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Abstract. Natural hazards such as earthquakes, floods and tornadoes can cause 

extensive failure of critical infrastructures including bridges, water and sewer sys-

tems, gas and electricity supply systems, and hospital and communication sys-

tems. Following a natural hazard, the condition of structures and critical infra-

structures must be assessed and damages have to be identified; inspections are 

therefore necessary since failure to rapidly inspect and subsequently repair infra-

structure elements will delay search and rescue operations and relief efforts. The 

objective of this work is scheduling structure and infrastructure inspection crews 

following an earthquake in densely populated metropolitan areas. A model is pro-

posed and a decision support system is designed to aid local authorities in opti-

mally assigning inspectors to critical infrastructures. A combined Particle Swarm 

– Ant Colony Optimization based framework is developed which proves an in-

stance of a successful application of the philosophy of bounded rationality and de-

centralized decision-making for solving global optimization problems. 

1. INTRODUCTION 

Infrastructure networks are vital for the well-being of modern socie-

ties; national and local economies depend on efficient and reliable 

networks that provide added value and competitive advantage to an 

area‟s social and economic growth. The significance of infrastruc-

ture networks increases when natural disasters occur since restora-
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tion of community functions is highly dependent on the affected re-

gions receiving adequate relief resources. Infrastructure networks 

are frequently characterized as the most important lifelines in cases 

of natural disasters; recent experience from around the World (hurri-

canes Katrina and Wilma, Southeastern Asia Tsunami, Loma Prieta 

and Northridge earthquakes and others) suggests that, following a 

natural disaster, infrastructure networks are expected to support re-

lief operations, population evacuation, supply chains and the restora-

tion of community activities. 

Infrastructure elements such as bridges, pavements, tunnels, 

water and sewage systems, and highway slopes are highly prone to 

damages caused by natural hazards, a result of possible poor con-

struction or maintenance, of design inconsistencies or of the shear 

magnitude of the natural phenomena themselves. Rapid network 

degradation following these disasters can severely impact both short 

and long run operations resulting in increased fatalities, difficulties 

in population evacuation and the supply of clean water and food to 

the affected areas. Much of the state-of-the-art in this research area 

indicates that attention must be given to three important actions: (i) 

Failsafe design and construction of infrastructure facilities; (ii) Ef-

fective maintenance and management of the available facilities; and, 

(iii) Planning and preparing actions to deal with rapid reparation of 

infrastructure following the disasters.  

As can be expected, significant research has been undertaken 

in emergency response to either natural hazards or manmade disas-

ters. Work has concentrated on the four main aspects of the process; 

mitigation, preparedness, response, and recovery (an excellent col-

lection of emergency response papers, with a heavy focus on quanti-

tative approaches and algorithms, can be found in Altay and Green 

[1]). Work on mitigation includes assessing seismic hazards [2], 

probabilistic damage projection [3-4], and simulation based DSS for 

integrating the emergency process [5-6]. Research on preparedness, 

a particularly challenging area of network related problems, has 

mainly focused on preparing infrastructure networks for dealing 

with potential disasters and for accommodating evacuation needs [7-

12]. Response related work has evolved around two main research 

paths; first, planning the response-relief logistics operations [13-16], 

and, second, assessing the performance of the infrastructure system 
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following the natural hazard [17-20]. Finally, recovery operations 

have attracted limited attention despite their importance in practice; 

for example, work has concentrated on infrastructure element pro-

tection [21], general assessment of relief performance [22], and fund 

allocation for infrastructure repairs following disasters [23].    

It is interesting to note that most research on emergency re-

sponse, particularly following the disaster, has shied away from 

dealing with the critical step of damage assessment and its related is-

sues. For example, following an earthquake, all infrastructure ele-

ments need to be inspected, damages assessed, and repairs priori-

tized; these needs pose sets of problems such as partitioning the 

damaged area into sub-areas of responsibility for repair crews, de-

termining inspection sequences (i.e. which infrastructure elements 

should be inspected first, second, and so on), and allocating funds 

for repairs, that research has largely ignored to date. This chapter is 

focused on issues that are related to inspecting and repairing infra-

structure elements damaged by earthquakes, a highly unpredictable 

natural disaster of considerable importance to many areas around the 

World. An explicit effort is made to initiate the development of a 

process for handling post-earthquake emergency response in terms 

of optimal infrastructure condition assessment, based on a combined 

Particle Swarm Optimization (PSO) – Ant Colony Optimization 

(ACO) framework. Some of the expected benefits from this work in-

clude improvements in infrastructure network restoration times and 

minimization of adverse impacts from natural hazards on infrastruc-

ture networks. 

2. PROBLEM FORMULATION 

A general formulation of a nonlinear optimization problem can be 

stated as follows 
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where x is the design variables vector of length n, f(x): R
n
→R is the 

objective function to be minimized, the vector of m inequality con-

straint functions g(x): R
n
→R

m
 and x

L
, x

U
 are two vectors of length n 

defining the lower and upper bounds of the design variables, respec-

tively. 

The main objective of this work is to formulate the problem of 

inspecting the structural systems of a city/area as an optimization 

problem. This objective is achieved in two steps: in the first step, the 

structural blocks to be inspected are optimally assigned into a num-

ber of inspection crews (assignment problem), while in the second 

step the problem of hierarchy is solved for each group of blocks (in-

spection prioritization problem). In the formulation of the optimiza-

tion problems considered in this work, the city/area under investiga-

tion is decomposed into NSB structural blocks while NIG inspection 

crews are considered for inspecting the structural condition of all 

structural and infrastructure systems of the city/area. 

2.1 Step 1: Optimum assignment problem 

The assignment problem is defined as a nonlinear programming op-

timization problem as follows 

 

( )

( )

( )

1 1

( )
1

( )
1

min ( , ) ( )

1

1

( ) ( ) ( )

i
IG SB

i
SB

i

i
SB

i

nN

k i

i k

n

C ki
kSB

n

C ki
kSB

d SB C D k

x x
n

y y
n

D k A k BP k

 (2) 

TRB 2010 Annual Meeting CD-ROM Original paper submittal - not revised by author.



5 

where 
( )i

SBn  is the number of structural blocks allocated to the i
th

 in-

spection crews, d(SBk,Ci) is the distance between the SBk building 

block from the centre of the i
th

 group of structural blocks (with coor-

dinates xC and yC), while D(k) is the demand for the k
th

 building 

block defined as the product of the building block total area times 

the built-up percentage (i.e. percentage of the area with a structure). 

This is defined as a discrete optimization problem since the design 

variables x are integer numbers denoting the inspection crews to 

which each built-up block has been assigned and thus the total num-

ber of the design variables is equal to the number of structural 

blocks and the range of the design variables is [1, NIG]. 

2.2 Step 2: Inspection prioritization problem 

The definition of this problem is a typical Travelling Salesman 

Problem (TSP) [28] which is a problem in combinatorial optimiza-

tion studied in operations research and theoretical computer science.  

In TSP a salesman spends his time visiting N cities (or nodes) cycli-

cally. Given a list of cities and their - pair-wise - distances, the task 

is to find a Hamiltonian tour of minimal length, i.e. to find a closed 

tour of minimal length that visits each city once and only once. For 

an N city asymmetric TSP if all links are present then there are (N-

1)! different tours. TSP problems are also defined as integer optimi-

zation problems, similar to all problems that have been proven to be 

NP-hard [29]. 

Consider a TSP with N cities (vertices or nodes). The TSP can 

be represented by a complete weighted graph G=(N,A), with N the 

set of nodes and A the set of arcs (edges or connections) that fully 

connects the components of N. A cost function is assigned to every 

connection between two nodes i and j, that is the distance between 

the two nodes di,j (i j). In the symmetric TSP, it is di,j=dj,i. A solu-

tion to the TSP is a permutation p={p(1), …, p(N)} of the node indi-

ces {1, …, N}, as every node must appear only once in a solution. 

The optimum solution is the one that minimizes the total length L(p) 

given by 
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Thus, the corresponding prioritization problem is defined as follows  
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where d(SBk, SBk+1) is the distance between building block SBk  and 

k+1
th

. The main objective is to define the shortest possible route be-

tween the structural blocks that have been assigned in Step 1 to each 

inspection group. 

3. SOLVING THE OPTIMIZATION PROBLEMS 

3.1 Particle Swarm Optimization algorithm 

In a PSO formulation, multiple candidate solutions coexist and col-

laborate simultaneously. Each solution is called a “particle” that has 

a position and a velocity in the multidimensional design space. A 

particle “flies” in the problem search space looking for the optimal 

position. As “time” passes through its quest, a particle adjusts its ve-

locity and position according to its own “experience” as well as the 

experience of other (neighbouring) particles. Particle's experience is 

built by tracking and memorizing the best position encountered. As 

every particle remembers the best position it has visited during its 

“flight”, the PSO possesses a memory. A PSO system combines lo-

cal search method (through self experience) with global search 

method (through neighbouring experience), attempting to balance 

exploration and exploitation. 

3.1.1 Mathematical formulation of PSO 

Each particle maintains two basic characteristics, velocity and posi-

tion, in the multi-dimensional search space that are updated as fol-

lows 
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Pb, Gb
1 1 2 2( 1) ( ) ( ) ( )j j j j jt w t c t c tv v r x x r x x  (5) 

 ( 1) ( ) ( 1)j j jt t tx x v  (6) 

where v
j
(t) denotes the velocity vector of particle j at time t, x

j
(t) 

represents the position vector of particle j at time t, vector x
Pb,j

 is the 

personal „best ever‟ position of the j
th

 particle, and vector x
Gb

 is the 

global best location found by the entire swarm. The acceleration co-

efficients c1 and c2 indicate the degree of confidence in the best solu-

tion found by the individual particle (c1 - cognitive parameter) and 

by the whole swarm (c2 - social parameter), respectively, while r1 

and r2 are two random vectors uniformly distributed in the interval 

[0, 1]. The symbol “ ” of Eq. (5) denotes the Hadamard product, i.e. 

the element-wise vector or matrix multiplication. 

 
Figure 1 Visualization of the particle‟s movement in a two-dimensional  

design space. 

 

Figure 1 depicts a particle‟s movement, in a two-dimensional 

design space, according to Eqs. (5) and (6). The particle‟s current 

position x
j
(t) at time t is represented by the dotted circle at the lower 

left of the drawing, while the new position x
j
(t+1) at time t+1 is rep-

resented by the dotted bold circle at the upper right hand of the 

drawing. It can be seen how the particle‟s movement is affected by: 

(i) it‟s velocity v
j
(t); (ii) the personal best ever position of the parti-
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cle, x
Pb,j

, at the right of the figure; and (iii) the global best location 

found by the entire swarm, x
Gb

, at the upper left of the figure. 

In the above formulation, the global best location found by the 

entire swarm up to the current iteration (x
Gb

) is used. This is called a 

fully connected topology (fully informed PSO), as all particles share 

information with each other about the best performer of the swarm. 

Other topologies have also been used in the past where instead of the 

global best location found by the entire swarm, a local best location 

of each particle‟s neighbourhood is used. Thus, information is 

shared only among members of the same neighbourhood. 

The term w of Eq. (5) is the inertia weight, essentially a scal-

ing factor employed to control the exploration abilities of the swarm, 

which scales the current velocity value affecting the updated veloc-

ity vector. The inertia weight was not part of the original PSO algo-

rithm [24], as it was introduced later by Shi and Eberhart [25] in a 

successful attempt to improve convergence. Large inertia weights 

will force larger velocity updates allowing the algorithm to explore 

the design space globally. Similarly, small inertia values will force 

the velocity updates to concentrate in the nearby regions of the de-

sign space. 

The inertia weight can also be updated during iterations. A 

commonly used inertia update rule is the linearly-decreasing, calcu-

lated by the formula: 

 max min
1 max

max
t

w w
w w t

t
 (7) 

where t is the iteration number, wmax and wmin are the maximum and 

minimum values, respectively, of the inertia weight. In general, the 

linearly decreasing inertia weight has shown better performance than 

the fixed one. 

Particles' velocities in each dimension i (i = 1, …,n) are re-

stricted to a maximum velocity v
max

i. The vector v
max

 of dimension n 

holds the maximum absolute velocities for each dimension. It is 

more appropriate to use a vector rather than a scalar, as in the gen-

eral case different velocity restrictions can be applied for different 

dimensions of the particle. If for a given particle j the sum of accel-

erations of Eq. (5) causes the absolute velocity for dimension i to 
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exceed v
max

i, then the velocity on that dimension is limited to ±vmax,i. 

The vector parameter v
max

 is employed to protect the cohesion of the 

system, in the process of amplification of the positive feedback. The 

basic PSO has only few parameters to adjust. In Table 1 there is a 

list of the main parameters, their typical values as well as other in-

formation. 

Symbol Description Details 

NP Number of particles A typical range is 10 – 40. For most prob-

lems 10 particles is sufficient enough to 

get acceptable results. For some difficult 

or special problems the number can be 

increased to 50-100. 

n Dimension of particles It is determined by the problem to be op-

timized. 

w Inertia weight Usually is set to a value less than 1, i.e. 

0.95. It can also be updated during itera-

tions. 

x
L
, x

U
 Vectors containing the 

lower and upper bounds 

of the n design variables, 

respectively 

They are determined by the problem to be 

optimized. Different ranges for different 

dimensions of particles can be applied in 

general. 

v
max

 Vector containing the 

maximum allowable ve-

locity for each dimension 

during one iteration 

Usually is set half the length of the allow-

able interval for the given dimension: 

v
max

i = (x
U

i - x
L

i)/2. Different values for 

different dimensions of particles can be 

applied in general. 

c1, c2 Cognitive and social pa-

rameters 

Usually c1=c2=2. Other values can also be 

used, provided that 0 < c1+c2 < 4 [26]. 

Table 1. Main PSO parameters 

3.1.2 Convergence criteria 

Due to the repeated process of the PSO search, convergence criteria 

have to be applied for the termination of the optimization procedure. 

Two widely adopted convergence criteria are the maximum number 

of iterations of the PSO algorithm and the minimum error require-

ment on the calculation of the optimum value of the objective func-

tion. The selection of the maximum number of iterations depends, 

generally, on the complexity of the optimization problem at hand. 
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The second criterion presumes prior knowledge of the global opti-

mal value, which is feasible for testing or fine-tuning the algorithm 

in mathematical problems when the optimum is known a priori, but 

this is certainly not the case in practical structural optimization prob-

lems where the optimum is not known a priori. 

Symbol Description Details 

tmax Maximum number of it-

erations for the termina-

tion criterion. 

Determined by the complexity of the 

problem to be optimized, in conjunction 

with other PSO parameters (n, NP). 

kf Number of iterations for 

which the relative im-

provement of the objec-

tive function satisfies the 

convergence check. 

If the relative improvement of the objec-

tive function over the last kf iterations 

(including the current iteration) is less or 

equal to fm, convergence has been 

achieved. fm Minimum relative im-

provement of the value of 

the objective function. 

Table 2. PSO convergence parameters 

In our study, together with the maximum number of iterations, 

we have implemented the convergence criterion connected to the 

rate of improvement of the value of the objective function for a 

given number of iterations. If the relative improvement of the objec-

tive function over the last kf iterations (including the current itera-

tion) is less or equal to a threshold value fm, convergence is sup-

posed to have been achieved. In mathematical terms, denoting as 

Gbestt the best value for the objective function found by the PSO at 

iteration t, the relative improvement of the objective function can be 

written for the current iteration t as follows 

 
1

1

f

f

t k t

m

t k

Gbest Gbest
f

Gbest
 (8) 

In Table 2 there is a list of the convergence parameters of the PSO 

used in this study with description and details. A pseudo code of the 

PSO procedure is given in Figure 2. 
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3.1.3 PSO for integer optimization 

Since both problems defined in Section 2 are integer optimization 

problems, discrete optimization algorithms are required. For the Step 

1 optimization problem described in Section 2.1, a discrete version 

of the PSO algorithm is employed. In the continuous version of the 

PSO method, both particle positions and velocity are initialized ran-

domly.  

For each particle j 

Initialize particle position by distributing particles randomly in the 

design space 

End 

Repeat 

For each particle j 

Calculate fitness value for current position 

If the current fitness value is better than the best fitness value 

(Pbest) in the particle’s history then set current fitness value as 

the new Pbest and current position as the new xPb
j 

End 

Set Gbest as the best fitness value of all the particles’ Pbest and 

corresponding position as the new xGb 

For each particle j 

Calculate particle velocity from Eq. (5) 

Update particle position from Eq. (6) 

If, for any dimension i, xi ≤ xLi or xi ≥ xUi, then set xi = xLi or xi 

= xUi respectively and set corresponding vi = 0 

End 

Until maximum iterations is not attained and the relative improvement 

of the objective function is greater than fm over the last kf iterations 

Report results 

Figure 2. Pseudo-code for the main PSO for unconstrained optimization 

In this work, the particle positions are generated randomly over the 
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design space using discrete Latin Hypercube Sampling, thus guaran-

teeing that the initial particle positions will be integers in the accept-

able range. Furthermore, in the case of discrete optimization and in 

particular in integer programming, at every step of the optimization 

procedure, integer particle positions should also be generated. In or-

der to satisfy this, Eq. (5) is modified as follows 

Pb, Gb
1 1 2 2

( 1)

round ( ) ( ) ( )

j

j j j j

t

w t c t c t

v

v r x x r x x
 (9) 

where the vector function round(x) rounds each element of the vec-

tor x into the nearest integer. 

3.2 Ant Colony Optimization 

The Ant Colony Optimization (ACO) algorithm is a population-

based probabilistic technique for solving optimization problems, 

mainly for finding optimum paths through graphs [27]. The algo-

rithm was inspired by the behaviour of real ants in nature. In many 

ant species, individuals initially wander randomly and upon finding 

a food source return to their colony, depositing a substance called 

pheromone on the ground. Other ants smell this substance, and its 

presence influences the choice of their path, i.e. they tend to follow 

strong pheromone concentrations rather than travelling completely 

randomly, returning and reinforcing it if they eventually find food. 

The pheromone deposited on the ground forms a pheromone trail, 

which allows the ants to find good sources of food that have been 

previously identified by other ants. 

As time passes, the pheromone trails start to evaporate, reduc-

ing their strength. The more time it takes for an ant to travel down a 

path and back again, the more time the pheromone trail has to 

evaporate. A short path gets marched over faster than a long one, 

and thus the pheromone density remains high as it is laid on the path 

faster than it can evaporate. If there was no evaporation, the paths 

chosen by the first ants would tend to be excessively attractive to the 

following ants and as a result the exploration of the solution space 

would be constrained. In that sense, pheromone evaporation helps 
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also to avoid convergence to a locally optimal solution. Positive 

feedback eventually leads to most of the ants following a single “op-

timum” path. 

The idea of the ant colony algorithm is to mimic this behavior 

with simulated ants walking around the graph representing the prob-

lem to solve. The first algorithm was aiming to search for an optimal 

path in a graph. The original idea has since diversified to solve a 

wider class of numerical problems and, as a result, several problems 

have emerged, drawing on various aspects of the behavior of ants. 

The initial applications of ACO were in the domain of NP-hard 

combinatorial optimization problems, while it was soon also applied 

to routing in telecommunication networks.  

In ACO, a set of software agents called artificial ants search 

for good solutions to the optimization problem of finding the best 

path on a weighted graph. The ants incrementally build solutions by 

moving on the graph. The solution construction process is stochastic 

and it is biased on a pheromone model, that is, a set of parameters 

associated with graph components (either nodes or edges) whose 

values are modified at runtime by the ants. 

To apply ACO to the TSP, the construction graph is consid-

ered, defined by associating the set of cities with the set of vertices 

on the graph. The construction graph is fully connected and the 

number of vertices is equal to the number of cities, since in the TSP 

it is possible to move from any given city to any other city. The 

length of the edges (connections) between the vertices are set to be 

equal to the corresponding distances between the nodes (cities) and 

the pheromone values and heuristic values are set for the edges of 

the graph. Pheromone values are modified during iterations at run-

time and represent the cumulated experience of the ant colony, while 

heuristic values are problem dependent values that, in the case of the 

TSP, are set to be the inverse of the lengths of the edges.  

During an ACO iteration, each ant starts from a randomly cho-

sen vertex of the construction graph. Then, it moves along the edges 

of the graph keeping a memory of its path. In order to move from 

one node to another it probabilistically chooses the edge to follow 

among those that lead to yet unvisited nodes. Once an ant has visited 

all the nodes of the graph, a solution has been constructed. The 

probabilistic rule is biased by pheromone values and heuristic in-
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formation: the higher the pheromone and the heuristic value associ-

ated to an edge, the higher the probability the ant will choose that 

particular edge. Once all the ants have completed their tour, the it-

eration is complete and pheromone values on the connections are 

updated: each of the pheromone values is initially decreased by a 

certain percentage and then it receives an amount of additional 

pheromone proportional to the quality of the solutions to which it 

belongs. 

3.2.1 Ant Colony Optimization algorithm 

Consider a population of m ants where at each iteration of the algo-

rithm every ant constructs a “route” by visiting every node sequen-

tially. Initially, ants are put on randomly chosen nodes. At each con-

struction step during an iteration, ant k applies a probabilistic action 

choice rule, called random proportional rule, to decide which node 

to visit next. While constructing the route, an ant k currently at node 

i, maintains a memory Mk
 which contains the nodes already visited, 

in the order they were visited. This memory is used in order to de-

fine the feasible neighborhood Nk
i that is the set of nodes that have 

not yet been visited by ant k. In particular, the probability with 

which ant k, currently at node i, chooses to go to node j is 

 

, ,

,

, ,

( ) ( )
, if  

( ) ( )
k
i

i j i jk k

i j i

i i

p j

N

N
 (10) 

where τi,j is the amount of pheromone on connection between i and j 

nodes, α is a parameter to control the influence of τi,j, β is a parame-

ter to control the influence of ηi,j and ηi,j is a heuristic information 

that is available a priori, denoting the desirability of connection i,j, 

given by 

 
,

,

1
i j

i jd  (11) 

According to Eq. (11), the heuristic desirability of going from node i 

to node j is inversely proportional to the distance between i and j. By 
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definition, the probability of choosing a city outside Nk
i is zero. By 

this probabilistic rule, the probability of choosing a particular con-

nection i,j increases with the value of the associated pheromone trail 

τi,j and of the heuristic information value ηi,j. 

The selection of the superscript parameters α and β is very im-

portant: if α=0, the closest cities are more likely to be selected which 

corresponds to a classic stochastic greedy algorithm (with multiple 

starting points since ants are initially randomly distributed over the 

nodes). If β=0, only pheromone amplification is at work, that is, 

only pheromone is used without any heuristic bias (this generally 

leads to rather poor results [30]). 

3.2.2 Pheromone Update rule 

After all the m ants have constructed their routes, the amount of 

pheromone for each connection between i and j nodes, is updated for 

the next iteration t+1 as follows 

 
, , ,

1

( 1) 1 ( ) ( ), ( , )
m

k

i j i j i j

k

t t t i j A
  (12) 

where ρ is the rate of pheromone evaporation, a constant parameter 

of the method, A is the set of arcs (edges or connections) that fully 

connects the set of nodes and Δτ
k
i,j(t) is the amount of pheromone 

ant k deposits on the connections it has visited through its tour Tk
, 

typically given by 

 
,

1
if connection ( , ) belongs to 

( )

0 otherwise

k

kk

i j

i j
L

T
T

 (13) 

The coefficient ρ must be set to a value <1 to avoid unlimited 

accumulation of trail [31]. In general, connections that are used by 

many ants and which are parts of short tours, receive more phero-

mone and are therefore more likely to be chosen by ants in future it-

erations of the algorithm. A pseudo code of the ACO procedure is 

given in the following Figure 3. 
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Set ACO parameters α, β, ρ 

Initialize pheromone trails matrix τ (N×N) 

Repeat 

Place m ants randomly on the N nodes 

For i=1 to m 

For j=1 to N-1 

Assign probabilities for every feasible connection according to 

Eq. (10) 

Update ant’s position 

End 

The ant returns to its initial place, closing the tour 

End 

Update pheromone for each connection i,j according to Eqs. (12) and 

(13) 

While termination criterion not satisfied 

Figure 3. Flowchart of the ACO algorithm 

4. CASE STUDIES 

In order to assess the performance of the formulation of the problem 

defined in Section 2 along with the optimization algorithms consid-

ered, two case studies are examined: an „academic‟ and a real world 

case study. 

4.1 Academic case study 

The first case study corresponds to an area/city having a rectangular 

layout composed of 8×8=64 structural blocks, while the centres of 

adjacent building blocks forgo 100 meters. This case study has been 

considered in order to calibrate the optimization algorithms used for 

solving the two step optimization problem, and to also assess the 

performance in a similar to the real world case study but with a 

known solution.  
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In the first step, the optimal assignment problem as defined in 

Eq. (2) is solved by means of the Particle Swarm Optimization algo-

rithm (optimal allocation of inspection crews to city blocks). The pa-

rameters of the algorithm are: NP=50, tmax=500, n=64, c1=2.0, 

c2=2.0, wstart=0.95 (velocity weight at the beginning), wend=0.5 (ve-

locity weight at the end of the PSO iterations). 

In order to validate the performance of the algorithm, two and 

four inspection crews have been considered. Figures 4a and 4b de-

pict the solutions obtained for the optimum assignment problem for 

two and four inspection crews, respectively.  

 
(a) 

 
(b) 

Figure 4. Academic case study - Subdivision into structural blocks (a) two and  

(b) four inspection crews 

For the two inspection groups vmax=1 while for the four inspec-

tion groups vmax=3. For the solution of the assignment problem, the 

area and structural percentage are the same in all structural blocks, 

thus the solution of this problem is reduced into a problem of mini-

mizing the distance between the centres of the structural blocks as-

signed to an inspection crew from the global centre of the structural 

blocks group. As can be seen, the optimal allocations match exactly 

the expected assignment of the structural blocks on the inspection 

groups both for the case that NIG=2 and the case that NIG=4. 

In the second step, the inspection prioritization problem de-

fined in Eq. (4) is solved by means of the Ant Colony Optimization 

algorithm. This step assigns inspection priorities – within the build-

ing blocks determined in Step 1 – for inspection groups, i.e. the first 
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building to be inspected, the second, and so on. The parameters of 

the method are: evap_rate=0.1 (rate of pheromone evaporation), 

a=1, b=5, iterations were set to 50 while the number of ants was set 

to 150. Figures 5a and 5b depict the optimal routes achieved that 

correspond to the least time consuming route required for each in-

spection crew starting from a base (the base is the same for every in-

spection group). 

 
(a) 

 
(b) 

Figure 5. Academic case study – Best route (a) two and (b) four inspection crews 

 
(a) 

 
(b) 

Figure 6. Academic case study – Optimization history of the last group (a) for the 

case of two and (b) the case of four inspection crews 

Figure 6 depicts the convergence histories of the ACO algorithm. 

The vertical axis is the minimum distance path among the ants for 

every iteration. 

To examine the advantages of the solution obtained for the 

formulation of the TSP problem two alternative formulations were 
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examined: (i) Random route selection and (ii) Closest available 

node. In the first strategy, an agent selects a block randomly, from 

the available blocks that have not yet been visited. In the second 

strategy, an agent selects the block that is closer to his current posi-

tion, from the available blocks that have not yet been visited. If more 

two or more blocks are equally close, then a random selection is 

done. 

For both solutions, 10000 simulations were examined and the 

average distance was compared to those obtained by the optimizers. 

Figure 7 depicts a randomly selected solution for the two cases. In 

the first strategy, the average distance was 10468 which is an in-

crease of 227% compared to the optimal 3200 distance, while the 

average distance for the second strategy was 3480 which is an in-

crease of 9% compared to the optimal distance. 

 
(a) 

 
(b) 

Figure 7. Academic case study – Two solutions for the TSP problem (a) Random 

route selection and (b) Closest available node. 

4.2 Real world case study 

The second test case corresponds to a real world case study, the city 

of Patras in Greece, which was considered in order to define both the 

problem of the inspection assignment and the inspection prioritiza-
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having different areas and built-up percentages, while two different 

sets of inspection groups (crews of inspectors) are considered. The 

subdivision of the city of Patras into 112 structural blocks can be 

seen in Figure 8a.  

Two different scenarios were considered with respect to the 

damage level encountered on the structures due to a strong earth-

quake. In the first, the damages are the same in all city blocks, while 

in the second four areas with differential structural damage levels 

are considered: (i) Level 0 – no damages, (ii) Level 1 – slight dam-

ages, (iii) Level 2 – moderate damages and (iv) Level 3 – extensive 

damages. The four areas are shown in Figure 8b. 

 
(a) 

 
(b) 

Figure 8. City of Patras – (a) Subdivision into structural blocks and  

(b) Mean damage level distributed over the structural blocks 

4.2.1 Uniform distribution of damages 

In the first part of this case study, a uniform distribution of damages 

is examined. Similar to the previous test example, two and four in-

spection crews were examined. Figures 9a and 9b depict the solu-
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tions obtained for the optimal allocation problem for the two differ-

ent number of inspection crews. In contrary to the academic test ex-

ample the area and built-up percentages are not the same in the 

structural blocks. 

 
(a) 

 
(b) 

Figure 9. City of Patras - Subdivision into structural blocks (a) two and (b) four 

inspection crews 
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In the second step, the inspection prioritization problem de-

fined in Eq. (4) is also solved by means of the Ant Colony Optimiza-

tion algorithm. Figures 10a and 10b depict the optimal routes 

achieved, corresponding to the least time consuming route required 

for each inspection crew departing from their base (the base is the 

same for every inspection crew). 

 
(a) 

 
(b) 

Figure 10. City of Patras – Best route (a) two and (b) four inspection groups 
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The distances for the first and second group are 17444 and 

28145 respectively for the two inspection groups while for the four 

are 10431, 12986, 9161 and 16498. Figure 11 depicts the conver-

gence histories of the ACO algorithm. The vertical axis is the mini-

mum distance path among the ants for every iteration.  

 
(a) 

 
(b) 

Figure 11. City of Patras – Optimization history of the last group (a) for the case 

of two and (b) the case of four inspection groups 

4.2.2 Non-uniform distribution of the damages 

In the second part, a non-uniform distribution of damages is exam-

ined. The mean damage level for each region is shown in Figure 8b. 

Damages are assumed to follow the Gaussian distribution with mean 

value 0, 1, 2 and 3 for the four zones of Figure 8b. The final distri-

bution of damages over the structural blocks can be seen in Figure 

12, where a big circle denotes severe damage. In order to account for 

the influence of the distribution of the damages in the city‟s regions, 

the formulation of the optimal assignment problem given in Eq. (2) 

is modified as follows 

 

( )

1 1

min ( , ) ( ) ( )

i
IG SBnN

k i

i k

d SB C D k DF k  (14) 

where DF(k) is the damage factor corresponding to each damage 

level, as shown in Table 3. Figures 13a and 13b depict the solutions 

obtained for the optimum allocation problem for the two different 

number of inspection crews. 
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Damage level Damage Factor (DF) 

0 1.0 

1 1.2 

2 1.5 

3 2.0 

Table 3. Damage Factor (DF) corresponding to each damage level. 

 

 
Figure 12. City of Patras – Distribution of the damage levels 
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(a) 

 
(b) 

Figure 13. City of Patras - Subdivision into structural blocks (a) two and (b) four 

inspection crews 
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(a) 

 
(b) 

Figure 14. City of Patras – Best route (a) two and (b) four inspection crews 
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same for every inspection crew. The distances for the first and sec-

ond group are 17121 and 31540 respectively for the two inspection 

groups while for the four are 9633.7, 10939, 11383 and 15740. 

    
(a) 

 
(b) 

Figure 15. City of Patras – Optimization history of the last group (a) for the case 

of two and (b) the case of four inspection crews 

Figure 15 depicts the convergence histories of the ACO algorithm. 

The vertical axis is the minimum distance path among the ants for 

every iteration.  

5. CONCLUSIONS 
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must be dispatched and inspect critical infrastructures. The objective 

of the current work was to schedule critical infrastructures inspec-

tion crews following an earthquake in densely populated metropoli-

tan regions. In this chapter two formulations have been successfully 

implemented: in the first, the structural blocks are assigned to differ-

ent inspection groups with an effort to equally distribute the work-

load between the groups, while in the second the optimal route for 

each group was determined with an effort to minimize the distance 

that each inspection group has to cover. A Particle Swarm Optimiza-
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tion and an Ant Colony Optimization-based framework were im-

plemented for dealing with the problem at hand and they both re-

sulted in tractable and rapid response models. 
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