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Abstract. The objective of this paper is to perform structural optimization under seismic 
loading. Combinatorial optimization methods and in particular algorithms based on 
evolution strategies (ESs) are implemented for the solution of large-scale structural 
optimization problems under seismic loading. In this work the efficiency of a rigorous 
approach in treating dynamic loading is investigated and compared with a simplified 
dynamic analysis in the framework of finding the optimum design of a structure with the 
minimum weight. In this context a number of accelerograms are produced from the design 
spectrum of the region. These accelerograms constitute the multiple loading conditions under 
which the structures are optimally designed. This approach is compared with an approximate 
design approach based on simplifications adopted by the seismic codes. The results obtained 
for a characteristic test problem indicate a substantial improvement in the final design when 
the proposed optimization procedure is implemented. 
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1 INTRODUCTION 

Optimization of large-scale structures, such as sizing optimization of multi-storey 3-D 
frames is a computationally intensive task. The optimization problem becomes more intensive 
when dynamic loading is involved. In sizing optimization the aim is to minimize the weight of 
the structure under certain restrictions imposed by design codes. When a gradient-based 
optimizer is used the most time-consuming part of the optimization process is devoted to the 
sensitivity analysis phase which is an important ingredient of all mathematical programming 
optimization methods1. On the other hand the application of combinatorial optimization 
methods based on probabilistic searching, such as evolution strategies (ESs), do not need 
gradient information and therefore avoid performing the computationally expensive 
sensitivity analysis step2. Furthermore, it is widely recognized that combinatorial optimization 
techniques are in general more robust and present a better global behavior than mathematical 
programming methods. They may suffer, however, from a slow rate of convergence towards 
the global optimum. 

During the last fifteen years there has been a growing interest in problem solving systems 
based on algorithms, which rely on analogies to natural processes. The best known algorithms 
in this class include evolutionary programming (EP)3, genetic algorithms (GAs)4,5, and 
evolution strategies (ESs)6,7. Evolution-based algorithms maintain a population of potential 
solutions. These algorithms have some selection process based on fitness of individuals and 
some recombination operators. Both ESs and GAs imitate biological evolution in nature and 
combine the concept of artificial survival of the fittest with evolutionary operators to form a 
robust search mechanism. 
 In the case of earthquake loading the optimization of the structural systems requires 
the solution of the dynamic equations of motion which can be orders of magnitude more 
computational intensive than the case of static loading. Moreover, due to the uncertain nature 
of the earthquake loading, structural designs are based on design spectra of the region of the 
structure and on some simplified assumptions of the structural behavior under earthquake. In 
this work the efficiency of a more rigorous approach with respect to the loading condition is 
implemented and compared with the simplified one in the framework of finding the optimum 
design of a structure having the minimum weight. In this context a number of accelerograms 
are produced from the design spectrum of the region, which constitutes the multiple loading 
conditions under which the structures is optimally designed. This approach is compared with 
the approximate one based on simplifications adopted by the seismic codes. The results 
obtained for a characteristic test problem indicate a substantial improvement in the final 
design when the rigorous approach is considered. The structural optimization problems under 
dynamic constraints reveal a special feature: the feasible design space is often disconnected or 
disjoint8,9. This feature causes difficulties for many conventional optimization methods. 

2 FORMULATION OF THE OPTIMIZATION PROBLEM 

In sizing optimization problems the aim is usually to minimize the weight of the structure 
under certain behavioral constraints on stress and displacements. The design variables are 
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most frequently chosen to be dimensions of the cross-sectional areas of the members of the 
structure. Due to engineering practice demands the members are divided into groups having 
the same design variables. This linking of elements results in a trade-off between the use of 
more material and the need of symmetry and uniformity of structures due to practical 
considerations. Furthermore, it has to be to taken into account that due to fabrication 
limitations the design variables are not continuous but discrete since cross-sections belong to 
a certain set. 

A discrete structural optimization problem can be formulated in the following form: 

n1,...,=i    ,Rs                    

m1,...,=j   0(s)g     subject to
F(s)       min       
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where dR  is a given set of discrete values and the design variables si (i=1,...,n) can take 
values only from this set. In the present study the sizing optimization of multi-storey 3-D 
frames is investigated. Optimal designs of frames have been studied initially using 
conventional plastic design methods. Then more sophisticated optimization algorithms were 
introduced in order to solve this type of problems more efficiently10,11. Most frequently the 
objective function is the weight of the structure and the constraints are the member stresses 
and nodal displacements or inter-storey drifts. For rigid frames with rolled W-shapes, the 
stress constraints, under allowable stress design requirements specified by Eurocode 312, are 
expressed by the non-dimensional ratio q of the following formulas: 
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Where fa is the computed compressive axial stress, z
b

y
b f,f  are the computed bending 

stresses for y and z axis, respectively. Fa is the allowable compressive axial stress, z
b

y
b F,F  are 

the allowable bending stresses for y and z axis, respectively, and σy is the yield stress of the 
steel. The allowable inter-storey drift is limited to 1.5% of the height of each storey. One load 
case is considered in all examples. 

3 STRUCTURAL DESIGN UNDER SEISMIC LOADING 

The equations of equilibrium for a finite element system in motion can be written in the 
usual form 

ttititi Ru)s(Ku)s(Cu)s(M =++ ���  (4)
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where M(si), C(si), and K(si) are the mass, damping and stiffness matrices for the i-th design 
vector si; Rt is the external load vector, while u and u,u ���  are the displacement, velocity, and 
acceleration vectors, respectively of the finite element assemblage. The solution methods of 
response spectrum modal analysis, which is based on the mode superposition approach and 
direct integration of the equations of motion will be considered in this work. 

3.1 Direct time integration approach-The Newmark Method 

The Newmark integration scheme is adopted in the present study to perform the direct time 
integration of the equations of motion. Under this scheme the variation of velocity and 
displacement are given by 

t]uu)1[(uu tttttt Δδ+δ−+= Δ+Δ+ ������  (5)

2
ttttttt t]uu)2/1[(tuuu Δα+α−+Δ+= Δ+Δ+ �����  (6)

where α and δ are parameters that can be determined to obtain integration accuracy and 
stability. When δ = 1/2 and α = 1/6, relations (5) and (6) correspond to the linear acceleration 
method. In addition to (5) and (6), for solution of the displacements, velocities, and 
accelerations at time t + Δt, the equilibrium equations (4) at time t + Δt are also considered 

ttttittitti Ru)s(Ku)s(Cu)s(M Δ+Δ+Δ+Δ+ =++ ���  (7)

Solving from (5) for ttu Δ+��  in terms of ttu Δ+  and then substituting for ttu Δ+�  into (5), we obtain 
equations for ttu Δ+��  and ttu Δ+�  each in terms of the unknown displacements ttu Δ+  only. These 
two relations for ttu Δ+��  and ttu Δ+�  are substituted into Eq. (7) to solve for ttu Δ+  after using (5) 
and (6), ttu Δ+��  and ttu Δ+�  can be also be calculated. As a result of this substitution the following 
well-known equilibrium equation is obtained at each Δt: 
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3.2 Creation of artificial accelerograms 

The selection of the proper external loading Rt for design purposes is not an easy task due 
to the uncertainties involved in the seismic loading. For this reason a rigorous treatment of the 
seismic loading is to assume that the structure is subjected to a set of earthquakes that are 
more likely to occur in the region where the structure is located. 

The seismic excitations that are more likely to occur are based on artificial accelerograms. 
In order to be representatives these artificial accelerograms that will load the structure have to 
match some requirements of the seismic codes. The most demanding one is that the 
accelerograms have to be compatible with the response spectrum of the region where the 
structure is located. It is well known that each accelerogram corresponds to a single response 
spectrum that can be defined relatively easy. On the other hand on each response spectrum 
corresponds an infinite number of accelerograms. 

The creation of artificial accelerograms that correspond to a specific response spectrum 
was originally proposed by D. Gasparini and E. Vanmarke13,14. In this work the 
implementation published by C.A. Taylor15 for the generation of statistically independent 
artificial acceleration time histories is adopted. This method is based on the fact that any 
periodic function can be expanded into a series of sinusoidal waves: 

∑ ϕ+ω=
k

kkk )tsin(A)t(x  
(9)

where Ak is the amplitude, ωk is the cyclic frequency and kϕ  is the phase angle of the k-th  
contributing sinusoid. By fixing an array of amplitudes and then generating different arrays of 
phase angles, different motions can be generated which are similar in general appearance but 
different in the “details”. The computer uses a random number generator subroutine to 
produce strings of phase angles with a uniform distribution in the range between 0 and 2π. 
The amplitudes Ak are related to the spectral density function in the following way: 

2
A

)(G
2

k
k =ωΔω  

(10)

where G(ωk)Δω may be interpreted as the contribution to the total power of the motion from 
the sinusoid with frequency ωk. The power of the motion produced by Eq. (9) does not vary 
with time. To simulate the transient character of real earthquakes, the steady-state motion are 
multiplied by a deterministic envelope function I(t): 

∑ ϕ+ω=
k

kkk )tsin(A)t(I)t(Z  
(11)

The resulting motion is stationary in frequency content with peak acceleration close to the 
target peak acceleration. In this study a trapezoidal intensity envelope function is adopted. 
The generated peak acceleration is artificially modified to match the target peak acceleration, 
which corresponds to the chosen response spectrum. An iterative procedure is implemented to 
smooth the calculated spectrum and improve the matching15. 
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 The response spectrum considered in the current study is depicted in Figure 1. Five 
artificial uncorellated accelerograms, produced by the previously discused procedure and 
shown in Figures 2-6, have been used as the input seismic excitation for the numerical tests. 
The corresponding response spectrum of the first artificial accelerogram is also depicted in 
Figure 1. 
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Figure 1: Response spectrum of the region and of the first artificial accelerogram 
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Figure 2: First artificial accelerogram  
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Figure 3: Second artificial accelerogram 
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Figure 4: Third artificial accelerogram 
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Figure 5: Fourth artificial accelerogram 
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Figure 6: Fifth artificial accelerogram 

3.3 Response spectrum modal analysis  

The response spectrum modal analysis is based on a simplification of the mode 
superposition approach with the aim to avoid time history analyses, which are required by 
both the direct integration and mode superposition approaches. In the case of the response 
spectrum modal analysis Eq. (4) is modified according to the modal superposition approach in 
the following form 

ttititi Ru)s(Ku)s(Cu)s(M =++ ���  (12)
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where 

ii
T
ii MM ΦΦ=  (13)

ii
T
ii CC ΦΦ=  (14)

ii
T
ii KK ΦΦ=  (15)

t
T
it RR Φ=  (16)

are the generalized values of the corresponding matrices and loading vector, while Φi is an 
eigenmode shape matrix to be defined later. For simplicity M(si), C(si), K(si) are substituted 
by Mi, Ci, Ki, respectively. These matrices correspond to the design, which is defined by the i-
th vector of the design parameters also called design vector. 

According to the modal superposition approach the system of Ν simultaneous differential 
equations, which are coupled with the off-diagonal terms in the mass, damping and stiffness 
matrices, is transformed to a set of N independent normal-coordinate equations. The dynamic 
response can therefore be obtained by solving separately for the response of each normal 
(modal) coordinate and then superimposing these to obtain the response in the original 
coordinates. 

A number of different formulas have been proposed to obtain reasonable estimates of the 
maximum response based on the spectral values without performing time history analyses for 
a large number of transformed dynamic equations. The simplest and most popular of these is 
the square root of the sum of the squares (SRSS) of the modal responses. According to this 
estimate the maximum total displacement is approximated by 

2
max,N

2
max,2

2
max,1max uuuu +++= …  (17)

where uj,max corresponds to the maximum displacement calculated from the j-th transformed 
dynamic equations over the complete time period. The use of the Eq. (17) permits this type of 
“dynamic” analysis by knowing only the maximum modal coordinates uj,max. 

The basic idea behind mode superposition approach and consequently the response 
spectrum modal analysis is to transform the set of N coupled equations of motion into a set of 
N uncoupled equations which can be handled more easily. The following steps summarize the 
response spectrum modal analysis adopted by many seismic codes around the world: 

1. Calculate a number Nm <′  of eigenfrequencies ωi and the corresponding eigenmode 
shape matrices Φi, which are classified in the following order (ω1<ω2<…<ωm΄). This is 
a user specified number, based on experience or on previous test analyses, which has 
to satisfy the requirement of step 6. 

2. Calculate the generalized masses, according to the following equation 
j
ii

Tj
i

j
i Mm φφ=  (18)
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 where ],,,[ m
i

2
i

1
ii

′φφφ=Φ …  is the eigenmode shape matrix while j
iφ  is the j-th 

eigenmode corresponding to the i-th design vector. 
3. Calculate the coefficients j

iL , according to the following equation 

rML i
Tj

i
j
i φ=  (19)

where r is the influence vector which represents the dispacements of the masses 
resulting from static application of a unit ground displacement. 

4. Calculate the modal participation factor j
iΓ , according to the following equation 

j
i

j
ij

i m
L

=Γ  
(20)

5. Calculate the effective modal mass for each design vector and for each eigenmode, by 
the following equation 

j
i

2j
ij

i,eff m
Lm =  

(21)

6. Calculate a number mm ′<  of important eigenmodes. According to the Eurocode the 
minimum number of the eigenmodes that has to be taken into consideration is defined 
by the following assumption: The sum of the effective eigenmasses must be not less 
than the 90% of the total vibrating mass mtot of the system, so the first m eigenmodes 
that satisfy the equation 

tot

m

1j

j
i,eff m90.0m ≥∑

=
 (22)

 are taken into consideration. 
7. Calculate the values of the spectral acceleration Rd(Tj) that correspond to each 

eigenperiod Tj of the important modes. 
8. Calculate the modal displacements according to equation 

2

2
jjd

2
j

jd
j 4

T)T(R)T(R
)SD(

π

⋅
=

ω
=  

(23)

9. Calculate the modal displacements 

j
j
i

j
imax,j )SD(u ⋅φ⋅Γ=  (24)

10. The total maximum displacement is calculated by superimposing the maximum modal 
displacements according to Eq. (17). 



Manolis Papadrakakis, Nikos D. Lagaros, and Vagelis Plevris. 

11 

4 SOLUTION OF THE OPTIMIZATION PROBLEM 

There are three types of algorithms belonging to the class of evolutionary computation that 
imitate nature by using biological methodologies in order to find the optimum solution of a 
problem: (i) evolutionary programming (EP), (ii) genetic algorithms (GAs) and (iii) evolution 
strategies (ESs). Their main difference is that GAs deal with bit-strings of fixed sizes, ES with 
real vectors and EP with finite state automata. GAs basic assumption is that the optimal 
solution can be found by assembling building blocks, i.e. partial pieces of solutions, while 
ESs and EP simply ensure the emergence of the best solutions. The most important 
consequence of this different approach is related to the recombination operator, viewed as 
essential for GA, as potentially useful for ES and as possibly harmful for EP. The modern 
tendencies seem to follow combinations of the two approaches, since GA users have turned to 
real number representations when dealing with real numbers following experimental results or 
heuristic demonstrations, whereas ES users have included recombination as a standard 
operator, and have designed special operators for non real-valued problems16. 

Rechenberg6 and Schwefel7 proposed evolution strategies for parameter optimization 
problems in the seventies. Similar to genetic algorithms, ES imitate biological evolution in 
nature and have three characteristics that make them differ from other conventional 
optimization algorithms: (i) in place of the usual deterministic operators, they use randomized 
operators: mutation, selection as well as recombination; (ii) instead of a single design point, 
they work simultaneously with a population of design points in the space of variables; (iii) 
they can handle continuous, discrete and mixed optimization problems. The second 
characteristic allows for a natural implementation of ES on parallel computing environments. 
The ES, however, achieve a high rate of convergence than GA due to their self-adaptation 
search mechanism and are considered more efficient for solving real world problems17. The 
ES were initially applied for continuous optimization problems, but recently they have also 
been implemented in discrete and mixed optimization problems. 

4.1 ESs for discrete optimization problems 

In engineering practice the design variables are not continuous because usually the 
structural parts are constructed with certain variation of their dimensions. Thus design 
variables can only take values from a predefined discrete set. For the solution of discrete 
optimization problems a modified ESs algorithm has been proposed by Thierauf and Cai18. 
The basic differences between discrete and continuous ESs are focused on the mutation and 
the recombination operators. The multi membered ESs (M-ESs) that is adopted in the current 
study uses three operators: recombination, mutation and selection operators that can be 
included in the algorithm as follows: 

 Step 1 (recombination and mutation) 

The population of μ parents at g-th generation produces λ offsprings. The genotype of any 
descendant differs only slightly from that of its parents. For every offspring vector a 
temporary parent vector T

n21 ]s~,...,s~,s~[s~ =  is first built by means of recombination. For 
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discrete problems the following recombination cases can be used: 

⎪
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(25)

is
~  is the i-th component of the temporary parent vector s~ , sα,i and i,bs are the i-th components 
of the vectors as and bs which are two parent vectors randomly chosen from the population. In 
case C of Eq. (25), i,bji ss~ =  means that the i-th component of s~  is chosen randomly from the 
i-th components of all μ parent vectors. From the temporary parent s~  an offspring can be 
created following the mutation operator. 

Let as consider the temporary parent )g(
ps  of the generation g that produces an offspring 

)g(
os  through the mutation operator as follows: 

)g()g(
p

)g(
o zss +=  (26)

where [ ]T)g(
n

)g(
2

)g(
1

)g( z...,,z,zz = is a random vector. Mutation is understood to be random, 
purposeless events, which occur very rarely. If one interprets them, as a set of many 
individual events the “natural” choice is to use a probability distribution according to which 
small changes occur frequently, but large ones only rarely. As a result of this assumption two 
requirements arise together by analogy with natural evolution: (i) the expected mean value ξi 
for a component )g(

iz  to be zero; (ii) the variance 2
iσ , the average squared standard deviation 

from mean value, to be small. The mutation operator in the continuous version of ESs 
produces a normally distributed random change vector )g(z . Each component of this vector 
has small standard deviation value σi and zero mean value. As a result of this there is a 
possibility that all components of a parent vector may be changed, but usually the changes are 
small. In the discrete version of ESs the random vector )g(z  is properly generated in order to 
force the offspring vector to move to another set of discrete values. The fact that the 
difference between any two adjacent values can be relatively large is against the requirement 
that the variance 2

iσ  should be small. For this reason it is suggested18 that not all the 
components of a parent vector, but only a few of them (e.g. A) should be randomly changed in 

every generation. This means that n-A components of the randomly changed vector )g(z  will 

have zero value. In other words, the terms of vector )g(z  are derived from 

⎩
⎨
⎧ δ+κ

=
        componentsother  -nfor          0

componentschosen randomly  for   s)1(
z i)g(

i A
A

 
(27)
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where δsi is the difference between two adjacent values in the discrete set and κ is a random 
integer number, which follows the Poisson distribution 

γ−
κ

γ
γ

=κ e
!
)()(p  

(28)

γ is the standard deviation as well as the mean value of the random number κ. For a very 
small γ (e.g. 0.001) the probability that κ will be zero is greater than 99%. For greater values 
of γ (e.g. 0.05) the probability that κ will be zero is 95% and the probability that it will be one 
is 5%. This shows how the random change )g(

iz  is controlled by the parameter γ. The choice 
of A depends on the size of the problem and it is usually taken as the 1/5 of the total number of 

design variables. The A components are selected using uniform random distribution in every 
generation according to Eq. (27). 

Step 2 (selection) 

There are two different types of the multi-membered ES: 
(μ+λ)-ESs: The best μ individuals are selected from a temporary population of (μ+λ) 

individuals to form the parents of the next generation. 
(μ,λ)-ESs: The μ individuals produce λ offsprings (μ≤λ) and the selection process 

defines a new population of μ individuals from the set of λ offsprings only. 
In the second type, the life of each individual is limited to one generation. This allows the 

(μ,λ)-ESs selection to perform better on dynamic problems where the optimum is not fixed, or 
on problems where the objective function is noisy. 

For discrete optimization the procedure terminates when one of the following termination 
criteria is satisfied: (i) when the best value of the objective function in the last 4nμ/λ 
generations remains unchanged, (ii) when the mean value of the objective values from all 
parent vectors in the last 2nμ/λ generations has not been improved by less than a given value 
εb (=0.0001), (iii) when the relative difference between the best objective function value and 
the mean value of the objective function values from all parent vectors in the current 
generation is less than a given value εc(=0.0001), (iv) when the ratio μb/μ has reached a given 
value εd (=0.5 to 0.8) where μb is the number of the parent vectors in the current generation 
with the best objective function value. 

4.2 ESs in structural optimization problems 

So far comparatively little effort has been spent in applying probabilistic search methods to 
structural optimization problems1,19. Usually this type of problems are solved with a 
mathematical programming algorithm such as the sequential quadratic programming method 
(SQP)20,21, the generalized reduced gradient method (GrG)22, the method of moving 
asymptotes (MMA)23, which need gradient information. In structural optimization problems, 
where the objective function and the constraints are particularly highly non-linear functions of 
the design variables, the computational effort spent in gradient calculations is usually large. 
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Little effort has been also spent in examining structural optimization problems for dynamic 
loading and especially under earthquake loading within a certain seismic code24. 

In a recent work by Papadrakakis et. al.1 it was found that combinatorial type algorithms 
are computationally efficient even if larger number of analyses are needed to reach the 
optimum. These analyses are computationally less expensive than in the case of mathematical 
programming algorithms since they do not need gradient information. Furthermore, 
probabilistic methodologies, due to their random search, are considered to have a better 
behaviour in optimization problems with local optima since they are more capable of finding 
the global optimum, whereas mathematical programming algorithms may be trapped in local 
optima. Finally, the natural parallelism inherent in combinatorial algorithms makes them very 
attractive for application in parallel computer architectures.  

The ESs optimization procedure starts with a set of parent vectors. If any of these parent 
vectors gives an infeasible design then this parent vector is modified until it becomes feasible. 
Subsequently, the offsprings are generated and checked if they are in the feasible region. 
According to (μ+λ) selection scheme in every generation the values of the objective function 
of the parent and the offspring vectors are compared and the worst vectors are rejected, while 
the remaining ones are considered to be the parent vectors of the new generation. On the other 
hand, according to (μ,λ) selection scheme only the offspring vectors of each generation are 
used to produce the new generation. This procedure is repeated until the chosen termination 
criterion is satisfied.  

The number of parents and offsprings involved affects the computational efficiency of the 
multi-membered ESs discussed in this work. It has been observed that values of μ and λ equal 
to the number of the design variables produce better results1. The ESs algorithm for structural 
optimization applications under seismic loading can be stated as follows: 

1. Selection step :  
selection of is  (i = 1,2,...,μ) parent vectors of the design variables 

2. Analysis step : 
solve )t(Ru)s(Ku)s(Cu)s(M iii =++ ���  (i=1,2,...,μ) 

3. Constraints check : 
all parent vectors become feasible 

4. Offspring generation : 
generate js , (j=1,2,...,λ) offspring vectors of the design variables 

5. Analysis step : 
solve  )t(Ru)s(Ku)s(Cu)s(M jjj =++ ���  (j=1,2,...,λ) 

6. Constraints check : 
if satisfied continue, else change js  and go to step 4 

7. Selection step : 
selection of the next generation parents according to (μ+λ) or (μ,λ) selection schemes 

8. Convergence check : 
If satisfied stop, else go to step 3 
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5 NUMERICAL RESULTS 

One benchmark test example of space frame with six storeys has been considered to 
illustrate the efficiency of the proposed methodology in sizing optimization problems with 
discrete design variables. The modulus of elasticity is 200 GPa and the yield stress is σy=250 
MPa. The cross section of each member is assumed to be a W-shape and for each member 
two design variables are considered as shown in Figure 7. The objective function of the 
problems is the weight of the structure. The constraints are imposed on the inter-storey drifts 
and on the maximum non-dimensional ratio q of Eqs. (2) and (3) for each element group 
which combines axial force and bending moments. The values of allowable axial and bending 
stresses are Fa=150 MPa and Fb=165 MPa, respectively, whereas the maximum allowable 
inter-storey drift is limited to 4.5 cm which corresponds to 1.5% of the height of each storey. 
The test example was run on a Silicon Graphics Power Challenge computer. 

b

h

i

i

 
Figure 7: W-shape cross section 

The space frame consists of 63 elements with 180 degrees of freedom as shown in Figure 
8. The beams have length L1=7.32 m and the columns L2=3.66 m. The structure is loaded 
with a 19.16 kPa gravity load on all floor levels and a static lateral load of 109 kN applied at 
each node in the front elevation along the z direction. The element members are divided into 5 
groups, as shown in Figure 8, each one having two design variables resulting in ten total 
design variables. The constraints are imposed on the maximum allowable inter-storey drift 
and the non-dimensional ratio q for each element group. For this test case both (μ+λ)-ES and 
(μ,λ)-ES schemes are implemented. 
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Figure 8: Six storey space frame 

5.1 Convergence histories 

The convergence history with respect to the finite element analyses performed by the 
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optimization procedure using the (5+5)-ESs scheme is shown in Figure 9 for the direct time 
integration and the response spectrum modal analysis methods. 
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Figure 9: Convergence histories of the optimization procedure 

5.2 Examination of the schemes (μ+λ)ES and (μ, λ)ES 

In this paragraph the behaviour of (μ+λ)-ESs and (μ,λ)-ESs schemes with μ=λ=5 are 
compared. The upper values of the design parameters are taken as the initial design, while the 
termination criterion (i) is adopted for both schemes (Winitial=2486 kN). The results obtained 
are shown in Table 1 for the direct integration approach and the response spectrum modal 
analysis. The results indicate that the (μ+λ)-ESs scheme appears to be more robust than the 
(μ,λ)-ESs scheme. 

 

ESs scheme Weight (kN) Time (sec) Generations FE analyses 

(μ+λ) 944 13818 40 142 
(μ, λ) 842 39657 40 359 

 
Optimum solution achieved (design variables-cm) ESs scheme 

h1 b1 h2 b2 h3 b3 h4 b4 h5 b5 
(μ+λ) 46 38 58 46 51 35 20 15 46 33 
(μ, λ) 51 35 46 43 51 35 30 13 51 20 

(a) The (μ+λ)-ESs and (μ,λ)-ESs schemes for the direct time integration approach 
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ESs scheme Weight (kN) Time (sec) Generations FE analyses 

(μ+λ) 1126 5674 40 157 
(μ, λ) 1316 5284 21 140 

 
Optimum solution achieved (design variables-cm) ESs scheme 

h1 b1 h2 b2 h3 b3 h4 b4 h5 b5 
(μ+λ) 51 41 53 53 51 41 28 20 35 33 
(μ, λ) 43 43 66 56 51 46 33 23 41 35 

(b) The (μ+λ)-ESs and (μ,λ)-ESs schemes for the response spectrum modal analysis 

Table 1 : Comparison of (μ+λ)-ESs and (μ,λ)-ESs schemes 

5.3 Examination of the influence of the number of parents and offsprings 

The influence of the number of parents and offsprings are considered in this paragraph. 
The results presented in Table 2 indicate that the schemes close to (5+5)-ESs scheme have 
better convergence. This confirms the empirical rule that the sum of the parents and 
offsprings should be roughly equal to the number of the design parameters of the problem. 
Schemes with larger number of parents and offsprings can give good results in some cases, as 
far as the optimum is concerned, but they consume much more time until they reach 
convergence. 
 

 

ESs scheme Weight (kN) Time (sec) Generations FE analyses 

(3+3) 863 9839 65 135 
(3+5) 917 11308 35 113 
(5+3) 963 12816 56 123 
(5+5) 944 13818 40 142 

(5+10) 835 20574 38 248 
(10+5) 824 29363 78 306 

(10+10) 844 32130 48 381 

(a) Direct time integration approach 
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ESs scheme Weight (kN) Time (sec) Generations FE Dynamic analyses 

(3+3) 1207 3110 37 82 
(3+5) 1103 3527 29 92 
(5+3) 1082 9853 129 299 
(5+5) 1126 5674 40 157 

(5+10) 1165 4897 18 130 
(10+5) 1253 4154 23 109 

(10+10) 1108 8646 29 235 

(b) Response spectrum modal analysis 

Table 2 : Influence of the number of parent and offspring for the (μ+λ)-ESs schemes 

5.4 Examination of the influence of the initial point 

The behaviour of the (5+5)-ESs scheme for different initial designs is depicted in Table 3 
and 6. The initial designs correspond to one feasible and one infeasible design. The results 
show that the final optimum design could be affected by the initial parameters in the range of 
10% at the most. 

 
 
Initial design Weight (kN) Time (sec) Generations FE analyses 

feasible 944 13818 40 142 
infeasible 1037 9473 35 178 

(a) Direct time integration approach 

 
Initial design Weight (kN) Time (sec) Generations FE analyses 

feasible 1126 5674 40 157 
infeasible 1104 9510 46 246 

(b) Response spectrum modal analysis 

Table 3 : Influence of the starting point of the (5+5)-ESs scheme 
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6 CONCLUSIONS 

 The presented results indicate the substantial improvement that can be achieved in the final 
design of structures under seismic loading when the proposed optimization procedure is 
implemented. The more rigorous dynamic approach based on time history analyses for a 
number of artificially generated earthquakes gives more economic designs than the 
approximate response spectrum analysis adopted by the seismic codes, at the expense of 
requiring more computational effort. 
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