamic soil 

response, vertical kinematic constraints were used at the two vertical ends of the model. These 

constraints are different from the corresponding kinematic constraints imposed for gravity 

loading at the same boundaries, which were in the horizontal direction to simulate one dimen-

sional compression. The two vertical boundaries of the model were placed relatively far from 

the wall to minimize the influence of the difference between the model response in these re-

gions and one dimensional soil response. The whole model is considered to respond in plane 

strain condition, an assumption fairly accurate for cantilever retaining walls with length much 

higher than their width, height and thickness. The wall – soil and the foundation – soil inter-

faces are considered to be tied, an assumption generally valid for cohesive soils. This means 

there is no separation or relative slip along these interfaces. Initially, gravity acceleration 

(body force) is applied to the whole model and in a second step of the analysis, the transverse 

ground acceleration record recorded during the December 11, 1967 Koyna earthquake, which 
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was of magnitude 6.5 on the Richter scale, is imposed along the base of the soil layer. The 

time history graph of this record is shown in Figure 2.  
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Figure 2:  Transverse acceleration time history record of the December 11, 1967 Koyna earthquake, of magni-

tude 6.5 on the Richter scale. 

 

Figure 3:  Numerical model analyzed for the 1
st
 case (H=8m). Loading and boundary conditions for the initial 

gravity step are shown. 

 

Figure 4:  Numerical model analyzed for the 1
st
 case (H=8m). Loading and boundary conditions for the main 

dynamic time – history analysis step are shown. 

In this study, in order to minimize the weight of the retaining wall, two-dimensional nu-

merical simulations were performed for the wall-soil systems depicted in Figures 3 and 4, uti-

lizing the finite element software ABAQUS [1]. The soil layer is discretized with 8-node 
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biquadratic plane strain solid elements (CPE8). 3-node quadratic interpolation beam elements 

in plane (B22) are used for modeling the retaining wall and its foundation. These elements 

allow for transverse shear deformation according to Timoshenko theory and in their shear 

flexible formulation it is assumed that the transverse shear behavior is linear elastic with a 

fixed shear modulus and, thus, independent of the response of the beam section to axial 

stretch and bending. For Timoshenko beam elements a lumped mass formulation with a 1/6, 

2/3, 1/6 distribution is used. The mesh gets coarser for the part of the soil layer which is left 

and right of the wall (the horizontal dimension of the elements is double). This is apparent in 

Figures 3 and 4.  

The eigenmodes used for the modal dynamic analysis are extracted in a previous frequency 

step, in which the Lanczos eigensolver is used, which is a powerful tool for extraction of the 

extreme eigenvalues and the corresponding eigenvectors of a sparse symmetric generalized 

eigenproblem. For the Lanczos eigensolver, the minimum and maximum frequencies of inter-

est are specified and all eigenmodes with eigenfrequencies falling in this range are extracted. 

These modes are subsequently used for the calculation of the dynamic response during the 

modal dynamic analysis. Energy dissipation due to damping mechanisms is not modeled ex-

plicitly as a material property (e.g. through the simplistic Rayleigh damping approximation), 

but it is specified as a fraction of critical damping assigned at all eigenmodes included for the 

calculation of the dynamic response, equal to 5%. Thus the damping fraction remains constant 

along the frequency range of interest and energy dissipation is of the same intensity for lower 

and higher frequencies. 

3 FORMULATION OF THE OPTIMIZATION PROBLEM 

In this section the optimization problem to be solved is explained in detail. The design varia-

bles, the parameters, the constraints, the objective function and the optimum design process 

are presented. 

3.1 Design variables  

The design variables of the problem are shown in bold in Figure 1. These are the depth of the 

wall embedment denoted by hemb, the width of the toe denoted by dtoe, the width of the heel 

denoted by dheel and the thickness of the wall stem denoted by twall. The thickness of the wall 

toe and heel (ttoe and theel respectively) are selected to be the same and equal to the minimum 

between the wall stem thickness twall and one tenth of the corresponding widths (dtoe/10 and 

dheel/10), so that beam modeling for these components is reasonable. 

 

Design 

variable 

Lower limit 

(m) 

Upper limit 

(m) 

hemb 0.2 16 

dtoe 2 12 

dheel 2 12 

twall 0.2 2.5 

 

Table 1: Design variables of the optimization problem and their lower and upper bounds. 

In the aforementioned design variables upper and lower limits are set, in order to prevent 

the algorithm from giving technically infeasible solutions. Table 1 shows the design variables 

and their corresponding upper and lower limits. 
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3.2 Parameters  

The parameters of the wall-soil layer system are all the quantities that remain fixed during a 

particular optimization search. The parameters of the problem are summarized in Table 2. 

These are the physical properties of the soil and the wall. All materials involved in the model 

are linear elastic, leading thus to a linear dynamic response. The soil has density γs=1800 

kg/m
3
, modulus of elasticity Es=100 MPa and Poisson’s ratio νs=0.3. The retaining wall is 

modeled as a reinforced concrete beam with a general section, density γw=2500 kg/m
3
, and 

modulus of elasticity Ew=30.5 GPa which corresponds to C25/30. Although the retaining wall 

has the inertial and stiffness characteristics of concrete, it deforms in a linear elastic way, 

which implies that its stiffness in tension and compression is equal. Another parameter of the 

problem is the frequency range used for the modal dynamic analysis; this is selected to be in 

the range [0.01 Hz, 29 Hz]. The lower limit is selected so that the very low frequency spuri-

ous eigenmodes are excluded from the analysis; these are associated with very large modal 

mass. The higher limit is selected based upon the fact that the lowest wavelength of the waves 

propagating into the soil (lowest velocity of propagation and highest frequency) has to be at 

least ten times the internodal interval of the mesh; this is approximately the distance between 

adjacent nodes, and it increases as the mesh gets coarser.  

 

Parameter Assigned value 

γs 1800 kg/m
3
 

Es 100 MPa 

νs 0.3 

γw 2500 kg/m
3
 

Ew 30.5 GPa  

fmin 0.01 Hz 

fmax 29 Hz 

 

Table 2: Parameters of the optimization problem and their fixed values. 

3.3 Constraints  

The constraints of the optimization problem at hand are divided into structural constraints and 

geotechnical constraints. The satisfaction of the former ensures that the retaining wall does 

not fail as regards its structural integrity, whereas the latter ensures that the soil retained by 

and supporting the wall does not fail. The constraints are shown in Table 3, which includes 

the formulas for the calculation of the limiting quantities and the constraint inequalities im-

posed for the optimization problem. As far as the structural constraints are concerned, the 

maximum tensile (and the minimum compressive) stress which develop due to axial force and 

bending moment at the wall stem, toe and heel must not be higher than (respectively lower 

than) the material strength. For concrete C25/30 this is 25 MPa by definition, without taking 

into account the partial safety factor for concrete strength [25]. The material model used for 

the wall in this study is linear elastic and this leads to the essential assumption that the distri-

bution of strains and stresses along the section of the wall and its foundation is linear which 

results in the presence of “theoretical” tensile stresses which are not present in practice. In 

practice, there are no tensile concrete stresses and the necessary tensile forces for the equilib-

rium of the section are provided by the steel reinforcement. In any case, the tensile stress con-

straint is not active in the final optimum design, as will be described in detail later. Shear 

stiffness is ignored since shear strength of reinforced concrete cannot be calculated in a theo-

retically sound basis; the procedure of calculation and the final result is very norm specific in 
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general. Except for this, it depends highly on the reinforcement and its distribution into the 

beam. Concerning the geotechnical constraints, the following are specified: 

a) It is ensured that the normalized displacement at the top of the wall stem θ does not 

exceed 0.33%. The normalized displacement is given by the ratio of the horizontal dis-

placement at the top of the wall due to tilting or horizontal translation, divided by the height 

of its stem including embedded part (H+hemb). The above inequality is specified to prevent the 

development of a limit state or the initiation of a failure plane in the retained soil [26]. In the 

opposite case the assumption of a linear elastic soil would not be accurate. It is assumed in 

this study that, as far as its strength is concerned, the supporting and retained soil behaves like 

compacted clay. According to [26] the values of normalized displacement required to reach 

active and passive earth pressure conditions are 1% and 5% respectively. By ensuring that the 

normalized displacement is lower than 0.33% (conventionally taken as one third of the nor-

malized displacement required for active conditions) neither active nor passive states will de-

velop in the soil. 

 

Quantity Formula Constraint 

Normalized  

displacement of wall stem 
θ=max[abs{Displtop/(H+hemb)}] θ≤0.33% 

Undrained shear strength cu=Eu/850=3·Es/{2·(1+νs)}/850=136 kPa 
max(τ)≤cu 

min(τ)≥-cu 

Soil bearing  

capacity 
qu=5.14cu+γs·hemb -min(σyy)≤qu 

Foundation uplift  max(σyy)≤0 

Max bending stress* σmax=max(N/t + 6M/t
2
) σmax≤25 MPa 

Min bending stress* σmin=min(N/t - 6M/t
2
) σmin≥-25 MPa 

* For the wall stem, toe and heel. t denotes tstem, ttoe and theel. 

Table 3: Constraints of the optimization problem. 

b) Regarding its strength, the soil is assumed to behave as a cohesive soil in undrained 

conditions. So, its shear strength in terms of total stresses is equal to its undrained shear 

strength cu, i.e. the φ=0 approach is followed. Thus, it is specified that the maximum and min-

imum shear stress along the wall foundation must not exceed the undrained shear strength of 

the underlying soil, equal to 136 kPa. This value is calculated as follows: the undrained 

modulus of elasticity Eu of the soil is calculated according to Table 3 to be Eu=115.38 MPa. 

The fraction Eu/cu according to data available in the literature [27, 28], is selected to be rough-

ly 850. 

c) The bearing capacity of the soil underlying the foundation must not be surpassed. For 

this purpose, the bearing capacity under undrained loading (c = cu, φ = 0) is calculated accord-

ing to the Meyerhof formula for vertical and central loading of horizontal strip foundation at a 

depth equal to hemb. The maximum vertical normal stress at the lower interface of the wall 

foundation must not get larger than this value. 

d) Along the interface where constraint (c) is imposed, there must also be no tension, 

otherwise there would be foundation uplift which would render the dynamic response of the 

retaining wall geometrically non-linear.  

The approach followed to impose the constraints is the penalty method. Penalty methods 

add a penalty to the objective function to decrease the quality of infeasible solutions. The 

penalty quantities that are added are virtually the product of the constraint violation and a 

penalty factor which is fixed for each constraint and adjusted to take into account the relative 

importance of the constraint violations. 
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3.4 Objective function  

The objective function to be minimized is the volume of the retaining wall per meter in the 

longitudinal direction. This is proportional to its weight and indirectly related to its cost of 

construction. The fitness function which is minimized by the genetic algorithm used in this 

study results from the objective function after the application of the penalties due to constraint 

violations, if any. 

4 GENETIC ALGORITHM USED FOR OPTIMIZATION  

The Genetic Algorithm (GA) is a stochastic global search optimization method that emulates 

natural biological evolution. GAs apply on a population of potential solutions the principle of 

survival of the fittest to produce better approximations to a solution. At each generation, a 

new set of approximations is created by the process of selecting individuals according to their 

level of fitness in the problem domain and breeding them together using operators borrowed 

from natural genetics (crossover, mutation, etc.). This process leads to the evolution of indi-

viduals that are better suited to their environment than the individuals that they were created 

from, just as in natural evolution process. In order to minimize the objective function, the ge-

netic algorithm implemented in MATLAB software [2] was used.  

The encoding strategy followed is real-valued representation. The use of real-valued genes 

in GAs offers a number of advantages in numerical function optimization over binary encod-

ings: (a) efficiency of the GA is increased as there is no need to convert chromosomes to phe-

notypes before each function evaluation, (b) less memory is required as efficient floating 

point internal computer representations can be used directly, (c) there is no loss in precision 

by discretization to binary or other values and (d) there is greater freedom to use different ge-

netic operators. 

The population size (number of individuals in each generation) is equal to 20. The initial 

population with which the GA begins is created as a random initial population with uniform 

distribution. Fitness scaling was implemented by using a rank function, which scales the raw 

scores based on the rank of each individual instead of its score. The rank of an individual is its 

position in the sorted scores. An individual with rank r has scaled score proportional to r 
-1/2

. 

Rank fitness scaling removes the effect of the spread of the raw scores. The square root makes 

poorly ranked individuals more nearly equal in score, compared to rank scoring.  

Regarding the basic genetic operators, stochastic uniform selection is used for the selection 

process. In this function each parent corresponds to a section of the line of length proportional 

to its scaled value. The algorithm moves along the line in steps of equal size. At each step, the 

algorithm allocates a parent from the section it lands on. The first step is a uniform random 

number less than the step size. For reproduction, the number of individuals that are guaran-

teed to survive to the next generation (elite children) is 2 and the fraction of the next genera-

tion, other than elite children, that is produced by crossover (crossover fraction) is equal to 0.8. 

The mutation function used is Gaussian, which adds a random number taken from a Gaussian 

distribution with mean 0 to each entry of the parent vector. For the combination of parents to 

produce the next generation offspring (crossover), scattered crossover is used, which applies 

in problems without linear constraints. It creates a random binary vector and selects the genes 

where the vector entry is 1 from the first parent, and the genes where the vector entry is 0 

from the second parent, and combines the genes to form the child. In the GA no migration oc-

curs, as there are no subpopulations. 

As stopping criteria for the algorithm the following were specified: (a) the maximum num-

ber of iterations for the genetic algorithm to perform is equal to 100, (b) the algorithm stops if 
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the weighted average relative change in the best fitness function value over 50 generations is 

less than or equal to the function tolerance (equal to 10
-6

).  

The following outline summarizes how the GA procedure works: 

a) The algorithm begins by creating a random initial population. 

b) The algorithm then creates a sequence of new populations. At each step, the algorithm 

uses the individuals in the current generation to create the next population. To create the new 

population, the algorithm performs the following steps: 

1. Scores each member of the current population by computing its fitness value. 

2. Scales the raw fitness scores to convert them into a more usable range of values. 

3. Selects members, called parents, based on their fitness. 

4. Some of the individuals in the current population that have better fitness are chosen 

as elite. These elite individuals are passed to the next population. 

5. Produces offspring from the parents. Offspring are produced either by making ran-

dom changes to a single parent (mutation) or by combining the vector entries of a pair of par-

ents (crossover). 

6. Replaces the current population with the offspring to form the next generation. 

c) The algorithm stops when one of the stopping criteria is met. 

The GA optimizer is properly coupled with the analysis solver in order to take the modal 

dynamic analysis results. This is done inside the objective function in which the analysis 

solver is called to perform the necessary analyses. Except for this, suitable functions are 

called to create the necessary input (*.inp) files to conduct the analyses and read the results of 

the analyses from the corresponding results (*.fil) files. While the analysis solver is running 

the optimizer is halted and its execution is continued after the lock (*.lck) file has been delet-

ed. Constraint enforcement is applied through an advanced penalty method and not by the de-

fault constraint handlers developed in MATLAB.  

5 CONVENTIONAL SEISMIC DESIGN OF CANTILEVER RETAINING WALLS  

Conventional seismic design of cantilever reinforced concrete retaining walls is achieved with 

use of the well-known Mononobe-Okabe (M-O) theory of seismic earth pressures [19, 20]. 

Design is performed regarding the wall stability (sliding and overturning about the tip of its 

toe), and the design variables are the wall embedment (hemb), the width of the wall toe (dtoe) 

and the width of the wall heel (dheel). The thickness of the wall stem and foundation (toe and 

heel) are selected based on general guidelines for initial wall dimension proportioning, i.e. 

they are set equal to 1/10 of the total wall height (H+hemb). According to the dimension pro-

portioning practice, the inequality 0.3·(H+hemb) ≤ dheel ≤ 0.5·(H+hemb) must hold for the width 

of the wall heel. The minimum values of the wall embedment, toe width and heel width are 

set equal to 0.2 m, 2 m and 2 m respectively. The conventional seismic design method im-

plemented in this study involves also some kind of optimization procedure which leads to the 

minimum total weight of the wall by strict abidance by all of the constraints mentioned above. 

A necessary step during the design process is the evaluation of the soil internal friction an-

gle φ and the soil – wall interface friction angle δ. These are set to the following typical val-

ues: φ=30
o
, δ=18

o
. The horizontal acceleration coefficient is taken as kh=0.48 (resulting from 

the maximum acceleration of the earthquake record which is 0.48g). These properties are as-

signed to the soil lying over the wall foundation. For the soil under the wall foundation un-

drained response is assumed, namely its internal friction angle is taken equal to zero and its 

undrained shear strength cu is the one specified in section 3 of this study. The inertial forces 

and moments of the wall are also taken into account for the design whereas, regarding over-

turning checks, only the upstream and downstream soil portions lying over the wall founda-

tion are considered to contribute to the wall stability.  
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6 NUMERICAL RESULTS  

Two retaining wall weight optimization cases were examined in this study: in the first case 

(Case 1) the height of the soil layer to be retained by the wall is equal to 8 m and in the sec-

ond case (Case 2) the height is 12 m. The results of the GA optimization procedure as ana-

lyzed in the previous sections are shown in Table 4. It is observed in general that the 

embedment and foundation dimensions required to retain the soil layer with greater height 

(Case 2) are larger than those in Case 1. The optimum value of the objective function increas-

es as well. In both cases, the length of the wall heel (dheel) which leads to optimum design is 

the minimum possible, i.e. its lower bound. This means that for the parameter values and 

earthquake record considered in this study the heel does not contribute significantly to the re-

taining wall stability and/or structural integrity. The thickness of the heel is constrained by the 

requirement that it is not more than one tenth of its length (to justify its modeling as a beam), 

whereas the thicknesses of the other components (stem and toe) are equal. 

 

  Case 1 (H=8m) Case 2 (H=12m) 

Design variables 

hemb (m) 7.76 7.16 

dtoe (m) 4.57 6.57 

dheel (m) 2.00 2.00 

twall (m) 0.20 0.22 

ttoe (m) 0.20 0.22 

theel (m) 0.20 0.20 

Constraint quantities 

θ 0.328% 0.246% 

maxτ (kPa) 78.42 88.46 

minτ (kPa) -131.96 -135.73 

minσyy (kPa) -505.98 -592.45 

maxσyy (kPa) -122.07 -124.53 

σb,s,max (kPa) 22570.73 21476.85 

σb,t,max (kPa) 4265.33 1183.35 

σb,h,max (kPa) 2029.97 2180.68 

σb,s,min (kPa) -23795.84 -23385.15 

σb,t,min (kPa) -7336.37 -8128.82 

σb,h,min (kPa) -2176.36 -2501.06 

Algorithm details 

Min. value of obj. fun. (m
2
) 4.47 6.12 

Number of generations 73 64 

Number of fun. evaluations 1480 1300 

Table 4: Results of the optimization procedure of the two retaining wall cases considered in this study. 
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Table 5 shows the results of the conventional seismic design according to the M-O method. 

It is observed that the conventional design which is adopted in most seismic norms worldwide 

leads to larger weight of the retaining wall. Although the two methods stem from essentially 

different assumptions, their comparison shows clearly the fact that more economical and sim-

ultaneously safe designs can be achieved by applying detailed optimization methods for the 

seismic design of retaining walls; current seismic code practices can lead to unreasonably 

conservative designs. 

 

  

Case 1 

(H=8m) 

Case 2 

(H=12m) 

hemb (m) 0.20 0.20 

dtoe (m) 5.58 8.43 

dheel (m) 4.10 6.10 

twall (m) 0.73 1.32 

ttoe (m) 0.73 1.32 

theel (m) 0.73 1.32 

Area (m
2
) 13.05 35.28 

Table 5: Results of the conventional seismic design of the two retaining wall cases considered in this study. 

 

As far as the constraints are concerned, the maximum and minimum normal stresses of the 

heels of the two walls do not differ much. On the contrary, the maximum normal stress of the 

toe differs by a factor greater than 2 between the two wall cases. Furthermore, the minimum 

shear stress along the lower interface between the wall foundation and the supporting soil is 

roughly the same for the two wall cases. This observation implies that minimum shear stress 

along the lower interface of the wall foundation is independent of the wall height. Further-

more, the constraint imposed for this quantity is active in Case 2. The above may provide a 

hint for controlling the optimization process. To investigate more thoroughly the dynamic re-

sponse of the retaining wall and the surrounding soil, the internal forces of the wall and the 

shear stress distributions along the wall foundation – soil lower interface are shown in the fol-

lowing sections. 

7 DYNAMIC RESPONSE OF THE RETAINING WALL  

In this section the dynamic response of the retaining wall in the two cases examined in this 

study is considered. Internal force distributions as well as normalized displacement at the wall 

top are presented. In Figure 5 the axial force distribution along the stem of the wall (including 

embedment) is shown for the case 1. This distribution refers to its optimum design with de-

sign variable values set as shown in case 1 of the previous section. The vertical axis (y) is as-

sociated with the Cartesian coordinate system shown in Figure 1. At the elevation of the 

downstream soil surface the y axis becomes zero, namely the horizontal axis of the diagrams 

coincides with the aforementioned soil surface. The two curves shown in Figure 5 show the 

maximum and minimum values respectively for each point of the wall stem. The two distribu-

tions presented do not occur in a specific instance during the earthquake loading; they are ra-

ther the two envelope curves which incorporate all the axial force distributions which occur 

over the whole time history during the dynamic response. The respective axial force distribu-

tion for the second case (H=12 m) is shown in Figure 6. It is apparent that the retaining wall 
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in both cases is subject to compression, which originates primarily from the gravity loading. 

In addition, the two envelope distributions have the same configuration, which advocates over 

this observation. 
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Figure 5:  Maximum and minimum axial force distributions along the retaining wall stem for case 1 (H=8m). 

N (N)

y (m)

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

-1400000 -1200000 -1000000 -800000 -600000 -400000 -200000 0

H=12m, maxN

H=12m, minN

 

Figure 6:  Maximum and minimum axial force distributions along the retaining wall stem for Case 2 (H=12m). 

 

In Figure 7 and Figure 8 the maximum and minimum shear force distributions are shown 

for cases 1 (H=8m) and 2 (H=12m) respectively. It is observed that in case 1 the minimum 

and maximum distributions are approximately symmetric about the vertical axis (the stem of 

the wall). Since the fundamental eigenfrequencies of the upstream and downstream soil layers 

in case 1 are essentially higher than those in Case 2 (due to the fact that the layer thickness in 

case 1 is smaller than that in Case 2), it is more possible that the eigenfrequencies of the wall 

– soil system in case 1 lie within the dominant frequency range of the earthquake record. Thus, 

it is anticipated that the system of case 1 will exhibit more pronounced dynamic response, 

which stems from its kinematic and inertial dynamic interaction. Thus the rough symmetry 

between the two graphs is explained. On the contrary, in Case 2, where the eigenfrequencies 

are lower, the wall – soil system response is inertial for its most part, due to the lower fre-

quency content. This result can be drawn also from the configuration of the shear force distri-
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butions; they are positive near the surface of the downstream soil layer, become negative for 

lower elevation and get again positive at the foundation. This shows a quasi-static response. 
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Figure 7:  Maximum and minimum shear force distributions along the retaining wall stem for case 1 (H=8m). 
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Figure 8:  Maximum and minimum shear force distributions along the retaining wall stem for Case 2 (H=12m). 

In both Figures 7 and 8 the shear force distributions display some common characteristics. 

They take local maxima (in terms of absolute values) at the wall foundation and at the surface 

of the downstream soil layer. The reason for the occurrence of the local maximum at the 

downstream soil layer surface is apparent; there is the point where passive soil pressures start, 

virtually relieving the distress due to soil pressures from the upstream soil layer. In the lower 

part of the wall stem shear forces from the foundation are transmitted. At the upper part of the 

wall shear forces are much lower and they depend highly on the wall compliance.    
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In Figures 9 and 10 the maximum and minimum bending moment distributions are shown 

for cases 1 (H=8m) and 2 (H=12m) respectively. Similar trends with the corresponding shear 

force diagrams are observed, i.e. the pronounced response of the wall in case 1 and the quasi-

static response noted in Case 2. Along the part of the wall stem lying over its embedded part 

bending moments are mainly positive, as this part of the wall essentially retains the upstream 

soil layer. Bending moments show local optima at the same positions with the local optima of 

shear forces. 
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Figure 9:  Maximum and minimum bending moment distributions along the retaining wall stem for case 1 

(H=8m). 
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Figure 10:  Maximum and minimum bending moment distributions along the retaining wall stem for Case 2 

(H=12m). 

In Figure 11 the variation in time history of the normalized displacement at the wall top is 

shown for cases 1 (H=8 m) and 2 (H=12 m). Firstly, it is noted that the dynamic response of 

the wall in the 1st case (H=8 m) is more pronounced than that in Case 2 (H=12 m). This 

agrees with the explanation given previously to interpret the dynamic nature of the response 

in case 1. However, although the maximum normalized displacement occurs for the 1st case, 

this does not entail that the response for this case is larger than that in Case 2 for the whole 

time history. Another observation to be made is that in case 1 the constraint affecting the 
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normalized displacement at the top of the retaining wall is active, i.e. controls the optimiza-

tion process. This is expected, since the pronounced dynamic response in Case 1 leads to in-

creased normalized displacement which eventually after the constraint imposition controls the 

optimization process.  
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Figure 11:  Normalized displacement at the top of the retaining wall for both cases considered in this study. 

8 DYNAMIC SHEAR DISTRESS OF SUPPORTING SOIL 

In this section the dynamic distress of the soil supporting the retaining wall is presented in 

terms of shear stresses. Especially, since shear stress is the primary factor affecting the stiff-

ness and strength exhibited by soils in general, this quantity will be investigated. The region 

of the soil supporting the wall foundation which experiences the most intense shear stress is 

its interface with the lower horizontal boundary of the wall toe and heel. Plots of shear stress 

distributions developed along the wall foundation are shown in Figures 12 and 13 for the two 

cases examined in this study. 
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Figure 12:  Maximum and minimum shear stress distributions along the retaining wall foundation (toe & heel) 

for case 1 (H=8m). 

2746



George Papazafeiropoulos, Vagelis Plevris and Manolis Papadrakakis 

-150000

-100000

-50000

0

50000

100000

-8 -6 -4 -2 0 2 H=12m, maxσxy

H=12m, minσxy

x (m)

σxy (Pa)

 

Figure 13:  Maximum and minimum shear stress distributions along the retaining wall foundation (toe & heel) 

for Case 2 (H=12m).  

 

The horizontal axis of these diagrams coincides with the wall foundation: its negative part 

shows the distribution along the wall toe and its positive part shows the distribution along the 

wall heel. Therefore, the vertical axis is in the same way coincident with the retaining wall 

stem. Its substantial difference from the horizontal axis is that it does not show vertical dis-

tance along the wall stem. 

A major difference noted by comparing the two figures is that in Case 1 shear stresses may 

be positive (occurring when the retaining wall foundation is displaced towards the upstream 

soil layer) or negative (occurring when the retaining wall foundation is displaced towards the 

downstream soil layer). On the contrary, in Case 2, shear stresses along the wall toe are for 

the most part negative (since the distribution of the maximum shear stresses lies very close to 

the horizontal axis). This observation can be used as a hint to govern the optimization process. 

In both figures, along the wall heel the shear stress range tends to be generally higher than 

that along the wall toe. 

9 CONCLUSIONS  

 Unlike most optimization studies regarding retaining wall optimum design, two major 

features are examined in this study, i.e. optimum design for (a) seismic loading imple-

mented through modal dynamic analysis with a rigorous time history integration proce-

dure and (b) retaining wall – soil system responding linearly elastically. 

 From the values of the design variables leading to retaining wall weight minimization it 

can be inferred that the length of the wall heel does not affect much its stability. 

 Soil layers with increased thickness (and the same shear modulus and density) lead to 

systems with decreased eigenfrequencies. As a result, there is a greater possibility that 

their response to specific seismic loading is of more quasi-static nature, as is the 2
nd

 case 

examined in the present study. The opposite happens with soil layers with decreased 

thickness; they show: (a) more pronounced dynamic response and (b) upper and lower 

internal force envelopes which tend to be more “symmetric”. 

 For systems with increased dynamic response (such as Case 1 of this study) the con-

straints which control displacements (or their derivatives) are more likely to be active 
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during the optimization process, whereas for systems with quasi – static response (such 

as Case 2 of this study) the constraint controlling the shear stress along the wall founda-

tion – supporting soil interface is more likely to be active. 

 As far as the soil shear distress is concerned, in the quasi-static case (H=12 m) it is gen-

erally negative under the retaining wall toe. 

 Conventional seismic design methods (M-O), even if they are applied in an optimal way, 

can lead to conservative designs by increasing the required material compared with more 

refined design methods such as the optimum design implemented in this study. 

 Last but not least, it has to be mentioned that the genetic algorithm used for the optimiza-

tion process in this study is efficient and robust, since it leads to the optimum solutions 

with a relatively low number of function evaluations and not being trapped in local min-

ima. 
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