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Abstract. In the present work an investigation of the behavior of the improved shell finite element TRIC [1] is 
performed. The TRIC element is a simple yet sophisticated three-node shear-deformable isotropic and 
composite facet shell element that is suitable for large-scale linear or non-linear engineering computations of 
thin and moderately thick anisotropic plate and complex shell structures. 

The element formulation is based on the natural mode finite element method where the deformation or 
natural modes are separated from the rigid body modes. The element has substantial computational advantages, 
compared to the conventional isoparametric finite element formulation, such as analytical expressions for the 
computation of the stiffness matrix elements, shear locking-free properties and computational efficiency [2]. The 
improvement, which concerns the membrane (plane stress) behavior of the element, is achieved by applying an 
optimal method in calculating the elements of the stiffness matrix regarding the drilling degrees of freedom, 
while at the same time eliminating the aspect ratio locking of its predecessor. 

The purpose of this work is to assess, via a thorough investigation, the ability of the improved element to 
address real-world structural problems in a computationally efficient and yet accurate way. For this purpose 
the behavior of the element is investigated in a number of benchmark tests. Both the stress and displacement 
fields of the element are tested. The results are compared with existing analytical solutions or with numerical 
results obtained from commercial finite element programs. 

1 INTRODUCTION 

An attempt to device a shell element with robustness, accuracy and efficiency has led to the derivation of the 
TRIC shell element [3,4]. A simple yet sophisticated triangular, shear-deformable facet shell element suitable for 
the analysis of thin and moderately thick isotropic as well as composite plate and shell structures. Its formulation 
is based on the natural mode finite element method [5], a method introduced by Argyris in the 1960s that 
separates the pure deformational modes - also called natural modes - from the rigid body movements of the 
element. 

The TRIC element formulation can be decomposed in two different triangular elements. One for the pure-
bending behavior and one for the membrane (plane stress) behavior. In a previous work [1], an enhancement of 
the element’s membrane behavior was presented. The enhancement follows an optimal method in calculating the 
stiffness matrix regarding the rotational or drilling degrees of freedom (corner rotations normal to the plane of 
the shell element). The element performance in plane stress problems prior to the improvement was identical to 
that of the Constant Strain Triangle (CST) [6]. This element encounters great difficulties in determining the 
exact structural behavior, while it exhibits serious aspect ratio locking. 

After a number of test examples, it was shown [1] that the new element exhibits substantial improvements 
compared to the original version. It is able to compute the correct solution with coarse meshes as well as with 
distorted elements (aspect ratio 16:1). It exhibits excellent performance in cases where all kinds of modes 
(membrane, bending and shear) are tuned simultaneously and cases where the mesh of the structure is quite 
distorted. Furthermore, the results obtained are very similar to those obtained with quadrilateral shell elements of 
commercial finite element programs. 

The purpose of this work is to assess via a thorough investigation the ability of the improved element to 
address real-world structural problems in a computationally efficient and yet accurate way. Never before has the 
improved element been tested in conjunction with general purpose finite element prorgams. Also examples with 
temperature loading and z-axis eccentricity will de demonstrated. Furthermore, an attempt to derive two 
different elements, one pure membrane and one pure bending with only three degrees of freedom per node each, 
was made by deducting the three non-corresponding degrees of freedom from the shell element. Finally the 
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element behavior was tested in comparison to the beam theory by integrating the TRIC element stress field in 
various structural sections. 

2 THE TRIC ELEMENT 

The formulation of the TRIC shell element has been presented thoroughly in a number of papers [1-5]. In the 
present paper, due to length restrictions, only the basic features of the element will be highlighted and 
particularly those that are essential for the introduced examples. 

2.1 Coordinate system of the element  

The key-point for the formulation of the TRIC shell element is the adoption of the so-called natural 
coordinate system which has the three axes parallel to the sides of the triangle (α, β, γ). Apart from the natural 
system (α, β, γ) there are also the local elemental coordinate system (x΄, y΄, z΄) placed at the triangle's centroid, 
and the global Cartesian coordinate system (x, y, z). Finally, for each ply of the triangle, a material coordinate 
system (1, 2, 3) is defined with axis 1 being parallel to the direction of the material fibers.  

2.2 Natural modes 

In principle, the natural stiffness of an element is only based on deformation and not on associated rigid body 
motions. Thus, to the triangular shell element TRIC correspond 6 × 3 = 18 nodal displacements but only 18 - 6 = 
12 independent straining modes can be derived in order to satisfy all kinematic compatibility conditions. The 
stiffness matrix Nk  corresponding to these deformations is of dimensions 12 × 12 and is denoted as the natural 
stiffness matrix. A simple congruent transformation leads to the full 18 × 18 cartesian stiffness matrix of the 
element. 

The 6 rigid-body and 12 straining natural modes of the TRIC element, can be grouped in the vector: 
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where 
0ρ  and ρΝ

 represent the rigid-body and straining modes, respectively. 

2.3 Natural stiffness matrix N( )k  

 The components of the natural stiffness matrix are [1,2]: 
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where: qck  is the axial and symmetrical bending stiffness terms, qhk  is the anti-symmetrical bending and shear 
stiffness terms and azk  is the stiffness terms due to in-plane rotations (azimuth stiffness terms). The derivation 
of qck and qhk  has already been presented in [2] and the derivation of the improved azk in [1]. 

 3. COMPUTATIONAL TECHNIQUES 

3.1 Temperature loading [3] 

 We formulate the Cartesian thermal load vector. For this purpose we shall adopt a linear through-the-
thickness spatial temperature variation, namely: 
 o 1T(x, y, z) T (x, y) zT (x, y)= +  (3) 

where z is the distance from the elements center in the local cartesian system. The parameters To, T1 in (3) are 
related to the temperatures at the top and bottom of a laminate Tt, Tb respectively, via: 

 0 t b 1 t b
1 1T (T T ) , T (T T )
2 h

= + = −  (4) 

where h represents the plate or shell thickness. The thermal load vector will be computed first in the natural 
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coordinate and then transformed first to the local and then to the global coordinates system before assembly. 
Thus, the natural thermal load vector JN will be written as the sum of two vectors, namely: 
 N N0 N1

(12 1)
J J J
×
= +  (5) 

where JN0, JN1 are the thermal loads due to uniform and linear through-the-thickness temperature distributions, 
respectively. To this end we define, for every layer, the thermoelastic coefficients in three coordinate systems, 
namely the material, the local elemental Cartesian and the natural coordinate system as: 
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 In (6), αt11, αt22 are the coefficients of thermal expansion along and perpendicular to the fiber direction, 
respectively, and are defined as input data. In the presence of temperature the total natural strain is the sum of 
the elastic and thermal strains: 
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 Using the basic definition of thermal strain nt = at(T0 + zT1), the initial load due to temperature finally 
becomes: 
 t t t t t

N N0 N1 0 t ct 1 t ct
V V

J J J [ ] dV [z ] dVα κ α α κ αΝ Ν= + = Τ + Τ∫ ∫  (8) 

 All integrals involved in the thermal energy statement (8) are calculated analytically, avoiding expensive 
numerical computations. Finally the computation of natural internal forces due to temperature loading is done 
via: 
 t 1 t

N N N
(18 1) (12 12) (12 1)
F J−

× × ×
= k  (9) 

and they are obtained from the natural internal forces due to the structure’s displacement field, to produce the 
final natural internal forces of the element. 

3.2 Out of plane eccentricity 

The reference surface of the TRIC shell element is defined by the shell’s nodes and its surface direction. 
When modeling with shell elements, the reference surface is typically coincident with the shell’s midsurface. 
However, many situations arise in which it is more convenient to define the reference surface as an offset from 
the shell’s midsurface. The degrees of freedom for the shell are associated with the reference surface where all 
kinematic quantities are referred to. Any loading in the plane of the reference surface will, therefore, cause both 
membrane forces and bending moments when eccentricity is present. 
 The eccentricity can be positive or negative and is equal to the distance ze from the shell’s midsurface to the 
reference surface measured on the elements local z coordinate axis. The relation among the reference local 
coordinate system and the midsurface local coordinate system is defined by the transformation matrix Te. In case 
of equal z eccentricity for all nodes the matrix Te is equal to: 
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3.3 Membrane or plate only element formulation 

 TRIC, as a shell element, can be regarded as a combination of a membrane and a plate element that is 
subjected to extension and flexure, respectively. Its membrane behavior is represented by six translational nodal 
degrees of freedom in the plane of the triangle and three out of plane rotational degrees of freedom, one for each 
node, while its flexural behavior is described by nine degrees of freedom, one out-of-plane translation and two 
rotations for each node. 
 From equation (2) we deduce that the coupling terms between the components of the natural stiffness matrix 
are equal to zero which attests that the stiffness matrix can be divided in any of the individual coupling terms 
without performing static condensation. Furthermore, in case of material isotropy the axial and symmetrical 
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bending stiffness terms qck have also no coupling terms between them: 
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 Taking the above remarks into consideration it is clear that the elements natural stiffness matrix can be 
decomposed in two different stiffness matrices, one only for a membrane element m

Nk and one only for a bending 
element b

Nk : 
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 Following the same methodology as with the full shell element [1,2,3], these two submatrices lead to the 
creation of two subelements with pure membrane or bending behavior.  

4 NUMERICAL TESTS 

For the comparisons we used HKS ABAQUS v6.4 [7] (S3R general purpose triangle shell element) and MSC 
NASTRAN 2004 [8] (CTRIA3 general purpose triangle shell element, CTRIAR improved membrane triangle 
shell element, CQUAD4 general purpose quadrilateral shell element, CQUADR improved membrane 
quadrilateral shell element and CBEAM 2-node linear beam). All the obtained results from the improved TRIC 
element came from the commercial structural analysis program FESPA (LH Logismiki), after the successful 
implementation of the TRIC element into it. The beam element used in conjunction with the improved TRIC is a 
2-node linear isoparametric beam, included in FESPA. 

4.1 Patch test (membrane mode) 

4.1.1 Model properties 

 
Figure 1. Model for numerical test 1 

 
Figure 2. FE mesh for numerical example 1 

The thickness of the membrane is t = 0.001, while the material Modulus of Elasticity is E = 1.0 × 106 and the 
Poisson ratio is ν = 0.25. Out of plane displacement Uz = 0 is enforced for all nodes, while an in-plane 
displacement field is applied as a boundary condition for all the edge nodes: Ux =10–3((x+y/2), Uy =10-3(y+x/2). 

4.1.2 Results 

Analytical solution by MacNeal, R.H., Harder, R.L. [9]: Stress σxx = σyy = 1333 and τxy = 400 for all elements. 
Results for TRIC element: σxx = σyy = 1333.33, τxy = 400.00 for all elements. The results of the two programs 
coincide. 
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4.2 Shear wall under bending or membrane loading 

 
Figure 3. Model for numerical test 2 

Geometry 
Width of wall: L = 5.00 m 
Height of wall: H = 9.20 m 
Thickness of wall: t = 0.40 m 
 
Material 
Modulus of elasticity: Ε = 32 GPa 
Poisson ratio: ν = 0.30 
 
Constraints 
Fixed constraints at the base of the wall. 
 
Mesh 
Structured mesh. Element width 0.83 m. 

 
In this test example, the finite element results are compared to a beam model results. In order to calculate the 
equivalent axial force, shear force and bending moment along a given section of the model, the finite element 
results are integrated along the section. 

4.2.1 Loading a – Pure bending mode 

A total load Fz = -70 kN is applied with 7 nodal elements (10 kN each) on the top nodes (x = 9.2 m). A beam 
model (cantilever) with force Fz at the top yields the following: Shear force distribution: Vz(x) = Fz, Bending 
moment distribution: Μy(x) = Fz · x. 

Results and comparison 

 Base Middle Top 

 Analytical 
solution 

TRIC 
(integration) 

Analytical 
solution 

TRIC 
(integration) 

Analytical 
solution 

TRIC 
(integration) 

Vz (kN) -70.00 -68.08 -70.00 -70.68 -70.00 -71.19 
My (kN·m) 612.50 612.17 321.30 321.21 29.40 29.86 
Mx (kN·m) 0.00 -2.64 0.00 -0.90 0.00 -1.59 

4.2.2 Loading b – Pure membrane mode 

A total load Fy = -70 kN applied with 7 nodal elements (10 kN each) on the top nodes (x = 9.2 m). The beam 
model (cantilever) with force Fx at the top yields the following: Shear force distribution: Vy(x) = Fy, Bending 
moment distribution: Mz(x) = Fy · x. 

Results and comparison 

 Base Middle Top 

 Analytical 
solution 

TRIC 
(integration) 

Analytical 
solution 

TRIC 
(integration) 

Analytical 
solution 

TRIC 
(integration) 

Vz (kN) -70.00 -69.58 -70.00 -70.02 -70.00 -70.67 
My (kN·m) 0.00 0.43 0.00 1.09 0.00 1.76 
Mx (kN·m) -612.50 -620.18 -321.30 -327.61 -29.40 -33.48 
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4.2.3 Deformed shapes and Von Mises stress for both loading cases 

 
Figure 4. Deformed shape for loading a, Von Mises 

stress (upper surface) 

 
Figure 5. Deformed shape for loading b, Von Mises 

stress (upper surface) 

4.3 Plate under bending loading 

 
Figure 6. Model and sections for 

numerical test 3 

Geometry 
Dimensions: Lx = Ly = 6.00 m 
Thickness: h = 0.20 m 
 
Material 
Modulus of elasticity: Ε = 32.0 GPa 
Poisson ratio: ν = 0.0.  
 
Constraints 
Fixed constraint (6 DOFs) on the two edges with y = 0.0 
m and y = 6.0 m. 
 
Loading 
Uniform loading: 10 kN/m2 on all the surface (total load 
360 kN) on direction –Ζ. 

4.3.1 Analytical solution 

The analytical solution can be obtained by a beam approach: 

 Moment Μx (kN·m) Shear force Vz (kN) 
y=0.0 m and y=6.0 m -30.00 +30.00 / -30.00 

y=3.0 m 15.00 0.00 

4.3.2 Sections and results 

On a section parallel to X-axis no bending moment is expected regardless of Y. On the middle (Y=3.00 m) no 
shear force Vz, is expected (Poisson ratio ν = 0). 
 
Three sections were examined (A, Β, C), as shown in figure 6. 
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For each section the bending moment and shear force diagrams are presented per unit length of the section. 

 
Figure 7. Bending moment diagramms Mx (kN·m) per 
unit length of the section. 

 
Figure 8. Shear force diagrams Vz (kN) per unit length 
of the section. 

 
For sections Α, Β and C the horizontal axis is the distance from y = 0.00 m to y = 6.00 m. The diagrams give the 
same results as the analytical solution. 

4.4 Connection of shells with beam linear elements – Combined bending and membrane loading 

 
Figure 9. Model for numerical test 4 

Plate properties 
Length , width: L = 5.00 m 
thickness: t = 0.30 m 
Modulus of elasticity:  
Ε = 30 GPa, Poisson ratio: ν = 0.3 
 
Beams: Section 0.50 m x 0.25 m 
Columns: Section D = 0.40 m 
Modulus of elasticity:  
Ε = 25 GPa, Poisson ratio: ν = 0.3 
 
Constraints: Fixed constraints for the four 
nodes at the column basis 
 
Loading: Uniform loading 
p = 16 kN/m2 on direction -Ζ and 
p = 16 kN/m2 parallel to sides ΑΒ and DC  

 
Mesh 
Shell elements: 15x15 quad elements, the mesh for the triangular elements is obtained from the one for quad 
elements, by dividing each quad into two triangles. 
Beams: Each structural beam is divided into 15 linear beam elements (in accordance with the mesh of the shell 
elements). 

4.4.1 Results for shell elements 

The results from the isoparametric shell elements for general use CQUAD4 (4-noded) and CTRIAR (improved 
triangular) of the program MSC-NASTRAN are used as benchnmarks. 

 
Figure 10. Bending moment Μx΄x΄ along the side AB 

 
Figure 11. Force Fy΄y΄ along the side EF 

E

F

A 

B
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Figure 12. Bending moment Μx΄x΄ (N·m/m) 

(CQUADR elements) 

 
Figure 13. Bending moment Μx΄x΄ (N·m/m) 

(TRIC elements) 

4.4.2 Results for beam elements 

 
Figure 14. Bending moment Μ on beam BC 

 
Figure 15. Shear force Q on beam BC 

 
 
There were small or negligible differences between the results of the analysis with TRIC and MSC-NASTRAN. 

4.5 Plate under thermal loading 

 
Figure 16. Model for numerical test 5 

Finite element mesh 
6 quad elements are used. By dividing them into 
triangles we obtain 12 triangular elements. 
Thickness: t = 1.0m 
 
Material 
Modulus of elasticity: Ε = 32 Gpa,  
Poisson ratio: ν = 0.25,  
Thermal coefficient α = 10-5 / oC. 
 
Constraints 
All edge nodes are fully constrained. 

 
The results for quad elements using the commercial FE program SOFiSTiK v23 are used as benchmarks. 

4.5.1 Uniform thermal loading ΔΤΝ = + 20οC for all the structure (membrane mode) 

Calculated forces are Fxx = Fyy = -8533.33 kN/m for TRIC, for all elements. The same values are also obtained 
by SOFiSTiK v23. Other forces (Fxy, Vx, Vy) and moments (Mx, My, Mxy) are equal to zero for all elements, for 

 2 

3

1 2 3

4 5 6

B C

C 

B



Pavlos Tsirigas, Andreas Gisakis, Vagelis Plevris, Manolis Papadrakakis. 
both programs. Calculated X and Y constraint forces are Fx = Fy = 4266.67 kN/m for TRIC, for all nodes. 
Corresponding values for SOFiSTiK v23 are Fx = Fy = 4266.70 kN/m. 

4.5.2 Linear temperature distribution ΔΤΜ = + 20οC along the height of the section (bending mode) 

Calculated moments are Mxx = Myy = 711.11 kN·m/m fot TRIC, for all elements. The same values are also 
obtained by SOFiSTiK v23. Forces (Fx, Fy, Fxy, Vx, Vy) and moment Μxy are equal to zero for all elements, for 
both programs. Calculated X and Y constraint moments are Mx = -My = -355.56 kN·m/m for TRIC, for all 
nodes. Corresponding values for SOFiSTiK v23 are also Mx = -My = -355.56. 

4.6 Eccentric cantilever beam 

 The same structure and mesh as in the previous example (Plate under thermal loading) is used. In this case 
only the side with coordinates y=0.00 is fixed and a compression linear distributed load is applied on the side 
with coordinates y=2.00 (Py = -13.33 KN/m). Additionally, a z axis eccentricity of the shell’s midsurface is set 
equal to ze = -0.50 m (the reference surface is placed on the structures top fiber). The compression load in 
combination with the eccentric placement of the reference surface, should lead not only to a compression force 
of Ny = -13.33 kN/m * 3 m = -40.00 kN, but also to a bending moment of magnitude Μx = -13.33 kN/m * 3 m * 
0.5 m = -20 kNm. 
 The integration of the element's computed forces is 
done in two cross sections parallel to the x axis. 
 

Section results Ny Mx 
y = 0.50 m -40.00 -20.00 
y = 1.50 m -40.05 -19.96 

4.7 Plane frame with shear wall: Shell elements combined with beam elements 

  
Figure 17. Model for numerical test 7 

 The plane frame model of Figure 17 consists of a shear 
wall (height 9 m, width 2.5 m and thickness 0.25 m), three 
horizontal beams of 5 m length (0.5 m height and 0.25 m 
width, orthogonal section) and three columns of 3m height 
each (0.50 m rectangular section). It consists of isotropic 
material with elastic modulus equal to 30 GPa and Poisson 
ration equal to 0.20. All base nodes are fully constrained 
and three concentrated forces of magnitude 20 kN, 40 kN 
and 60 kN are applied on the center of the shear wall at 
heights 3 m, 6 m and 9 m, respectively. 
 Two analyses were carried out, one with the program 
FESPA and one with MSC-NASTRAN. In both cases the 
shear wall was modeled with shell elements (TRIC in 
FESPA and CQUAD4 quadrilaterals in MSC-NASTRAN) 
and beam elements were used for the beams and the 
columns. The TRIC element mesh is shown in the figure, 
while the rectangular mesh was composed of two equal 
triangles for every quadrilateral element. 
 

 
 In this test example, the TRIC element's ability to fully interact with beam elements is tested. Specifically, 
the connection between the shell's element azimouthian stiffness term and the beam element’s bending term was 
tested. The reported bending moment of the beam elements from FESPA and MSC-NASTRAN is presented in 
figures 18 and 19 respectively. 
 We can see that the TRIC shell elements are capable of transmitting the bending moment to the beams, while 
the CQUAD4 elements of MSC- NASTRAN fail. The computed top deflection (x-displacement of the top right 
node) was equal to 0.18 cm for FESPA and 0.19 cm for MSC-NASTRAN. 
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Figure 18. FESPA bending moment diagram. 
 

 

Figure 19. MSC-NASTRAN bending mom. diagram. 

5. CONCLUSIONS 

 From the above test examples a number of concluding remarks can be drawn regarding the TRIC element, its 
behavior in different kinds of structural problems and its ability to interact with beam elements for structural 
modeling.  
 Both stress and displacement fields of the element exhibits similar results compared either to analytical 
solutions or to those obtained with quadrilateral shell elements of commercial finite element programs. In the 
test cases where section integration of the element's internal forces field was performed, the results were 
identical to the ones obtained by the beam theory.  
 The last example was a test bed for the behavior of the element in case of connecting a beam element in the 
shell's azimouthian rotational degree of freedom. In this case the beam element’s bending moment is computed 
through the shell’s azimouthian stiffness terms. The improved TRIC response was accurate and the bending 
moment was transmitted to the beam. 
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