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Abstract. The TRIC element is a simple but sophisticated three-node shear-deformable iso-
tropic and composite facet shell element suitable for large-scale linear and nonlinear engi-
neering computations of shell structures. The element formulation is based on the natural 
mode finite element method where the deformation or natural modes are separated from the 
rigid body modes. The element, compared to the conventional isoparametric finite element 
formulations, has substantial computational advantages such as analytical expressions for the 
computation of the stiffness matrix, as well as locking-free properties. The characteristic fea-
ture of this element is that the non-linear material behaviour is taken into account entirely on 
the natural coordinate system and can be expressed analytically [1,2,3]. 
An evaluation study is performed of the improved TRIC element [4] in its membrane behav-
iour which becomes predominant in shear walls and the detailed simulation of steel structures. 
The enhanced features are achieved by applying an optimal method in calculating the ele-
ments of the stiffness matrix regarding the drilling degrees of freedom, while at the same time 
eliminating the aspect ratio locking of its predecessor. An elasto-plastic constitutive model 
based on the von Mises yield criterion with isotropic hardening is incorporated into the im-
proved nonlinear TRIC shell element. 
The behaviour of the element is evaluated in a number of linear and elastoplastic benchmark 
tests. Both the stress and displacement fields of the element are tested. The results are com-
pared with existing analytical solutions or with numerical results obtained from commercial 
finite element programs. The improved element exhibits excellent performance in shell prob-
lems with significant membrane stresses and unstructured meshes, while retaining its advan-
tages in terms of computational efficiency. 
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1 INTRODUCTION 
An attempt to device a shell element with robustness, accuracy and efficiency has led to 

the derivation of the TRIC shell element [1,3], a simple but sophisticated triangular, shear-
deformable facet shell element suitable for the analysis of thin and moderately thick isotropic 
as well as composite plate and shell structures. Its formulation is based on the natural mode 
finite element method [5], a method introduced by Argyris in the 1950s and then followed by 
many investigators, that separates the pure deformational modes -also called natural modes- 
from the rigid body movements of the element. The natural mode method in connection with 
the triangular shape of the element has substantial computational advantages compared to the 
conventional isoparametric finite element formulations. Appropriate treatment of the element 
kinematics eliminates automatically locking phenomena while all computations are performed 
analytically, thus avoiding the expensive numerical computation of the stiffness matrix. Fur-
thermore, the inclusion of the transverse shear deformations in the formulation of the TRIC 
shell element based on a first order shear-deformable beam theory is performed in a way that 
eliminates the shear locking effect in a physical manner. 

The TRIC element formulation can be decomposed in two different triangular elements. 
One for the pure-bending behavior and one for the membrane (plane stress) behavior. In a 
previous work [4], an enhancement of the element’s membrane behavior was presented. The 
enhancement follows an optimal method in calculating the stiffness matrix regarding the rota-
tional or drilling degrees of freedom (corner rotations normal to the plane of the shell ele-
ment). The element performance in plane stress problems prior to the improvement was 
identical to that of the Constant Strain Triangle (CST) [6]. This element encounters great dif-
ficulties in determining the exact structural behavior, while it exhibits serious aspect ratio 
locking. 

The purpose of this work is to assess via a thorough investigation the ability of the im-
proved element to address real-world structural problems in a computationally efficient and 
yet accurate way in both linear and elastoplastic tests. An elasto-plastic constitutive model 
based on the von Mises yield criterion with isotropic hardening [7] is incorporated into the 
improved TRIC shell element. 

2 THE TRIC ELEMENT 

The formulation of the TRIC shell element has been presented thoroughly in a number of 
papers [1-5,7]. In the present paper, only the basic features of the element will be highlighted 
and particularly those that are essential for the introduced improvement. 

2.1 Coordinate system of the element 
The key-point for the formulation of the TRIC shell element is the adoption of the so-

called natural coordinate system which has the three axes parallel to the sides of the triangle 
(α, β, γ). Apart from the natural system (α, β, γ) there are also the local elemental coordinate 
system (x΄, y΄, z΄) placed at the triangle's centroid, and the global Cartesian coordinate system 
(x, y, z). Finally, for each ply of the triangle, a material coordinate system (1, 2, 3) is defined 
with axis 1 being parallel to the direction of the material fibers. All four coordinate systems 
are depicted in Figure 1. 
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Figure 1: The multilayer triangular TRIC element: coordinate systems 

2.2 From the cartesian system to the natural system – natural kinematics of the ele-
ment 
In the natural mode method the Cartesian strains have been replaced by the total natural 

strains.  

 T
t tα t t{γ γ γ }β γ=γ  (1) 

These strains are measured directly parallel to the triangle's sides, while by definition 
straining of one side leaves all other triangular sides unstrained (Figure 2). 
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Figure 2: The total natural axial strain γtα concerning TRIC’s side α. 

The total natural axial strains tγ  are related to the three in-plane local Cartesian strains ΄γ  
according to the expression 

 

2 2
αx αx αx αxtα x'x'

t 2 2
t tβ βx βx βx βx y'y'

2 2
tγ γx γx γx γx x'y'

c s 2s cγ γ
' γ c s 2s c γ

γ c s 2s c 2γ

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

⎡ ⎤ ⎧ ⎫⎧ ⎫
⎢ ⎥ ⎪ ⎪⎪ ⎪= ⇔ = ⎢ ⎥⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎢ ⎥ ⎩ ⎭⎣ ⎦

γ B γ   (2) 

where  

 ix ixc cos i,x and s sin i,x for i α,β,γ′ ′′ ′= = =  (3) 
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and α,x , β,x , γ,x′ ′ ′  are the angles that the triangle’s edges α, β and γ form with the local 
x΄ axis, respectively. 

The corresponding natural stresses cσ to the total natural axial strains tγ  are grouped in 
the vector 

 T
c cα cβ cγ{σ σ σ }=σ  (4) 

2.3 Constitutive relations (The natural stress – strain matrix κct) 
In the present paragraph no mention will be made to the transverse shear strains, as no 

modification has been made to them. With respect to the material coordinate system we will 
define orthotropic properties such as Young’s moduli and Poisson’s ratios, for every layer k, 
in the fashion: 

 

12

2

1 1
12

12 21 12 21
11 11

1
22 12 22

12 21 12 21
12 12k k

12

k

Ε Εv 0
1- v v 1 - v vσ γ

Ε Εσ = v 0 γ
1- v v 1 - v v

σ γ
0 0 G

⎡ ⎤
⎢ ⎥
⎢ ⎥⎧ ⎫ ⎧ ⎫

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎢ ⎥

⎢ ⎥⎣ ⎦
κ

 (5) 

Taking into consideration that in general all material properties are temperature dependent 
and for complete isotropy (ν12 = ν21 = ν , Ε1 = Ε2 = Ε), we come with 

 12 2
2

k

E vE 0
1 E= vE E 0 , G =

1- v 2(1+ v)
0 0 G(1- v )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

κ  (6) 

The constitutive relations between the natural stresses and the total natural strains are es-
tablished by initiating the following sequence of coordinate system transformations 

Material system → Local system → Natural system 

With simple geometric transformations and by contemplating the invariance of the strain 
energy density in the different coordinate systems, one can easily reach to an expression for 
the constitutive matrix in the natural coordinate system for both axial and transverse deforma-
tions 

 { } [ ]{ }c ct tk k
=σ κ γ  (7) 

valid for each layer k. Matrix ctκ defines the constitutive matrices of axial straining and sym-
metrical bending modes. The relation between ctκ  and 12κ  is given by: 

 k -1 T -T
ct 12=  

k
⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦κ B A κ A B  (8) 

in whichΑ is the transformation matrix that relates the material with the local system (its form 
is presented in [1]). In the present work matrix A is a unit vector since the material is taken as 
isotropic and material and local coordinate systems are identical. 
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2.4 Natural modes 
The triangular shell element TRIC has 6 × 3 = 18 nodal displacements but only 18 - 6 = 12 

independent straining modes, called natural modes, can be defined in order to satisfy all ki-
nematic compatibility conditions. The stiffness matrix corresponding to these deformations is 
of dimensions 12 × 12 and is denoted as the natural stiffness matrix. A simple congruent 
transformation leads to the full 18 × 18 cartesian stiffness matrix of the element. 

The 6 rigid-body and 12 straining natural modes (depicted in Figure 3) of the TRIC ele-
ment, can be grouped in the vector ρ, where ρ0 and ρN represent the rigid-body and straining 
modes, respectively: 

 
[ ]0

0 01 02 03 04 05 06(6x1)

0 0 0(18x1) N N tα tβ tγ Sα Aα Sβ Aβ Sγ Aγ α β γ(12x1)

ρ ρ ρ ρ ρ ρ

γ γ γ ψ ψ ψ ψ ψ ψ ψ ψ ψ

t

t

⎡ ⎤ =⎢ ⎥= ⎢ ⎥ ⎡ ⎤= ⎣ ⎦⎢ ⎥⎣ ⎦

ρ ρ
ρ

ρ ρ
 (9) 

Vector ρN can be subdivided in the following vectors: 
0 0 0 0
t tα tβ tγγ γ γ

t
⎡ ⎤= ⎣ ⎦γ  axial straining mode (10) 

S Sα Sβ Sγψ ψ ψ
t

⎡ ⎤= ⎣ ⎦ψ  symmetric bending mode (11) 

A Aα Aβ Aγψ ψ ψ
t

⎡ ⎤= ⎣ ⎦ψ  antisymmetric bending + shearing mode (12) 

z α β γψ ψ ψ
t

⎡ ⎤= ⎣ ⎦ψ  azimuth rotational mode (13) 

The rigid body modes ρ0 The straining modes ρN 

Figure 3: The Natural modes of the TRIC element 



Andreas G. Gisakis, Pavlos Tsirigas, Vagelis Plevris and Manolis Papadrakakis 

 6

2.5 Natural stiffness matrix kN 

The components of the natural stiffness matrix are: 

 

ta
(3 3)

N Sq
(12 12) (6 6)

az
(3 3)

×

× ×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

k 0 0

k 0 k 0

0 0 k

 (14) 

where: kta are the axial stiffness terms, kSq are symmetrical bending the anti-symmetrical 
bending and shear stiffness terms and kaz are the stiffness terms due to in-plane rotations 
(azimuth stiffness terms). kN is a sparse matrix of only 33 non zero entries. Since it refers to 
pure deformation modes, its use can provide an insight on the deformation patterns of the 
structure and on the ways of enhancing its performance according to the dominating straining 
modes. The derivation of kta and kSq was already presented in [2]. 

2.5.1 Azimuth stiffness matrix (initial formulation) 
The drilling degrees of freedom are not involved in the derivation of the element's stiffness. 

However, these degrees of freedom are retained, solely for computational reasons. In the case 
of the TRIC element, the assignment of stiffness terms to the drilling degrees of freedom is 
done in a way that is consistent with the natural mode method. Three rotational springs with 
the same stiffness kz are considered at the three vertices of the triangle and they are used to 
simulate the in-plane rotation about z΄ axis.  

 T
az α β γ{ψ ψ ψ }=q  (15) 

The azimuth stiffness matrix kaz is then calculated as: 

 az

1 -0.5 -0.5
= -0.5 1 -0.5

-0.5 -0.5 1
zk
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

k  (16) 

with kz having an arbitrary but small enough value, compared to the rest of the stiffness terms, 
so that it will produce a negligible effect on the final equilibrium equations. 

 
2 2 2

-6 2 2 2
2 2 2

- 2 - 2 - 2

1 1 1=10 ×   ,     ,   
h h h

z
h h h

k Ω max z k dz z k dz z k dz
l l lαα ββ γγ
α β γ

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫ ∫  (17) 

where h is the thickness of the shell element, li (i = α, β, γ) are the lengths of the three sides of 
the element, Ω is the element area and kαα, kββ, kγγ are the diagonal terms of κct.  

2.6 The Global cartesian stiffness matrix k  
The cartesian stiffness matrix k in the local coordinate system can be found using the fol-

lowing transformation: 

 T
N N N(18 18) (18 12) (12 12) (12 18)× × × ×

=k α k α  (18) 
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where Nα is the matrix that relates the natural straining modes ρN to the Cartesian nodal dis-
placements ρ  

 [ ]TT

(1 18)
1,2,3iu w iυ θ φ ψ

×
′ ′ ′ ′ ′ ′= =ρ  (19) 

with ui, υi, wi being the three nodal translations and θi, φi, ψi the three nodal rotations of node i.  

 N N=ρ α ρ  (20) 

The calculation of Nα is done using strictly geometrical arguments and can be expressed 
analytically. In the case of total natural axial strains tγ  the relation to the Cartesian nodal dis-
placements ρ  can de easily deducted from Figure 3 as: 

 β β γ γα α
tα 3 2 3 2 tβ 1 3 1 3 tγ 2 1 2 12 2 2 2 2 2

α α β β γ γ

x y x yx yγ = (u - u )+ (υ - υ ) , γ = (u - u )+ (υ - υ ) , γ = (u - u )+ (υ - υ )
l l l l l l

(21) 

while xi, yi (i = α, β, γ) is the projection of the element’s sides in global coordinate axis x and 
y respectively and li is the length of the element’s sides. 

A final transformation leads to the global elemental stiffness (18 18)×k  

 T
06 06(18 18) (18 18)(18 18) (18 18)× ×× ×

=k T k T  (22) 

where 06T is a hyper diagonal matrix consisted of direction cosines formed between the local 
and the global Cartesian coordinate system according to Figure 1. Details concerning the ele-
ment’s full natural and Cartesian stiffness matrices are given in [1]. 

3 THE CONTINUUM ELASTO-PLASTIC CONSTITUTIVE MATRIX [7] 
The natural elasto-plastic stiffness of the TRIC shell element has the same structure as the 

natural elastic stiffness. If we ignore the influence of the shearing stresses on the elasto-plastic 
behaviour of the element, we only have to express eq.(7) in incremental form and replace the 
natural elastic material stiffness el

ctκ  by the natural elasto-plastic material stiffness pl-el
ctκ  [8,9]. 

In this case the components of antisymmetric stiffness kA remain elastic. The primary objec-
tive in this section is to establish the explicit form of the relation between the natural strain 
and stress increments for each layer r within a given load step: 

 r
t

plel
ct

r
c dd γκσ −=  (23) 

In the following discussion the superscript r is omitted for convenience.  
We start with the assumption that the total natural strain increment tdγ  is the sum of el

tdγ , 

representing the elastic component of the strain, and the pl
tdγ  representing the irreversible 

plastic component of the strain: 

 pl
t

el
tt ddd γγγ +=  (24) 

The stress increment follows then as  

 pl
t

el
ctt

el
ctc ddd γκγκσ −=  (25) 

the elastic natural strain increment is calculated as 
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 [ ] c
1el

ct
el
t dd σκγ

−
=  (26) 

where cdσ  is the incremental natural stress vector and el
ctκ  is the elastic constitutive matrix. In 

this formulation, it is assumed that the material is isotropic.  
The incremental natural plastic strain is given by the following equation: 

 N
pl
t

pl
t dd sγ γ=  (27) 

where Ns  is a vector which determines the direction of the pl
tdγ  and is defined by the normal-

ity flow rule as 

 
t

cccc
N

FFFF
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ∂
∂

σ∂
∂

σ∂
∂

=
∂
∂

=
γβασ

s  (28) 

in which F is the yield criterion given in terms of natural stress cσ , and pl
tdγ  is a positive 

constant, the so-called equivalent plastic strain increment. 
Using the above equations, the total strain increment tdγ  can be written as 

 [ ] N
pl
tc

1el
ctt γddd sσκγ +=

−
 (29) 

and cdσ  as  

 [ ] [ ] N
el
ct

pl
tt

el
ctc γddd sκγκσ −=  (30) 

In case of von Mises yield condition, the yield surface may be expressed as 

 0)γ(σσ)γ,F( pl
ty

pl
tc =−=σ  (31) 

where σ  is the equivalent stress and yσ  is the yield stress. The equivalent stress is derived in 
the next section and is defined explicitly by  

 c3
t
c

2

3
1

2
3σ σEAσ ⎥⎦

⎤
⎢⎣
⎡ −=  (32) 

where 

 

2 2

2 2
3

2 2

1 1 1 1 cos α cos β
1 1 1 , cos α 1 cos γ
1 1 1 cos β cos γ 1

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

E A  (33) 

and α, β, γ are the angles of the triangle. 
Differentiating the yield criterion, gives: 

 
                   

0γHdd                        

0γd
γ

))γ(σσ(
d

))γ(σσ(
))γ(σσd()γ,dF(

pl
tc

t
N

pl
tpl

t

pl
ty

c
c

pl
typl

ty
pl
tc

=−=

=
∂

−∂
+

∂

−∂
=−=

σs

σ
σ

σ

 (34) 

where  
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 pl
t

pl
ty ))(σσ(

H
γ∂

γ−∂
−=  (35) 

H is the hardening modulus and in our case is defined as 

 ycpl
t

c σσ   ,
γd

d
H >=

σ
 (36) 

From the yield condition the equivalent plastic strain increment is derived as 

 0d
H
1γd c

t
N

pl
t ≥= σs  (37) 

Alternatively, the equivalent plastic strain can be expressed in terms of the strain incre-
ments by substituting (27) and (30) in (37): 

 0d
H

1γd t
el
ct

t
N

N
el
ct

t
N

pl
t ≥

+
= γκs

sκs
 (38) 

Finally, after substitution of (27), (38) in (30) we obtain (23) in explicit form 

 r
t

r
t

N
el
ctN

el
ct

N
el
ct

t
N

el
ct

r
c d))((

H
1d γsκsκ

sκs
κσ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=  (39) 

where the expression in brackets corresponds to the standard continuum elasto-plastic mate-
rial stiffness matrix plel

ct
−κ  valid for every layer r: 

 
r

t
N

el
ctN

el
ct

N
el
ct

t
N

el
ct

rplel
ct ))((

H
1][

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=− sκsκ

sκs
κκ  (40) 

The criterion for the existence of elasto-plastic natural matrix is obviously the equivalent 
plastic strain increment pl

tγd which is greater than zero only if plastic yielding takes place. 

The natural strain increment in the r-th layer r
tdγ  which is used as input to (39) is related to 

the components 0
tidγ  and Sidψ  of the incremental natural modes vector Ndρ : 

 γβ,α,i      ,
l

dψ
zdγdγ

i

Si
r

0
ti

r
ti =′+=  (41) 

The natural elasto-plastic stiffness of the element is obtained by summing up the natural 
elasto-plastic layer stiffnesses of the element. Following the expression for the natural elastic 
stiffness matrix, the elasto-plastic one is given by  

 ( )∑
=

−− =
nl

1r
N

plel
ct

t
N

plel
N ακαk  (42) 

where nl is the number of layers. 
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4 IMPROVEMENT OF THE MEMBRANE BEHAVIOR  
The improvements presented in this work are inspired by the work of Felippa and co-

workers [10-13]. In their study an optimal 9-dof plane stress triangular element is designed 
based on the on the Assumed Natural Deviatoric Strain (ANDES) formulation, a variant of the 
assumed natural strain (ANS) formulation. The key concept of ANDES is that only the devia-
toric part of the strains is assumed over the element, whereas the mean strain part is discarded 
in favor of a constant stress assumption. 

4.1 Drilling degrees of freedom  
The drilling degrees of freedom are useful for compactly expressing the higher order be-

havior of the element. The azimuth corner rotations 

 { }z

T

α β γψ ψ ψ=ψ  (43) 

are extracted from the total corner rotations ψz
total, subtracting the mean or CST rotation ρ06: 

 total
z z 06= -ψ ψ ρ  (44) 

where z = α, β, γ and 

 06 2 3 2 3= ( α 1 β γ α 1 β γ
1ρ x u + x u + x u y υ + y υ + y υ )

4Ω
+  (45) 

is the geometric expression that relates the nodal translational degrees of freedom with the 6th 
natural rigid-body mode ρ06. 

4.2 Azimuth stiffness matrix kaz (modification) 

The modified azimuth stiffness matrix is given by 

 az ψ
(3 3) (3 3)

k

k=1,2,..,nl× ×

= ∑k k  (46) 

where ψ
kk  is the azimuth stiffness matrix in each layer (k) of the element in terms of the azi-

muth corner rotations ψz of eq. (44). 
To express ψ

kk  compactly, the following matrices are introduced, which depend on nine 
free dimensionless parameters, β1 through β9  

 
1 2 3, ,

4 5 6 3 1 2 8 9 7
2 2 2 2 2 2 2 2 2
a a a a a a a a a

7 8 9 6 4 5 3 1 2
2 2 2 2 2 2 2 2 2
β β β β β β β β β

1 2 3 9 7 8 5 6 4
2 2 2 2 2 2 2 2 2
γ γ γ γ γ γ γ γ γ

β β β β β β β β β
l l l l l l l l l

2Ω β β β 2Ω β β β 2Ω β β β
3 l l l 3 l l l 3 l l l

β β β β β β β β β
l l l l l l l l l

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢

= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣

Q Q Q

⎤
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 (47) 

Matrix Qi relates the natural strains γt, at elements corner i, to the azimuth corner rotations 
ψΖ. At any point of triangular coordinates {ζ1, ζ2, ζ3} 

 t z=γ Qψ  (48) 

where 
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 1 1 2 2 3 3= ζ ζ ζ+ +Q Q Q Q  (49) 

If we evaluate eq. (48) and eq. (49) at the midpoints we get: 

 4 1 2 5 2 3 6 3 1( ) , ( ) , ( )1 1 1
2 2 2

= + = + = +Q Q Q Q Q Q Q Q Q  (50) 

Finally:  

 
4 5

k T T T
ψ ct 4 ct 5 6 ct 6= ( + )h +k Q κ Q Q κ Q Q κ Q  (51) 

and 

 k k
az ψ0

3
4
β=k k  (52) 

where β0 is an overall scaling coefficient. This coefficient could be absorbed into the β1 
through β9 but it is left separate, to simplify the incorporation of material behavior into eq. 
(51). The factor ¾ comes from “historical grandfathering” [10]. 

The free dimensionless parameters βi are determined from a higher order patch test which 
tunes up the higher order stiffness of triangular elements. Using such a patch test the optimal 
parameters are calculated as follows: 

 ,2
0 1 2 3 4 5 6 7 8 9

1β = (1- 4ν ) β = 1, β = 2, β = 1, β = 0, β = 1, β = -1, β = -1, β = -1, β = -2
2

 (53) 

Since for v = ½ the optimal β0 is 0, the azimuth stiffness would vanish and the element is 
rank deficient. To maintain stability β0 is set to a minimum value, for example 

 ( )2

0

1  4
 max ,  0.01

2
ν

β
⎛ ⎞−

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (54) 

4.3 Cartesian stiffness matrix k (modification) 
So far we focused our attention on the calculation of the stiffness terms of azimuth modes 

in the natural system. It remains to establish the relation between the azimuth modes in the 
natural and in the local systems. Furthermore it should be noted that in the basic TRIC ele-
ment the coupling terms of eq. (14), connecting these degrees of freedom with the rest of the 
modes were set equal to zero. This means that there is no coupling of the axial, symmetric 
bending, antisymmetric bending and shearing modes when the element is distorted in the azi-
muthian direction. 

In section 2.6 it was shown that the Cartesian stiffness matrix k in the local coordinate sys-
tem can be found using eq. (18), and Nα is the matrix that relates the natural straining modes 
ρN to the Cartesian nodal displacements ρ . Therefore Nα is solely a function of the current 
geometry of the element and is derived based upon pure geometrical relations between ρN and 
ρ . This matrix can now be used to produce all the above mentioned geometric expressions. 

4.3.1  Relation between the azimuth modes in the natural and in the local system  
By applying eq. (44) and eq. (45) to the three corners we assemble the transformation: 
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 Z

1,2,3

α a a β β γ γ i

β a a β β γ γ i

γ a a β β γ γ i i

ψ x y 4Ω x y 0 x y 0 u
1ψ x y 0 x y 4Ω x y 0 υ

4Ω
ψ x y 0 x y 0 x y 4Ω ψ

=

′⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ ′= =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ′⎩ ⎭⎩ ⎭ ⎣ ⎦

ψ  (55) 

In the above eq. we present only those elements of ρ  that have a relation with ψz. All other 
degrees of freedom ( , ,i i iw θ φ , where i=1,2,3) have columns equal to zero in the above 
transformation matrix. This relationship was incorporated in the basic TRIC theory [1], but 
due to the arbitrary and small value of matrix kaz (eq. (16)) in kN (eq. (14)) its influence was 
negligible. 

The second modification deals with the coupling terms in eq. (14). According to the basic 
TRIC theory the natural axial straining modes are related only with the in-plane local defor-
mation degrees of freedom ( ,i iu υ′ ′  for i=1,2,3). However, these modes are also causing a dis-
tortion to the element angles. This distortion can be expressed as: 

 t

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ta a b γ a b γ b b γ γ 1
b b

tβ β γ α β γ α γ γ α α 2 i

tγ γ α β γ α β α α β β 3

γ y y y x x x 2 y x y x ψ
a h a hγ y y y x x x 2 y x y x ψ
12 12

γ y y y x x x 2 y x y x ψ

′⎧ ⎫ ⎡ ⎤− − − ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥ ′ ′= − − − ⇔ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ′− − − ⎩ ⎭⎩ ⎭ ⎣ ⎦

B γ LBψ  (56) 

where h is the element’s height, B is given in eq. (2) and L is the lumping matrix [10] which 
expresses the relationship between the nodal forces produced by constant-strain modes and an 
arbitrary constant-stress field ( c c=t Lσ ). The matrix L is a (9x3) matrix which relates the 
natural axial straining modes with both the 6 in plane translations and the 3 azimuthian rota-
tions of the element. In the present modification, this matrix is used only for the coupling 
terms between the natural axial straining modes and the 3 azimuthian rotations of the element. 
That is the reason why only a (3x3) lumping matrix is presented in eq. (56). 

Finally αb is a variable which controls the amount of the element angle distortion. An ex-
amination of αb shows that, if it is set equal to zero we return to the basic theory, if it is set 
greater than 1 the element will have large rotational stiffness. The value of αb should always 
be in the range of 1 thought 2 and is not sensitive to the choice of material properties. Its val-
ue depends only the elements geometry and on the elements corners (3 different αb for every 
corner). The average value αb=1.5 is recommended for general use in arbitrary meshes [10]. 

Using eq. (56) we get: 

 

2 2
a a

b
2 2
β β

2 2
γ γ

Ω Ω0 -
2l 2l

a h Ω Ω- 0
12 2l 2l

Ω Ω- 0
2l 2l

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

LB  (57) 

and eq. (21) then becomes: 

 
and

β βα α
tα 3 2 3 2 3 2 tβ 1 3 1 3 1 32 2 2 2 2 2

α α α β β β

γ γ
tγ 2 1 2 1 2 12 2 2

γ γ γ

x yx y Ω Ωγ = (u - u )+ (υ - υ ) - (ψ -ψ ) , γ = (u - u )+ (υ - υ ) - (ψ -ψ )
l l 2l l l 2l

x y Ωγ = (u - u )+ (υ - υ ) - (ψ -ψ )
l l 2l

(58) 
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4.3.2  Transformation matrix 

We are now in the position to construct matrix Nα (eq. (20)) which is partitioned as fol-
lows: 

 

11 12 13
N N N

(6x6) (6x6) (6x6)
Ν 21 22 23

(12x18) N N N
(6x6) (6x6) (6x6)

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

α α α
α

α α α
 (59) 

A typical submatrix of eq. (59) is given by: 

 11
N

(6x6)

. . . . . .

. . .

= . . .

. . . .

2 2
β β β β 2

β

2 2
γ γ γ γ 2

γ

β β β β

Ωx l y l -
2l

Ω-x l -y l
2l

-y l -x l

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. . . . . .

. . . . . .

α  (60) 

the others can be expressed similarly. 

5 NUMERICAL TESTS 
For the comparisons we used HKS ABAQUS v6.4 [14] (S3R general purpose triangle shell 

element, S4R general purpose quadrilateral shell element), MSC NASTRAN 2004 [15] 
(CTRIA3 general purpose triangle shell element, CTRIAR improved membrane triangle shell 
element, CQUAD4 general purpose quadrilateral shell element, CQUADR improved mem-
brane quadrilateral shell element and CBEAM 2-node linear beam), standard TRIC and the 
improved TRIC elements. 

5.1 Patch test (membrane mode) 

 
 

(a) (b) 

Figure 4: a) Model and b) FE mesh 

The thickness of the membrane (Figure 4) is t = 0.001, while the material Modulus of Elas-
ticity is E = 1.0×106 and the Poisson ratio is ν = 0.25. Out of plane displacement Uz = 0 is en-
forced for all nodes, while an in-plane displacement field is applied as a boundary condition 
for all the edge nodes: Ux =10–3((x+y/2), Uy =10-3(y+x/2). 
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The analytical solution is given by MacNeal, R.H., Harder, R.L. [16]: Stress σxx = σyy = 
1333 and τxy = 400 for all elements. Results for the improved TRIC element are: σxx = σyy = 
1333.33 and τxy = 400.00 for all elements. 

5.2 Cantilever beam under an end moment 
The cantilever beam of Figure 5 is subjected to an end moment M = 100. The modulus of 

elasticity is set to E = 768 and the exact tip deflection according to the classical beam theory 
δtip = ML/(2EI) is 100. Regular meshes ranging from 32×2 to 2×2 are used. Each rectanglular 
mesh unit being composed of 2 equal triangles. For the TRIC elements, 2 isotropic layers with 
equal height were used for every triangle. The element aspect ratios (γ) vary from 1:1 through 
16:1. The root clamping conditions are shown in Figure 5. 

 

 
Figure 5: Cantilever beam under an end moment with 8×2 mesh (loading case a). 

Two variations for the applied moment were used: a) two concentrated moments and two 
forces on opposite nodes, b) one concentrated moment in the middle node. Tables 1 to 2 re-
port the computed tip deflections (y displacement at C for several element types and aspect 
ratio γ, for loading cases a, b and c, respectively. It can be seen that the performance of the 
improved TRIC outperforms the corresponding discretization with NASTRAN’s triangle and 
is identical with Fellipa’s improved plane stress triangular element and NASTRAN’s quadri-
lateral element. 

 
mesh (aspect ratio) 2x2 (γ = 16:1) 4x2 (γ = 8:1) 8x2 (γ = 4:1) 16x2 (γ = 2:1) 32x2 (γ = 2:1) 
NASTRAN (Quads) 94.67 97.44 98.16 98.33 98.37 

NASTRAN (Triangles) 1.25 4.82 15.83 36.62 54.31 
TRIC 0.64 2.42 7.92 18.31 27.15 

TRIC (improved) 101.32 101.22 101.0 100.58 100.07 
Felippa [11] 99.99 99.99 99.99 99.96 100.07 

Table 1: Cantilever beam computed tip deflections (y displacement at C) for loading case a 

mesh (aspect ratio) 2x2 (γ = 16:1) 4x2 (γ = 8:1) 8x2 (γ = 4:1) 16x2 (γ = 2:1) 32x2 (γ = 2:1) 
NASTRAN (Quads) 93.15 98.33 99.65 99.99 100.10 

TRIC 0.00 0.00 0.00 0.00 0.00 
TRIC (improved) 101.33 101.26 101.06 100.67 100.27 

Table 2: Cantilever beam computed tip deflections (y displacement at C) for loading case b 
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5.3 Shear wall under bending or membrane loading  

 

Geometry of the wall: 
Width l=5m, height h=9.2m and thickness t=0.4m 
 
Material: 
Modulus of elasticity: Ε = 32 GPa 
Poisson ratio: ν = 0.30 
 
Constraints: 
Fully constrained at the base of the wall. 
 
Mesh: 
Structured mesh (6x11). Element width 0.83 m. 

a) b) 

Figure 6: a) FE mesh and b) model properties 

In this example (Figure 6), the TRIC results are compared to a beam model results. In or-
der to calculate the axial force, shear force and bending moment along a given section of the 
model, the finite element results are integrated along that section. Two different load cases 
were examined. 

5.3.1  Behavior under shear force  
A total shear load Fy = -70 is applied at the corresponding section on the top nodes (x = 

9.2m) and is distributed in 7 nodal forces (Fy = 10KN each). A cantilever beam with force Fy 
at the top yields shear force distribution: Vy = Fy and bending moment distribution: Μz = 
Fy*(9.2-x). Three sections along the height of the shear wall were monitored: at the base 
(x=0.45m), at the middle (x=4.6m) and at the top (x=8.8m) of the wall. 

Table 3 reports the results of the stress resultants for the three characteristic sections. It is 
obvious that both basic TRIC and improved TRIC exhibit the same results as the beam theory 
since both elements are satisfying the external work principal. Their difference though, is 
shown in the distribution of the calculated Nxx forces at the base section along the width of the 
shear wall (Figure 7). The improved TRIC element’s force field presents no more than 5% 
deviation from the beam’s theory field, while the basic TRIC differs up to 35%. 

 
Base Middle Top 

section 
Vy Nx Mz Vy Nx Mz Vy Nx Mz 

Analytical 
solution -70.00 0.00 612.50 -70.00 0.00 321.30 -70.00 0.00 29.40 

TRIC 
(improved) -69.58 0.43 620.18 -70.02 1.09 327.61 -70.67 1.76 33.48 

TRIC -71.05 -0.21 594.42 -69.38 2.52 315.65 -69.96 1.95  31.89  

Table 3: Shear wall under shear force. Stress resultants under characteristic sections. 
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Figure 7: Shear wall under shear force. Calculated Nxx force along its width at the base section (x=0.45m). 

Furthermore, the correct implementation of the drilling degrees of freedom in the improved 
TRIC can be seen from the amounts of consumed energy per natural mode. Figure 8 presents 
the consumed energy due to axial straining modes (eq. (10)) and due to azimuth rotational 
modes (eq. (13)) in the base of the wall. As expected (section 2.5.1) the basic TRIC presents 
no tuning of the azimuth modes and all energy is consumed by the axial modes. 
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Figure 8: Shear wall under shear force. Consumed natural transformation energy along its width 

at the base section (percentage related to total energy). 

5.3.2 Behavior under compression 
A total axial load Fx = -70kN is applied at the corresponding section on the top nodes (x = 

9.2m) and is distributed in 7 nodal forces (Fx = -10 each). Again three sections along the 
height of the shear wall were monitored as before. 

Table 4 reports the results from section integration of finite element forces. Both basic 
TRIC and improved TRIC exhibit the same results as the beam theory, however the distribu-
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tion of Nxx along the width of the shear wall differs substantially. The distribution of Nxx of 
the basic TRIC is far from the expected field (Figure 9). 

 
Base Middle Top 

section 
Nx Mz Nx Mz Nx Mz 

Analytical 
solution -70.00 0.00 -70.00 0.00 -70.00 0.00 

TRIC 
(improved) -70.04 0.37 -70.04 0.12 -70.84 -0.03 

TRIC -70.09 -0.92 -70.03 0.17 -70.58 -0.11 

Table 4: Shear wall under compression. Stress resultants under characteristic sections. 
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Figure 9: Shear wall under compression. Calculated Nxx force along its width at the base section (x=0.45). 

5.4 Connection of shells with beam linear elements – Combined bending and mebrane 
 loading 

Plate properties 
Length, width: L = 5.00 m 
thickness: t = 0.30 m 
Modulus of elasticity: Ε = 30 GPa, 
Poisson ratio: ν = 0.3 
 
Beams: Section 0.50m x 0.25m 
Columns: Section D = 0.40 m 
Modulus of elasticity: Ε = 25 GPa, 
Poisson ratio: ν = 0.3 
 
Constraints: All the four nodes at the column basis 
are fixed 
 
Loading: Uniform loading 
p = 16 kN/m2 on direction -Ζ and 
p = 16 kN/m2 parallel to sides ΑΒ and DC  

Figure 10: FE mesh and model properties for example 5.4 
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Mesh 
Shell elements: 15x15 quad elements, the mesh for the triangular elements is obtained from 
the one for quad elements, by dividing each quad into two triangles. 
Beams: Each structural beam is divided into 15 linear beam elements (in accordance with the 
mesh of the shell elements). 

5.4.1  Results for shell elements 
The results from the isoparametric shell elements for general use CQUAD4 (4-noded) and 

CTRIAR (improved triangular) of the program MSC-NASTRAN are used as benchnmarks. 

a b 

Figure 11: a) Bending moment Μx΄x΄ along the side AB and b) Force Fy΄y΄ along the side EF. 

  
a b 

Figure 12: a) Bending moment Μx΄x΄ (CQUADR elements) and b) Bending moment Μx΄x΄ (TRIC elements). 

E
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A 
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5.4.2  Results for beam elements 

a b 

Figure 13: a) Bending moment Μ on beam BC and b) Shear force Q on beam BC. 

There were small or negligible differences between the results of the analysis with TRIC 
and MSC-NASTRAN. 

5.5 Plane frame with shear wall 
The plane frame model of Figure 14 consists of a shear wall (height 9 m, width 2.5 m and 

thickness 0.25 m), three horizontal beams of 5 m length (0.5 m height and 0.25 m width, or-
thogonal section) and three columns of 3m height each (0.50 m rectangular section). It con-
sists of isotropic material with elastic modulus equal to 30 GPa and Poisson ration equal to 
0.20. All base nodes are fully constrained and three concentrated forces of magnitude 20 kN, 
40 kN and 60 kN are applied on the center of the shear wall at heights 3 m, 6 m and 9 m, re-
spectively. 

 

Figure 14: Plane frame with shear wall. 

In all the analyses the shear wall was modeled with shell elements (TRIC (Improved), 
TRIC and the CQUAD4 quadrilaterals of MSC-NASTRAN), while beam elements were used 
for the beams and the columns. The TRIC element mesh is shown in the figure, while the rec-
tangular mesh was composed of two equal triangles for every quadrilateral element. 

In this test example, the TRIC element's ability to fully interact with beam elements is 
tested. Specifically, the connection between the shell's element azimouthian stiffness term and 

B C

C 

B
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the beam element’s bending term was investigated. The reported bending moment of the 
beam elements for the improved TRIC, TRIC and MSC-NASTRAN, is presented in Figure 
15. 

 
a d c 

Figure 15: Bending moment of beam elements. a) shear wall discretized with improved TRIC elements  
b) shear wall discretized with TRIC elements c) shear wall discretized with MSC-NASTRAN quads 

We can see that the improved TRIC shell element is capable of transmitting bending mo-
ment to the beams, through the azimuthian degree of freedom, while the CQUAD4 and TRIC 
elements of MSC-NASTRAN fail (there is no bending moment in the left corner of beams). 

5.6 Single bay frame simulated with shell elements  
 The single bay model frame of Figure 16 consists of isotropic material, I shaped cross sec-
tions for both the columns and the beam. The beam web is perforated in two positions with 
elliptical holes. The geometry of these structures demands a more detailed simulation with 
shell finite elements, in order to capture the true deformation and stress patterns of the beam 
and columns.  

 The columns height is 220 and the beam length is 300. For the columns hw = 24 (web 
height), hf = 18 (flange height) and the thickness for both flange and web is 6. For the beam 
hw = 20 (web height), hf = 13 (flange height) and the thickness for both flange and web is 5. 
The Modulus of elasticity is Ε = 28 and the Poisson ratio is ν = 0.20. 
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Figure 16: Single bay frame (433 nodes, 718 elements). 

5.6.1  Static Loading 
 The structure is fully constrained in the bottom of the two columns and a concentrated 
force of magnitude 50 along the x direction was applied at the center top node of the right 
column (Figure 16). Two different analyses were conducted with MSC-NASTRAN quadrilat-
eral elements. The first one with 550 elements and 648 nodes and the resulting tip deflection 
was found 160.49, while the second was performed with 1982 elements and 2168 nodes and 
its tip deflections was found 161.81.  
 Table 5 reports the computed tip deflections (x displacement at the node where the force 
was applied) for several element types and 6 different meshes. It can be seen that the im-
proved TRIC behaves like the quadrilateral elements in terms of accuracy at the expense of 
require more elements to achieve the same performance. However, due to improved formula-
tion aspects of TRIC, the computational afford is less than the corresponding effort by the 
quad elements for the same accuracy. 
 

 Nodes Elements ABAQUS 
(Triangles) 

NASTRAN 
(Triangles) TRIC TRIC 

(improved) 
NASTRAN 

(Quads) 
253 408 45.40 49.63 49.09 146.03 - 
330 540 70.70 75.36 75.13 151.40 - 
363 598 72.60 76.90 76.79 153.67 - 
433 718 93.10 97.44 97.65 155.62 - 
658 1108 97.00 100.68 101.09 158.70 - 

Triangles 

1726 2970 119.00 120.09 121.40 160.11 - 
648 550 - - - - 160.49 Quads 
2168 1982 - - - - 161.81 

Table 5. Single bay frame computed tip deflections (x displacement at the node where the force was applied) 

5.6.2  Elastoplastic Analysis 
The material is perfectly plastic with yield stress σy = 27. In Figure 17 the results obtained 

for the models with 550 quadrilaterals elements and with 598 triangle elements are presented. 
The results confirm the superiority of the improved TRIC compared to the other triangular 
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elements while retaining its advantages over quadrilateral elements in terms of computational 
efficiency. 
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Figure 17: Single bay frame load-displacement curve of elastoplastic analysis (598 triangle elements and 550 

quadrilateral elements). 

6 CONCLUSIONS 
From the above examples a number of concluding remarks can de drawn regarding the 

TRIC element and the proposed improvement. The standard TRIC element is very stiff and 
incapable to compute the exact deformation, when the membrane behavior is predominant, 
while finer meshes converge rather slowly to the correct solution. The improved TRIC exhib-
ited substantially enhanced behavior compared to its original version. It is able to converge to 
the exact solution with coarse meshes as well as with distorted elements (aspect ratio 16:1). 

Both stress and displacement fields of the improved element exhibits similar results com-
pared either to analytical solutions or to those obtained with quadrilateral shell elements of 
commercial finite element programs. However, the computational cost for achieving the same 
accuracy is reduced due to the analytical computation of the elements stiffness matrix. In the 
test cases where section integration of the element's internal forces field was performed, the 
results were identical to the ones obtained by the exact beam theory. 

The fifth example was a test bed for the behavior of the element in the case of connecting 
a beam element in shell's azimouthian rotational degree of freedom. In this case the beam ele-
ment’s bending moment is computed through the shell’s azimouthian stiffness terms. The last 
example was a test bed for the behavior of the improved element in all kinds of modes (mem-
brane, bending and shear). For this plane frame, the mesh was unstructured with elements of 
arbitrary aspect ratio resulting in a very distorted mesh. The improved TRIC exhibits excel-
lent performance in both linear and elastoplastic analysis. 

The improved TRIC response was substantially improved compared to both triangular 
and quadrilateral elements considered. In all the examples presented as well as of other con-
ducted by the authors [17] the improved TRIC exhibited fast convergence to the correct solu-
tion compared to other general purpose shell elements. 
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