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Abstract. Masonry is a material that exhibits distinct directional properties because the mor-

tar joints act as planes of weakness. To define failure under biaxial stress, a three-

dimensional surface in terms of the two normal stresses and shear stress, or the two principal 

stresses and their orientation to the bed joints, is required. 

Researchers have long been aware of the significance of the bed joint angle to the applied 

load and many experimental tests have been carried out on brick masonry discs to produce 

indirect tensile stresses on joints inclined at various angles to the vertical compressive load. 

The highest strength of the masonry has been observed for the cases when the compressive 

load was perpendicular to the bed joints or when the principal tensile stress at the center of 

the disc was parallel to the bed joints. In this case failure occurred through bricks and per-

pendicular joints. The lowest strength has been observed when the compressive load was par-

allel to the bed joints or when the principal tensile stress at the center of the disc was 

perpendicular to the bed joints. In this case failure occurred along the interface of brick and 

mortar joint. 

In the present study, the preliminary results of an ongoing research on the failure of brittle 

anisotropic materials are presented. In particular, Neural Networks (NNs) are used in order 

to approximate the experimental failure curves of a brittle anisotropic material such as ma-

sonry, that has been investigated in depth by Page [1]. For each angle θ (0º, 22.5º, 45º), a 

Neural Network is trained with the experimental data of Page as inputs. Then the NN is asked 

to produce the whole failure curve for each angle as its output, filling also the gaps between 

the experimental points with appropriate approximations. The results show the great potential 

of using NN for the approximation of the masonry failure under biaxial compressive stress. 
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1 INTRODUCTION 

Despite the fact that masonry is one of the oldest structural materials and, actually, the 
main element in monumental structures such as churches, castles, mosques etc., our 
knowledge regarding its mechanical behavior is not as thorough as it should be and many as-
pects of its behavior remain to be investigated. One reason for this lack of extensive studies is 
the highly anisotropic brittle nature of masonry, which makes complicated, difficult and ex-
pensive, the realization of reliable experimental tests under conditions of biaxial stress, and, 
even more, under conditions of biaxial tension or heterosemous stress. Taking into account 
the numerous uncertainties of the problem, a computational model, describing the masonry 
failure surface in a simple manner should be an efficient tool for the investigation of the be-
havior of masonry structures. Many analytical criteria for masonry structures have been al-
ready proposed [2-7]. Experimental investigations can also be considered as an important 
support to the aforementioned efforts [1, 8, 9, 10]. 

In the present study, we use the experimental data reported by Page [1], referring to a total 
of 102 panels, that have been already used by many other researchers [2, 3, 11]. Ratios of ver-
tical compressive stress σ1 to horizontal compressive stress σ2 of  (uniaxial σ1), 10, 4, 2 and 
1 have been used in conjunction with a bed joint angle θ with respect to the σ1, in directions 
of 0, 22.5, 45, 67.5 and 90. A minimum of four tests were performed for each combina-
tion of σ1,σ2 and θ. The aim of the present paper is to introduce an anisotropic (orthotropic) 
Neural Network – generated failure surface under biaxial stress for masonry. 

2 LITERATURE REVIEW 

Masonry exhibits distinct directional properties due to the influence of the mortar joints. 
Depending upon the orientation of the joints to the stress directions, failure can occur in the 
joints alone or simultaneously in the joints and the blocks. The failure of masonry under uni-
axial and biaxial stress state has been studied experimentally in the past by many researchers 
but to the authors' knowledge there has not been any attempt to apply a Neural Network for 
such a prediction. 

Only a few studies incorporate the use of Neural Networks (NNs) for the approximation of 
masonry behavior in general. Zhang et al. in [12] apply artificial intelligent techniques for di-
rectly predicting the cracking patterns of masonry wallets, subjected to vertical loading. The 
von Neumann neighborhood model and the Moore neighborhood model of cellular automata 
(CA) are used to establish the CA numerical model for masonry wallets. Techniques for the 
analysis of wallets whose bed courses have different angles with the horizontal bottom edges 
are also introduced. Two criteria are used to match zone similarity between a “base wallet” 
and any new “unseen” wallets. This zone similarity information is used to predict the cracks 
in unseen wallets. A back-propagation neural network is also used for predicting the cracking 
pattern of a wallet based on the CA model of the wallet and some data of recorded cracking at 
zones. 

El-Shafie et al. [13] propose a model based on radial basis function neural networks 
(RBFNN) for predicting creep in concrete and masonry structures and is compared to a multi-
layer perceptron neural network (MLPNN). Accurate prediction of creep is achieved due to 
the simple architecture and fast training procedure of RBFNN model especially when com-
pared to MLPNN model. The RBFNN model shows good agreement with experimental creep 
data from brickwork assemblages. 

Zhou et al. [14] propose an artificial intelligent technique for predicting the fail-
ure/cracking loads of laterally loaded masonry wall panels based on their corresponding fail-
ure/cracking patterns derived from the laboratory experiments. The numerical modes of 
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failure/cracking patterns of experimental wall panels and the corresponding normalized fail-
ure/cracking loads are used as the input and output for the NN training. Three types of NN 
models for predicting the failure/cracking load of the unseen wall panel are achieved by re-
peatedly training and adjusting to optimize its parameters. 

Mathew et al. [15] propose the use of NN for solving complex nonlinear problems for the 
analysis of masonry panels under biaxial bending. A Neural Network, trained with the use of 
a set of data, which is representative of the problem domain, is shown to be successful in 
solving new problems with reasonable accuracy. The experimental results obtained from the 
testing of panels are analyzed, and the method that gives good correlation between the theo-
retical prediction and the experimental result is recommended for other panels of similar 
properties and boundary conditions. An artificial intelligence based technology, the case-
based reasoning (CBR), has been used to solve new problems by adapting solutions to similar 
problems solved in the past, which are stored in the case library. A hybrid system is described 
that utilizes the capabilities of both ANNs and CBR. 

3 EXPERIMENTAL DATA 

The experimental data of Page [1] have been used as inputs for the NN model in the pre-
sent study. The figures below show the original data together with the mean curves for each 
bed joint angle that attempt to fit these data. 

 

  
(a) (b) 

Figure 1: Failure of Brickwork under Biaxial Compression, (a) θ=0°, (b) θ=22.5° [1]. 
 

 
Figure 2: Failure of Brickwork under Biaxial Compression, θ=45° [1]. 
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It should be noted that the data for θ=45° are symmetric to the 45° line (σ1=σ2), due to the 
nature of the loading, while the cases θ=67.5° and θ=90° are equivalent to the cases θ=22.5° 
and θ=0°, respectively and will not be examined separately. The table below shows the ana-
lytical data for the θ=0° case. 
 

σI (MPa) σII (MPa) σI/fwc σII/fwc 
Average 
σI/fwc 

Average 
σII/fwc 

Angle φ = 
Atan(σΙΙ/σΙ) 

Radius r 

3.53 0.00 0.47 0.00         

4.14 0.00 0.55 0.00         

4.66 0.00 0.62 0.00         

4.96 0.00 0.66 0.00 0.57 0.00 0.0000 0.5717 

9.59 0.85 1.27 0.11         

9.70 0.87 1.28 0.12         

10.11 0.90 1.34 0.12         

10.37 1.01 1.37 0.13 1.32 0.12 0.0909 1.3210 

9.46 2.26 1.25 0.30         

9.85 2.43 1.30 0.32         

9.92 2.30 1.31 0.30         

10.15 2.45 1.34 0.32 1.30 0.31 0.2353 1.3398 

9.33 4.67 1.23 0.62         

9.62 5.01 1.27 0.66         

9.74 4.95 1.29 0.65         

11.15 5.48 1.48 0.72 1.32 0.66 0.4672 1.4761 

7.84 7.76 1.04 1.03         

7.89 7.91 1.04 1.05         

8.20 8.10 1.09 1.07         

8.72 8.67 1.15 1.15 1.08 1.07 0.7820 1.5222 

4.16 7.95 0.55 1.05         

4.55 8.57 0.60 1.13         

4.66 8.84 0.62 1.17         

4.74 8.81 0.63 1.17 0.60 1.13 1.0836 1.2792 

2.12 8.34 0.28 1.10         

2.21 8.67 0.29 1.15         

2.32 9.21 0.31 1.22         

2.63 9.32 0.35 1.23 0.31 1.18 1.3156 1.2148 

0.76 7.55 0.10 1.00         

0.76 8.42 0.10 1.11         

0.87 8.42 0.11 1.11         

0.87 8.93 0.11 1.18 0.11 1.10 1.4737 1.1074 

0.00 7.15 0.00 0.95         

0.00 7.27 0.00 0.96         

0.00 7.69 0.00 1.02         

0.00 8.12 0.00 1.07 0.00 1.00 1.5708 1.0000 

Table 1. Failure of Brickwork under Biaxial Compression, θ=0° [1] and relevant calculations. 
 

The first two columns of the table contain the original experimental data, namely the fail-
ure principal stresses σΙ and σII in MPa. For every loading case, four tests have been conduct-
ed. The next two columns contain the same data in a dimensionless form where the stresses 
have been divided with the stress fwc which is the masonry strength for the case σΙ=0 (last four 
rows of the table). The value of fwc has been calculated as the average of the four values (high-
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lighted in bold in the above table) as 7.56 MPa. The next two columns are the averages of the 
four tests for each loading case. 

For the data to be suitable for the Neural Network training, a conversion to polar coordi-
nates (r, φ) has been taken place, where the radius r is given by 

 2 2
, ,I aver II averr     (1) 

where σI,aver and σII,aver are the average stresses for each loading case (columns 5, 6). The polar 
angle φ (column 7) is given by 

 Arc tan II

I






 
  

 
 (2) 

The polar radius r is given in the last column (column 8) of the above table. For each angle 
θ case (θ=0°, 22.5°, 45°), a Neural Network is trained with the angle φ as its input and the ra-
dius r as its output. The figure below shows the data of the above table, where also the aver-
age values (used for the NN training) have been highlighted with red rectangles. 
 

 
Figure 3: Normalized experimental data and average values for the θ=0° case. 

 
 
The tables and figures below show the corresponding data for the other two cases (θ=22.5° 

and θ=45°). 
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σI (MPa) σII (MPa) σI/fwc σII/fwc 
Average 
σI/fwc 

Average 
σII/fwc 

Angle φ = 
Atan(σΙΙ/σΙ) 

Radius r 

2.37 0.00 0.31 0.00         

2.50 0.00 0.33 0.00         

3.19 0.00 0.42 0.00         

3.28 0.00 0.43 0.00 0.38 0.00 0.0000 0.3752 

4.79 0.60 0.63 0.08         

5.24 0.78 0.69 0.10         

5.22 0.71 0.69 0.09         

5.38 0.71 0.71 0.09 0.68 0.09 0.1352 0.6890 

8.26 2.08 1.09 0.27         

8.47 2.12 1.12 0.28         

9.44 2.18 1.25 0.29         

9.47 2.27 1.25 0.30 1.18 0.29 0.2382 1.2132 

9.84 4.96 1.30 0.66         

9.95 5.22 1.32 0.69         

10.33 5.65 1.37 0.75         

11.56 6.10 1.53 0.81 1.38 0.73 0.4843 1.5581 

7.57 7.89 1.00 1.04         

8.22 8.31 1.09 1.10         

8.35 8.53 1.10 1.13         

8.46 8.35 1.12 1.10 1.08 1.09 0.7927 1.5359 

3.91 7.83 0.52 1.04         

4.12 8.37 0.54 1.11         

4.98 9.54 0.66 1.26         

5.43 10.65 0.72 1.41 0.61 1.20 1.1018 1.3493 

2.06 7.59 0.27 1.00         

1.95 7.84 0.26 1.04         

2.15 8.27 0.28 1.09         

2.20 8.65 0.29 1.14 0.28 1.07 1.3178 1.1053 

0.76 7.23 0.10 0.96         

0.89 7.53 0.12 1.00         

0.93 7.80 0.12 1.03         

0.98 8.89 0.13 1.18 0.12 1.04 1.4580 1.0467 

0.00 4.87 0.00 0.64         

0.00 5.39 0.00 0.71         

0.00 5.59 0.00 0.74         

0.00 6.85 0.00 0.91 0.00 0.75 1.5708 0.7508 

Table 2. Failure of Brickwork under Biaxial Compression, θ=22.5° [1] and relevant calculations. 
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  σI 
(MPa) 

σII (MPa) σI/fwc σII/fwc 
Average 
σI/fwc 

Average 
σII/fwc 

Angle φ = 
Atan(σΙΙ/σΙ) 

Radius r 

4.09 0.00 0.54 0.00   
 

    

4.56 0.00 0.60 0.00   
 

    

5.14 0.00 0.68 0.00   
 

    

5.29 0.00 0.70 0.00   
 

    

6.11 0.00 0.81 0.00 0.67 0.00 0.0000 0.6666 

6.99 0.77 0.93 0.10         

7.52 0.72 0.99 0.10         

7.52 0.80 0.99 0.11         

7.76 0.74 1.03 0.10 0.99 0.10 0.1012 0.9905 

7.54 1.88 1.00 0.25         

8.19 1.88 1.08 0.25         

8.27 1.85 1.09 0.24         

9.50 2.24 1.26 0.30 1.11 0.26 0.2301 1.1379 

8.71 4.32 1.15 0.57         

8.83 4.70 1.17 0.62         

8.94 4.45 1.18 0.59         

9.80 4.86 1.30 0.64 1.20 0.61 0.4677 1.3446 

8.14 7.64 1.08 1.01         

8.41 8.05 1.11 1.07         

8.59 8.22 1.14 1.09         

9.32 8.61 1.23 1.14 1.14 1.08 0.7565 1.5675 

7.64 8.14 1.01 1.08         

8.05 8.41 1.07 1.11         

8.22 8.59 1.09 1.14         

8.61 9.32 1.14 1.23 1.08 1.14 0.8143 1.5675 

4.32 8.71 0.57 1.15         

4.70 8.83 0.62 1.17         

4.45 8.94 0.59 1.18         

4.86 9.80 0.64 1.30 0.61 1.20 1.1031 1.3446 

1.88 7.54 0.25 1.00         

1.88 8.19 0.25 1.08         

1.85 8.27 0.24 1.09         

2.24 9.50 0.30 1.26 0.26 1.11 1.3407 1.1379 

0.77 6.99 0.10 0.93         

0.72 7.52 0.10 0.99         

0.80 7.52 0.11 0.99         

0.74 7.76 0.10 1.03 0.10 0.99 1.4696 0.9905 

0.00 4.09 0.00 0.54         

0.00 4.56 0.00 0.60         

0.00 5.14 0.00 0.68         

0.00 5.29 0.00 0.70         

0.00 6.11 0.00 0.81 0.00 0.67 1.5708 0.6666 

Table 3. Failure of Brickwork under Biaxial Compression, θ=45° [1] and relevant calculations. 
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Figure 4: Normalized experimental data and average values for the θ=22.5° case. 

 
 
 

 
Figure 5: Normalized experimental data and average values for the θ=45° case. 

 

4 ARTIFICIAL NEURAL NETWORKS 

The development of artificial neural networks was initially inspired and motivated by in-
sights into how biological brains – and in particular mammalian brains – function. It was 
found that mammalian brains learn as connections between neurons are strengthened – the 
result of electrochemical processes triggered by external or internal stimuli (experiences). As 
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in biological systems, learning involves adjustments to the synaptic connections that exist be-
tween the neurons. NNs, like human beings, learn by example. 

Although parallels with biological systems are often described, there is still so little known 
(even at the lowest cell level) about biological systems, that the models that are being used for 
artificial neural systems seem to introduce an oversimplification of the 'biological' models. 
The real, biological nervous system is highly complex and includes some features that may 
seem superfluous based on an understanding of artificial networks. 

In the first work on the processing of neural networks [16], it was shown theoretically that 
networks of artificial neurons could implement logical, arithmetic, and symbolic functions. 
Simplified models of biological neurons were set up, now usually called perceptrons or artifi-
cial neurons. These simple models accounted for neural summation, i.e. potentials at the post-
synaptic membrane would sum in the cell body. Later models also provided for excitatory and 
inhibitory synaptic transmission. 

Artificial Neural Networks are made up of fully or partially interconnecting artificial neu-
rons (programming constructs that mimic the properties of biological neurons). Artificial neu-
ral networks may either be used to gain an understanding of biological neural networks, or for 
solving artificial intelligence problems without necessarily creating a model of a real biologi-
cal system. Artificial Intelligence (AI) and cognitive modeling try to simulate some properties 
of neural networks. While similar in their techniques, AI has the aim of solving particular 
tasks, while cognitive modeling aims to build mathematical models of biological neural sys-
tems. In the AI field, artificial neural networks have been trained to perform complex func-
tions in various scientific fields and have been applied successfully to identification, 
classification, simulation, inverse simulation, speech recognition, pattern recognition, image 
analysis and adaptive control, and also in order to construct software agents (in computer 
games) or autonomous robots. 

5 NEURAL NETWORKS ARCHITECTURE 

In the present study, we use a Back-Propagation Neural Network (BPNN). Here, the out-
put values are compared with the correct answer to compute the value of a predefined error-
function. By various techniques, the error is then fed back through the network. Using this 
information, the algorithm adjusts the weights of each connection in order to reduce the value 
of the error function by some small amount. After repeating this process for a sufficiently 
large number of training cycles, the network will usually converge to some state where the 
error of the calculations is small. In this case, one would say that the network has learned a 
certain target function. As the algorithm's name implies, the errors propagate backwards from 
the output nodes to the inner nodes. So technically speaking, back-propagation is used to cal-
culate the gradient of the error of the network with respect to the network's modifiable 
weights. To adjust weights properly, one applies a general method for non-linear optimization 
that is called gradient descent. In order to minimize the error, the derivative of the error func-
tion with respect to the network weights is calculated, and the weights are then changed such 
that the error decreases (thus going downhill on the surface of the error function). For this rea-
son, back-propagation can only be applied on networks with differentiable activation func-
tions. Back-propagation usually allows quick convergence on satisfactory local minima for 
error in the kind of networks to which it is suited. 

A BPNN is a feed-forward, multilayer network of standard structure, i.e. neurons are not 
connected in the layer but they join the layer neuron with all the neurons of previous and sub-
sequent layers, respectively. A BPNN has a standard structure that can be written in short as 

 1 2 1NLN H H H M      (3) 
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where N is the number of inputs, Hl is the number of neurons in the l-th hidden layer, NL is 
the number of layers (including the output layer) and M is the number of output neurons. Fig-
ure 6 depicts an example of a BPNN composed of an input layer with 4 neurons, two hidden 
layers with 3 neurons each and an output layer with 2 neurons, i.e. a 4-3-3-2 BPNN. 

Input 

Layer

Hidden 

Layers

Output 

Layer

Forward direction of signals

x y

Back-propagation of errors
 

Figure 6: A three-layer 4-3-3-2 BPNN (input not counted as a layer). 
 
 
In the present study, we use a Back-Propagation Neural Network with two hidden layers, 

one input layer and one output layer. The input layer has one node (neuron) which corre-
sponds to the angle φ, while the output layer has also one node which corresponds to the radi-
us r. The two hidden layers have 8 nodes each, ending in a 1-8-8-1 BPNN architecture, for the 
first two cases (θ=0° and θ=22.5°). For the third case (θ=45°) the two hidden layers have 12 
nodes each, ending in a 1-12-12-1 BPNN architecture. The input and output values are nor-
malized before the NN training and the inverse normalization is done in order to take the NN 
results for other data afterwards.  

A single node (neuron) of a hidden layer, with a single R-element input vector is shown be-
low. 

Σ
(n)

p1

Input Neuron with vector input

a=f(Wp+b)

b

f
(a)

1

W1,R

W1,1p2
p3

pR

 
Figure 7: A neuron with a single R-element input vector. 
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For each node, the individual element inputs p1, …, pR are multiplied by weights w1,1, …, 
w1,R and the weighted values are fed to the summing junction. The sum is Wp, the dot prod-
uct of the (single row) matrix W = [w1,1, …, w1,R] and the vector p = [p1, …, pR]T. The neuron has 
a bias b, which is summed with the weighted inputs to form the net input n which is the argu-
ment of the transfer function f: 

 1,1 1 1,2 2 1,R Rn w p w p w p b b       W p  (4) 

In the above case, p is a column vector (R×1), W is a row vector (1×R) and b is a scalar. 

5.1 Transfer function  

The transfer function used is the hyperbolic tangent function, the same for all the hidden 
and the input layer, while the transfer function for the output layer is a linear function. The 
output of the hyperbolic tangent function and its derivative are given by 

 
2

2
1( ) tan( )
1

n

n

e
a f n x

e


   


i i  (5) 

 
2

2
2 2'( ) 4 1

( 1)

n

n

e
f n a

e
  


 (6) 

This function yields output values in the interval [-1, 1], while its derivative yields output 
values in the interval [0, 1]. The graphical representations of the hyperbolic tangent function 
and its derivative are shown in the figure below. 
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Figure 8: (a) Hyperbolic tangent function, (b) Its derivative. 
 
 

6 NEURAL NETWORK APPROXIMATION RESULTS 

We train the three NNs with the input and output data of Tables 1, 2, 3 (last two columns) 
and then each NN is asked to produce the full curves for each bed joint angle, for a set of 64 
points. The results are shown in the figures below. 
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Figure 9: NN approximation result for the case θ=0°. 
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Figure 10: NN approximation result for the case θ=22.5°. 
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Figure 11: NN approximation result for the case θ=45°. 

 
In the above figures, the black dots denote the input data, i.e. the data corresponding to the 

last two columns of Tables 1, 2, 3. The blue curve denotes the NN prediction of the fitting 
curve. 

We can see that the NN manages to fit all the training data with excellent accuracy, while 
the approximation between the training data points appears to be adequate. An important 
characteristic is that for the third case (θ=45°) the NN manages to produce results that are 
symmetric (with good accuracy) to the line of 45° (σΙ=σΙΙ), an expected outcome due to the 
symmetry that masonry exhibits with respect to the 45° degrees axis. 

 

7 CONCLUSIONS  

In the present study, preliminary results of an ongoing research project, on the failure of 
anisotropic brittle material such as masonry are presented. In particular, Neural Networks are 
used in order to approximate the experimental results for masonry failure [1]. For each angle 
θ a NN is trained with the experimental data as inputs and then each NN is asked to produce 
the whole failure curve for each angle as its output, filling also the gaps between the experi-
mental points. 

The NNs showed great performance in fitting the experimental input data, while they man-
ages to fit all the training data with very good accuracy, also producing results that are sym-
metric (with good accuracy) to the line of 45° (σΙ=σΙΙ) for the third case (θ=45°). This is in 
very good agreement to the characteristic symmetry of the masonry. The results show the 
great potential of using NN for the approximation of the masonry failure under biaxial com-
pressive stress. 

A more detailed investigation has to be made regarding the use of NN for the generation of 
the failure surface for any angle θ. The next research step would be to try to combine the re-
sults of the three separate NNs into a single NN that would also take the angle θ as its input. 
The trained NN should be then able to produce the whole 3D failure surface for any angle θ. 
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