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Nowadays, numerical computation has become one of the most vigorous tools 
for scientists, researchers and professional engineers, following the enormous 
progress made during the last decades in computing technology, in terms of both 
computer hardware and software development. Although this has led to tremendous 
achievements in computer-based structural engineering, the increasing necessity 
of solving complex problems in engineering requires the development of new ideas 
and innovative methods for providing accurate numerical solutions in affordable 
computing times.

This collection aims at providing a forum for the presentation and discussion of 
state-of-the-art innovative developments, concepts, methodologies and approaches 
in scientific computation applied to structural engineering. It involves a wide coverage 
of timely issues on computational structural engineering with a broad range of both 
research and advanced practical applications.

This Research Topic encompasses, but is not restricted to, the following scientific 
areas: modeling in structural engineering; finite element methods; boundary element 
methods; static and dynamic analysis of structures; structural stability; structural 
mechanics; meshless methods; smart structures and systems; fire engineering; 
blast engineering; structural reliability; structural health monitoring and control; 
optimization; and composite materials, with application to engineering structures.
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Editorial on the Research Topic

Innovative Approaches in Computational Structural Engineering

Over the last few decades, tremendous development has been made in the field of computing
technology, in terms of both computer hardware and software development. As a result of
this progress, numerical computation has now become one of the most effective tools for
scientists, researchers, and professional engineers around the world. Although this has led to
great achievements in computer-based structural engineering, the increasing necessity to solve
complex problems in engineering requires the development of new ideas and innovative methods
for providing accurate numerical solutions in affordable computing times (Plevris and Tsiatas,
2018).

The Research Topic “Innovative Approaches in Computational Structural Engineering”
aims to provide a forum for the presentation and discussion of state-of-the-art innovative
developments, concepts, methodologies, and approaches in scientific computation applied to
structural engineering. It involves a wide coverage of timely issues on computational structural
engineering with a broad range of research and practical applications.

The collection includes both research and advanced applied topics, with particular emphasis
on innovation in computational structural mechanics and engineering. The contributions come
from 58 leading researchers and professionals from 10 countries around the world who are
actively involved in the field of computational structural engineering. The papers in the collection
cover various relevant scientific areas such as modeling in structural engineering; finite element
methods; boundary elementmethods; static and dynamic analysis of structures; performance-based
design; structural optimization; meshless methods; modeling of advanced and innovative materials
such as shape memory alloys; non-linear structural analysis; system identification methods;
structural stability; GPU computing; earthquake engineering; seismic vulnerability; incremental
dynamic analysis; structural damage assessment; smart structures and systems; structural reliability;
structural health monitoring and control; optimization; and composite materials, with application
to engineering structures.

PAPERS IN THE COLLECTION

In the 1st paper of the collection, Mitropoulou et al. present a methodology to identify the most
appropriate damage index, able to provide a reliable description of the structural damage level.
A performance-based design framework is formulated based on this damage index, which is to
be used as a design tool for achieving safer and more economic designs. For each damage index
under consideration, design optimization problems for structural systems are solved by means of a
popular metaheuristic search algorithm.
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Next, Charalampakis and Tsiatas examine three uniaxial
phenomenological models, i.e., the Graesser-Cozzarelli model,
the Wilde-Gardoni-Fujino model, and the Zhang-Zhu model,
which are currently used for the description of a Shape
Memory Alloy (SMA) behavior. The examination process reveals
several limitations and drawbacks, including the large number
of parameters and the unclear effect of specific parameters
in the overall response. Based on this analysis, powerful
metaheuristics are employed for system identification and a new
simple rate-independent model is proposed, which addresses
all issues in a unified manner producing excellent fit with the
experimental data.

The 3rd paper by Yiotis and Katsikadelis deals with the
solution to the vibration problem of cylindrical shell panels
using the Meshless Analog Equation Method (MAEM). The
method is based on the principle of the analog equation,
converting the original equations into three substitute ones,
two Poisson’s and one biharmonic, which are solved using
a meshless method. The use of integrated Multiquadric—
Radial Basis Functions (MQ-RBFs) to approximate the fictitious
sources allows the approximation of the solutions sought by
new RBFs, which accurately approximate both the solution
and its derivatives. Several shell panels are analyzed using the
method, and the numerical results demonstrate its efficiency
and accuracy.

Tsalkatidis et al. study the mechanical behavior of bolted
hybrid connections that consist of a square hollow steel
column (SHS) and a glulam timber beam. A reference model
is constructed and verified by comparison to experimental
and numerical data from the literature. Several parameters
that affect the response of the connection are modified
in order to investigate and quantify their effect, resulting
in seven different case studies. A proposed optimal
configuration of the hybrid connection is investigated
and presented.

In the next paper, Tsiatas et al. present a new layered
approach to the non-linear analysis of initially straight Euler-
Bernoulli rectangular beams by the Boundary Element Method
(BEM). The formulation of the problem is based on the
displacements, and the equations of equilibrium, derived
from the principle of minimum total potential energy,
being coupled and non-linear. The beam is discretized
in both the longitudinal direction and the cross-sectional
plane, and the governing differential equations are solved
using the Analog Equation Method (AEM) in conjunction
with an iterative numerical process. Various representative
examples are examined that not only take geometrical non-
linearity into account but material non-linearity as well.
The reliability and effectiveness of the proposed method
are validated by comparing the results obtained with those
presented in the literature or derived by other Finite Element
(FE) models.

Arailopoulos et al. propose an integrated reverse engineering
methodology for a large-scale fully operational steam turbine
rotor, addressing issues that include developing the CAD
and FE model of the structure, as well as the applicability
of model updating techniques based on experimental modal

analysis procedures. The FE model of the turbine was developed
using tetrahedral solid elements resulting in 55 million DOFs.
Experimentally identified modal modes and modal frequencies
were compared to the FE model predictions, and CMA-ES
optimization was used to fine-tune the material parameters,
such as modulus of elasticity and density. A simplified
FE model was also developed and used for the turbine
rotordynamic analysis.

In the 7th paper, Mascolo et al. developed a FE model
of the Moderate Rotation Theory (MRT) of laminated
composite beams. The proposed model describes laminated
composite beams with arbitrary curvature of the beam
axis taking into account shear deformation, warping
effects, and in-plane and out-of-plane instability. The
stability analysis is performed through a path-following
procedure and a bordering algorithm. Several numerical
results are presented and comparisons are made with
classical beam theories and other theories available in the
relevant literature.

Jena and Chakraverty investigate the free vibration of the
variable cross-section (non-uniform) Single-Layered Graphene
Nano-Ribbons (SLGNRs) by using the Differential Quadrature
Method (DQM). The Euler–Bernoulli beam theory is considered
in conjunction with Eringen’s non-local elasticity theory. A
convergence study is carried out to illustrate the efficiency
of the method and the obtained results are validated with
known results.

In the paper by Molina-Moya et al., a parallel iterative
solver based on the Generalized Minimum Residual Method
(GMRES) with complex-valued coefficients is explored, with
applications to BEM. The proposed approach does not require
modifications in the main program, which computes the system
matrix and the right vector, allowing the use of standard BEM
codes, with the solver task being transferred to the Graphic
Processing Unit (GPU). The CUDA programming language is
used, exploiting the particular architecture of the GPU device
for complex-valued systems. The parallelized GMRES solver
shows reductions in computing times when compared with its
CPU implementation.

In the 10th paper, Panagiotopoulos et al. present a unified
methodology to solve problems of frictionless unilateral
contact as well as adhesive contact between linear elastic
solids. The methodology is based on energetic principles and
is applied to a minimization problem of the total potential
energy. To solve the quadratic problem, two algorithms
are developed, which are both variants of the well-known
conjugate gradient algorithm. Both symmetric and non-
symmetric formulations of this matrix are presented and
discussed, showing that the non-symmetric formulation
provides more accurate results. The framework is found
to be very useful in cases where dissipative mechanisms
also exist on the boundaries or common interfaces of
elastic bodies.

Blasi et al. present a work aimed at developing a hybrid
approach to consider the effect of concrete cracking
on the hysteretic response of RC frames. The smeared
cracking approach is employed, while discrete cracking
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surfaces are included in the geometrical model where
the interface behavior is defined by the combination of
contact and cohesive elements. The proposed approach
is adopted in ABAQUS to simulate an experimental test
on a double cantilever column for the calibration of the
numerical model. Numerical and experimental results
are compared in terms of hysteretic force-displacement
behavior and cumulative dissipated energy, to assess the
reliability of the proposed model in simulating the energy
dissipation capacity of RC members subjected to lateral
cyclic loading.

In the 12th paper by Zhao et al., three different strategies
are proposed to identify the general hysteretic behavior of
a typical shear structure subjected to external excitations.
Different case studies are presented to analyze the dynamic
responses of a time-varying shear structural system with
the early version of the Bouc-Wen-Baber-Noori (BWBN)
hysteresis model. Various computational techniques are
utilized. The results show that Intelligent Parameter Varying
(IPV) performs superior computational efficiency and
system identification accuracy in comparison to Genetic
algorithm (GA), and Transitional Markov Chain Monte Carlo
(TMCMC) approaches.

The subject of the 13th work of the collection, by
Giordano et al., is Sant’ Agostino Sanctuary in Offida,
central Italy. The village and the sanctuary itself was
severely damaged by the seismic events of August 2016.
A finite element model using non-linear static analysis
(Pushover) is employed to estimate the vulnerability of the
sanctuary and its dynamic response, considering the non-
linear behavior of masonry with a homogenized material
and a smeared cracking and crushing constitutive law. The
structure is shown to be prone to massive damage leading
to collapse.

Repapis and Zeris investigate the vulnerability assessment of
non-conforming infilled RC structures of the 1960s and 1970s.
The seismic performance of typical bare and infilled structures
was evaluated. The results from Static Pushover analyses are
extended with Incremental Dynamic Analysis predictions using
a large number of recorded base excitations from recent
destructive earthquakes in Greece and internationally. The
analysis shows that fully or partially infilled RC frames can
perform well, while frames with an open floor usually have the
worst performance due to the formation of an unintentional
soft story.

In the 15th paper, Juárez-Luna and Caballero-Garatachea
study the nonlinear behavior of RC circular, elliptic, and
triangular isolated slabs using computational mechanics. The
concrete was modeled with a damage model which includes
softening, while the behavior of the reinforcing steel was
simulated with a 1D bilinear plasticity model. Validation was
done by comparing the computed numerical results with the
experimental results reported in the literature. The coefficient
method is proposed for its simplicity to calculate design bending
moments in slabs with arbitrary geometries.

Soroushian and Farahani apply a technique proposed
in 2008 by Soroushian (2008) to the FE analysis of
assemblies of beam-columns subjected to continuous static
loads. These loads may be computationally expensive
especially when they are densely digitized. It is shown
that the adapted technique might considerably reduce
the computational cost with only a negligible change in
accuracy. Furthermore, the good performance of the adapted
technique is demonstrated from different points of view and
is compared with the performance of the technique in time
integration analysis.

In the 17th paper, Marakakis et al. review the current
state of the art in shunt piezoelectric systems for noise and
vibration control. In fact, resonant shunts have proved to
be very efficient and stable for the reduction of vibration
on smart piezoelectric structures, such as beams and plates.
From the numerous applications which were reviewed it is
evident that shunt piezoelectric systems can be very effective for
several different purposes such as control of vibrations on hard
drives, noise reduction on acoustic applications, improvement
of image quality and scan rate of tapping mode Atomic
Force Microscopy.

In the last paper of the collection, Papazafeiropoulos
et al. propose a novel spectra-matching framework, which
employs a linear combination of raw ground motion records
to generate artificial acceleration time histories for matching
a target spectrum taking not only the acceleration into
account, but also the seismic input energy equivalent velocity.
The procedure of selection and scaling of the suite of
ground motion records to fit a given target spectrum is
formulated by means of an optimization problem. The
optimization results have shown that there is good agreement
between the target and optimized spectra for the different
matching scenarios examined, regardless of the nature of the
target spectrum.

In closing this editorial, we would like to thank the
contributing authors, the reviewers, the staff at Frontiers
and all the other people we have worked closely with in
trying to make this Research Topic a success. Once again,
it has been proven that computational methods are at the
forefront of real-world applications. Especially in the structural
engineering discipline, the applications are numerous and cover
a wide range of topics. Although very powerful capabilities
are now available for the simulation and analysis of structures,
there are still many exciting research challenges. The field of
computational structural engineering will continue to grow and
increasingly contribute to technological development in the
future, influencing and enriching the engineering profession and
our lives in general.
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The scope of the work is to detect the most appropriate damage index, able to provide a

reliable description of the structural damage level. This damage index is used to formulate

a performance-based design framework to be used as a design tool for achieving

safer and more economic designs. This objective is achieved by comparing alternative

structural systems that comply with the design demands in the most cost-efficient

approach, i.e., those requiring less material volume for concrete and steel reinforcement.

In this direction, design optimization problems for structural systems are defined for each

damage index under consideration and the structural optimization problems at hand are

solved by means of a popular metaheuristic search algorithm.

Keywords: performance-based design, structural optimization, damage indices, reinforced concrete structures,
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INTRODUCTION

Performance-based design (PBD) framework was presented throughout the past couple of
decades, for designing structural systems exposed to non-deterministic earthquake loading
conditions, aiming at increasing structural safety against earthquake hazard. In accordance
to performance-based earthquake engineering the structures need to be able resisting various
earthquake loading scenarios in a measurable fashion and sustaining potential damages
corresponding to desirable performance levels (Vanzi et al., 2015). The contemporary PBD
engineering state-of-practice, among others, can be found in US design codes such as FEMA-445
(2006), ASCE-41 (2006), ATC-58 (2009), and FEMA-P-58-1 (2012). Aiming to achieve the PBD
engineering goals, these design guidelines suggest that in seismic-prone areas require implementing
higher-order analysis methods for performing structural assessment and design of existing or
new structural systems, respectively. Structural optimization can provide a highly-effective design
framework, yet computationally intensive, exploiting the benefits provided by nonlinear dynamic
or static analysis methods. Structural design optimization problems formulated on the basis of
PBD frameworks became a topic of growing interest, over the last years, where interesting results
have been reached. The progress in structural optimization has facilitated passing from design
procedures of trial-and-error basis toward fully automatic ones using advanced design space
exploration algorithms (Marano et al., 2009; Quaranta et al., 2014; Fiore et al., 2016a; Greco et al.,
2016). Partly, this transition should be credited to metaheuristic search algorithms that last decades
developed rapidly. These search algorithms are capable of dealing with optimization problems of
high complexity. Furthermore, structural optimization matured from simple academic problems
to become the core of contemporary design in case of extremely complicated structural systems
(Marano and Greco, 2006; Marano et al., 2006, 2007, 2008; Lagaros, 2014a, 2018; Greco et al., 2015).
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So far, many researchers have integrated the PBD concept
into design optimization procedures for achieving better designs.
Indicatively, Ganzerli et al. (2000) suggested a PBD optimization
practice for reinforced concrete (RC) framed structures relying
on mathematical programming search algorithms. Esteva et al.
(2002) recommended a formulation for life-cycle cost (LCC)
aiming to define optimized mechanical properties of structures
subjected to earthquake risk. Li and Cheng (2003) presented a
design concept based on damage reduction and was implemented
into structural optimization problems and exhibited that this
idea leads to improved designs with respect to structural
performance in terms of both maximum interstory drift and
life-cycle cost performance. Chan and Zou (2004) presented
an improved approach for RC building structures subject
to seismic loading aiming to improve elastic and inelastic
interstory drifts into structural optimization problems. Liu et al.
(2005) presented a design optimization approach for multiple-
objectives using Genetic Algorithm (GA) for the case of steel
framed structures taking into account various criteria; for two
performance levels the resulting maximum interstory drift,
material weight, and design complexity ones. Fragiadakis et al.
(2006) presented PBD optimization practice for steel moment-
resisting frames (MRFs) based on FEMA-350 (2000) probabilistic
framework. An overview for the PBD framework state-of-the-
art was presented by Foley et al. (2007) and implemented
such a design framework into multiple-objective structural
optimization problem formulations for single and multi-story
steel framed structures having fully and partially restrained
connections. European seismic code recommendations were
assessed by Lagaros and Papadrakakis (2007), when adopted

FIGURE 1 | Schematic representation of PSO algorithm.

for designing 3D RC building structures, within a PBD multi-
objective optimization concept. Aiming to deal with complex
optimization problems, confidence levels were integrated with
the objective criterion together with the material cost for
various optimized design scenarios, the GA search algorithm
was adopted by Rojas et al. (2007). Lagaros et al. (2010)
presented an automated PBD approach that was implemented
for designing RC building structures, examining the effect of
infill walls, in this direction PBD approach alternatives were
tested relying on non-linear static or dynamic analyses. In
the work by Lagaros and Fragiadakis (2011) a comparative
study is performed over the state-of-practice on nonlinear static
analysis approaches, recommended by the European and US
code provisions, were implemented within PBD optimization
formulations; while aiming to examine the parameters that affect
LCC estimation of structures, multi-objective LCC optimization
problems were formulated by Mitropoulou et al. (2011).

The concept of defining the condition of structural loss using
an engineering compatible quantity taking values on specific
scale by means of a damage index (DI) is appealing due to its
ease of implementation. So far several researchers have proposed
several DIs for the case of RC or steel structural systems (i.e.,
Ghobarah, 2004; Estekanchi and Arjomandi, 2007). This work
aims at exploring and assessing alternative designs, exhibiting a
required performancemonitored by a damage index, that comply
with design codes according to the utmost economical way, i.e.,
having lowermaterial volume requirements for concrete and steel
reinforcement. In this direction, performance-based structural
design optimization problems are formulated for various damage
indices and the designs obtained are subsequently assessed
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under a set of seismic records properly selected. The main
objective is to detect the most appropriate damage index,
able to provide a reliable description of the structural damage
level. This damage index is used to formulate a performance-
based design framework to be used as a design tool for
achieving safer and more economic designs. The resulting
structural optimization problems are solved using a well-known
metaheuristic optimization algorithm, namely the particle swarm
optimization method, while the limit states implemented for
the formulation of the performance-based design procedures,
which describe the status of structural integrity, are based on
calibrated values obtained from a former study of the authors
(Mitropoulou et al., 2014).

LOCAL AND GLOBAL DAMAGE INDICES

Damage indices can be classified into two groups (Grigoriu,
1987): (a) DIs based on strength; and (b) those based on
response. Strength-based DIs do not require response analyses
(Shiga et al., 1982; Khashaee, 2005). However, they need to be
calibrated with reference to observed damage based on rather
large experimental databases. The performance of structures
against seismic loading is generally correlated to the ability
to sustain inelastic deformations (Resta et al., 2013), while
experimental studies have shown that indices of structural
performance (like ductility as well as others), which rely only
on the fatigue concept of low-cycle, do not appear to offer
an acceptable indicator for structural loss due to seismic
loads (Banon and Veneziano, 1982). These observations are
in agreement with the notion that brittle systems’ failure is
developed due to significant deformation demands, while ideal
ductile structures’ failure begun when inelastic deformations are
observed repeatedly (Fiore et al., 2016b). Damage indices used
to characterize the performance of structural systems that are
not ideal ductile or brittle, need to consider for losses due to
repeated and increased inelastic deformations (Park and Ang,
1985; Greco et al., 2017). Thus, more wide-ranging applicable

FIGURE 2 | Graphic description of particle’s positioning indicatively for the 2D

design space.

and reliable indices are required to characterize structural
performance.

According to Ghobarah et al. (1999) the DIs based on response
are classified in three sets based on what DI accounts for: (a)
maximum deformation (Mahin and Bertero, 1974; Saiidi and
Sozen, 1981; Toussi and Yao, 1982; Roufaiel and Meyer, 1987;
Powell and Allahabadi, 1988); (b) cumulative damage (Banon
and Veneziano, 1982; Allahabadi and Powell, 1988); and (c)
combination of cumulative damage and maximum deformation.
In this work DIs accounting for both cumulative damage and
maximum deformation are implemented. In particular, (i) the
local DI by Park and Ang (1985), (ii) its alternative presented
by Kunnath et al. (1992), (iii) local DI by Chung et al. (1987,
1989), (iv) together with the final and maximum softening
DIs presented by DiPasquale and Çakmak (1987, 1988) are
evaluated in the current study. For their implementation the
local DIs are transformed into global ones by combining the
local values of the DIs of the structural elements using weight
coefficients.

Several damage indices account for the local damage induced
to individual structural elements. Monitoring of local damage
indices helps in the identification of the weak or vulnerable
members that need to be rehabilitated. Nevertheless, it is not
an easy task to obtain clear view for the structure’s response
provided the input earthquake record out of a list of members
DIs. Currently, safety and residual strength of damaged structural
systems rely on single or global DIs. The global ones are usually
implemented for reliability studies, post-earthquake evaluation
of structures, and performance-based design applications. Global
DIs could be defined by combining local ones; the weighting
scheme is the simplest approach for combining local damage
indices (Kunnath et al., 1992). The weighting factors can
predict the relative importance and/or the replacement cost
of a structural element or part of the structure in preserving
safety of the entire structure. However, employing weighted
average procedures in order to define global DIs does not
justify appropriately the concentration locally of the damages,
does not distinguish between different structural elements, and
might lead to misrepresentative conclusions. There are cases that
for a few structural elements of the structural system to have
undergone severe damage deprived of this being reflected in
by a DI.

For the reasons described previously DIs expressed using
weighting factors have not been considered; however, for
purposes of completeness such DIs are briefly outlined
below. Direct implementation of the damage model to
the overall structural system, a single story frame or a
structural member requires determining the corresponding
overall structural system, story or member ultimate
deformations. Nonlinear behavior is limited to plastic
regions close to the structural joints; therefore, it is difficult
to establish the relation between member, story or top
story structural system deformations, with the rotations of
the local plastic zone. Two other global and story damage
indices were proposed (Kunnath et al., 1992), which are
calculated using weighting factors, these factors rely on the
hysteretic energy dissipated at story and component levels,
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respectively:

DIstorey =

nel
∑

i = 1

(λi)element(DIi)element (1)

(λi)element =
Ei

nel
∑

i = 1
Ei

i = 1, . . . , nel(over the elements) (2)

and

DIoverall =

nst
∑

i = 1

(λi)storey(DIi)storey (3)

(λi)storey =
Ei

nst
∑

i = 1
Ei

i = 1, . . . , nst(over the stories) (4)

λi denotes the energy weight factor for story i; Ei represents
the overall energy absorbed by the ith story or component,
while nst and nel denote the total number of stories and
components/elements, respectively.

LOWER BOUND DESIGN OF STRUCTURES

This work concerns the production of lower-bound optimized
designs, which comply with design requirements by a cost-
efficient means (i.e., those requiring less material volume for
concrete and steel reinforcement) and subsequently to be
compared. These designs are then used as the basis of comparison
for identifying the best design procedure. Therefore, structural
optimization problems are formulated and optimized designs
obtained are subsequently evaluated.

Design of Reinforce Concrete Structures
Aiming to evaluate the performance of different designs of
RC framed structures; structural optimization problems were
formulated as below:

minimize CIN(t, s)

subject to gSERVj (s) ≤ 0j = 1, ..., k

gULTj (s) ≤ 0j = k+ 1, ...,m (5)

The design variables comprising of the dimensions of cross-
sectional for groups of beams and columns considered for

TABLE 1 | 2D test example-Damage state with reference to crack width.

Damage state DIms DIfs DIPA DIKRL DICMS

No damage 0.05 0.06 0.06 0.07 0.03

Slight 0.13 0.21 0.14 0.21 0.05

Moderate 0.44 0.66 0.52 0.75 0.06

Extensive 0.57 0.77 1.40 1.51 0.38

formulating the optimization problem are defined by vector
s, F represents the feasible part of the design space where
all serviceability and ultimate limit state design requirements
implemented as constraint functions (i.e., the series of constraint
functions gSERVj (s) and gULTj (s)) are satisfied:

F =

{

s ∈ RD
∣

∣

∣
gSERVj (s) ≤ 0, j = 1, ..., k and gULTj (s) ≤ 0 j = k

+1, ...,m } (6)

where RD represents the discrete design set where design
vectors s take values. The structural materials cost CIN of the
design is the objective function considered. Aiming to deal with
the optimization problem the well-known metaheuristic search
algorithm called as particle swarm optimization (PSO) method is
implemented.

Swarm Intelligence
According to the optimization algorithm particle swarm
(Kennedy and Eberhart, 1995), various design vectors
collaborate. Every vector of unknowns is labeled as “particle”
characterized by its velocity and position, both defined in
the D-dimensional design domain, while a sum of particles
constitutes the so termed “swarm.” During the search procedure
where an optimized design vector is on the hunt, a particle
“flies” in the design space of the problem. During the search
procedure, velocity and position vectors are adjusted for every
particle based on personal “experience” as well as that of the
others (neighboring particles). Memorizing and tracking the
best positions encountered construct particles’ experience.
PSO algorithm relies on joint search locally (self-experience)
with global one (neighboring experience), trying to control
exploitation with exploration. Every particle maintains its
two basic characteristic vectors, i.e., velocity and position (or
location), in the D-dimensional domain which are iterated as
below:

v
j(t + 1) = wvj(t)+ c1r1 ·

(

s
Pb,j − s

j(t)
)

+ c2r2 ·
(

s
Gb − s

j(t)
)

(7)

s
j(t + 1) = s

j(t)+ v
j(t + 1) (8)

v
j(t) refers to the jth particle’s velocity at time t, sj(t) denotes
the jth particle’s position vector at time t, the self-best location
of jth particle is labeled as sPb,j, and the best position obtained

TABLE 2 | Definition of the limit states.

Design procedure 50/50 10/50 2/50

DIθmax 0.400 1.800 3.000

DIms 0.046 0.443 0.566

DIfs 0.061 0.655 0.765

DIPA 0.056 0.524 1.400

DIKRL 0.071 0.751 1.510

DICMS 0.035 0.060 0.377
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globally is denoted with the vector s
Gb. Coefficients c1 and c2

denoted as acceleration ones, refer to the level of confidence
with the best vector achieved by a specific particle (c1 is labeled
as cognitive coefficient) and by entire swarm (c2 is denoted as
social coefficient), respectively. Vectors r1 and r2 are composed
by arbitrary elements distributed uniformly in [0,1]. Flowchart
of Figure 1 describes the basic steps of PSO algorithm, while
particle’s motion indicatively for the case of the two-dimensional
design space is depicted in Figure 2. The lower left dotted circle
of Figure 2 represents present position vector sj(t) at time t, and
the upper right dotted bold circle denotes new location vector
s
j(t+1) at time t+1. The means that the particle’s transition
into the D-dimensional search domain is affected by: (i) velocity
vector vj(t); (ii) self-best found location vector (sPb,j); and (iii)
swarm’s global-best location achieved so far (sGb) is presented in
Figure 2.

DAMAGE INDEX-BASED DESIGN

In this work the performance degree are denoted in terms of
structural deformation and cumulative energy, using different
damage indices apart from maximum interstory drift that has
been exclusively used in the past in PBD. More specifically
Park and Ang DI and its reformed version as presented
by Kunnath et al. (1992), as well as the Chung et al. DI,
together with the final maximum and softening DIs suggested
by DiPasquale and Çakmak (1988), have been considered
for the definition of the performance levels. These five DIs
account for cumulative damage and maximum deformation.
These damage indices were calibrated in a recent study by

the authors (Mitropoulou et al., 2014) relying on the crack
openings’ width. In particular, incremental dynamic analysis was
employed for developing an archive of the DIs’ values using
a coarse modeling of structures employing column-beam 1D
elements.

Six optimization problems are pursued within, following
the PBD framework based on (i) interstory drift (DIθ ),
(ii) Park and Ang (DIPA); (iii) its alternative presented
by Kunnath et al. (DIKRL); (iv) Chung et al. (DICMS);
(v) maximum softening (DIms) as well as (vi) final
softening (DIfs). Moreover, DIs statistical features were
calculated implementing horizontal statistics combined
with the method of maximum likelihood function together
with a properly selected search technique. The values
provided in Table 1 (Mitropoulou et al., 2014) represent
calibrated damage states and they are used for defining the
performance objective introduced in the proposed design
framework.

Performance-Based Design
Several distinctive features for PBD seismic design procedure
with respect to design procedures imposed by the prescriptive
codes: (i) Permits structural engineers to select both appropriate
seismic hazard level and the analogous performance of
the structure, (ii) series of performance objectives are used
for designing a structural system. PBD design procedure
represents a design procedure relying on displacements
where design measures and capacity demands are formulated
considering displacements rather than using forces (Sullivan
et al., 2003).

FIGURE 3 | RC test examples—(A) three-story and (B) six-story.
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PBD implies that structural elements are selected, as well as the
assessment; construction and maintenance studies are operated
on the construction aiming to meet the purposes imposed by
owners/users as well as society (Krawinkler and Miranda, 2004).
When designing against seismic hazard, the aim is to construct
structural systems having predictable performance capable to
withstand seismic loading with measurable metrics. Hence,
contemporary conceptual approach for structural design is that
structural systems need to achieve performance objectives for
several seismic levels varying in the rage of seismic event having
low intensity and return period, to more damaging earthquake
incidents having larger return periods. The contemporary state-
of-practice for PBD structural engineering is offered by the
various design codes (ASCE-41, 2006; FEMA-445, 2006; ATC-
58, 2009; FEMA-P-58-1, 2012), that theoretically do not vary
besides adopt techniques that represent the first significant
difference with respect to prescriptive-based guidelines. Several
of the contemporary design guidelines applied to design studies
for new build structures can be considered as merely PBD
ones, as these design guidelines combine all measures into a
single level of performance, frequently the collapse prevention
or life safety level. The definition of performance objectives
represents the most important ingredient of a PBD seismic
procedure.

DI-Based Design Concept for Safe and
Economic Seismic Resistant Structures
The main scope of this step is to incorporate the DIs calibrated
in a recent work by the authors into a performance-based design
framework and to propose an innovative design concept leading
to safe and economic earthquake resistant RC structures. For this
purpose, the DIs selected inMitropoulou et al. (2014) will be used
to define different DI-based designs into structural optimization
problems. The formulation of the DI-based concept can be stated
as follows:

DIiHL1(s) ≤ DIallow,iHL1

DIiHL2(s) ≤ DIallow,iHL2

...

DIiHLn(s) ≤ DIallow,iHLn (9)

which represent the performance-based design constraints
[denoted as gULT(s) in Equation 5]. The DI should be less or
equal to the allowable upper bounds for a number of hazard levels
(HL1, HL2,. . . ,HLn) while i denotes the DI considered in the
formulation (i=1,2,. . . ,m). The boundaries of the feasible part of
the design space are defined using the calibrated values of the DIs
defined in Mitropoulou et al. (2014) which are given in Table 2.
Therefore, in order to identify the DI that represents better the
structural behavior, various minimum initial material cost DI-
based design optimization problems are formulated according to
Equation (5), where the PBD checks are implemented according
to Equation (9).

FIGURE 4 | Three-story—multi-stripe dynamic analysis with reference to the

maximum drift for (A) final softening and (B) Park and Ang designs.

NUMERICAL TESTS

The objective of this work is to incorporate several damage
indices examined in former study by the authors (Mitropoulou
et al., 2014) into a performance-based design framework and
to identify the best choice to be used for designing reinforced
concrete structures.

Description of the Test Examples
The two 2D RC moment resisting framed (MRF) building
structures shown in Figure 3 have been taken into account
aiming to study the effect of incorporating DI within the
design framework of RC building structures. The foremost
test example refers to a three-story concrete building while
the second one is a six-story one. Class of concrete C20/25
and of steel S500 are assumed. The thickness of the slabs
was taken equal to 15 cm for both test examples and their
contribution to the moment of inertia of the beams through
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TABLE 3 | Three-story test example: Concrete volume and steel weight corresponding to the optimized designs based on six DIs.

Design procedure Columns Beams CIN,Frame (MU)

Concrete (m3) Steel (kg.) Concrete (m3) Steel (kg.)

DDI=θ 10.00 1810.0 5.06 715.0 8110.0

DDI=ms 8.46 1730.0 6.75 1800.0 10600.0

DDI=fs 8.46 1930.0 7.16 1630.0 10800.0

DDI=PA 14.88 4210.0 8.98 2540.0 19700.0

DDI=KRL 13.00 2240.0 6.62 1190.0 11000.0

DDI=CMS 7.06 1270.0 6.08 954.0 9990.0

TABLE 4 | Six-story test example: Concrete volume and steel weight corresponding to the optimized designs based on six DIs.

Design procedure Columns Beams CIN,Frame (MU)

Concrete (m3) Steel (kg.) Concrete (m3) Steel (kg.)

DDI=θ 19.65 2110.0 12.69 1890.0 13900.0

DDI=ms 27.32 4580.0 14.51 2050.0 21600.0

DDI=fs 28.34 3290.0 16.46 1550.0 17500.0

DDI=PA 29.9 3500.0 14.85 1870.0 18800.0

DDI=KRL 30.74 3840.0 12.69 2590.0 21300.0

DDI=CMS 31.46 4440.0 19.53 2760.0 24100.0

effective flange width is taken into account. Due to floor
finishing-partitions permanent loading of 2 kN/m2 and moving
one equal to 1.5 kN/m2, are applied further to the self-weight
of beams and slabs, where an effective zone 10 × 15 m2 is
considered for each story. The nominal imposed and permanent
loads are combined using the load factors 1.50 and 1.35,
respectively.

Columns and beams were simulated adopting the
inelastic force-based fiber finite element. The simulation
with this type of elements exhibits better accuracy than
the plastic hinge formulation (Lagaros, 2014b). The
structural analyses required in the framework the study
were performed using OpenSEES (McKenna and Fenves,
2009) software. For steel reinforcement pure kinematic
hardening bilinear material model was implemented,
considering also geometric nonlinearities explicitly. The
extended Kent-Park model as modified by Scott et al. (1982)
was used for simulating concrete. Despite its relatively
simple formulation, the specific model offers for acceptable
forecasts of the needs for flexure-dominated RC members.
The cyclic inelastic behavior of bars reinforcement was
implemented with Menegotto-Pinto model (Menegotto and
Pinto, 1973).

Analysis Procedure
During seismic structural design and/or assessment a wide-
ranging earthquake events and multiple structural response
levels are required for accounting the uncertainties that
earthquake hazard introduces into performance-based
earthquake engineering (PBEE) assessment or design.
Methods implemented for PBEE assessment by means of

nonlinear dynamic analyses are classified into single and
multiple hazard level ones. Incremental dynamic analysis
(IDA) and multi-stripe dynamic analysis (MSDA), their single
and multicomponent (Lagaros, 2010) variants, represent
the most appropriate ones. The numerical study performed
consists of two stages, the optimization and the structural
assessment ones, for both multi-stripe dynamic analysis (MSDA)
was implemented for calculating the maximum inter-story
drift.

Similar to IDA the purpose of MSDA studies is to form
the relationship among earthquake intensity level and the
correlative maximum structural performance. Earthquake
ranking and performance of the structural system are defined
through intensity measures (IM) and engineering demand
parameters (EDP), correspondingly. MSDA implementation
involves multiple inelastic dynamic analyses (stripes) executed
in various spectral acceleration stages (see Figure 4 for the
case of the final softening and Park and Ang designs). In
every stripe various inelastic dynamic analyses are executed
for the seismic records considered, all are scaled to specific
spectral acceleration. The group of seismic records adopted
for deriving each stripe should preferably be representative
of the seismic hazard at specific spectral acceleration;
nevertheless, although not necessarily always justified (e.g.,
Jalayer and Cornell, 2009), it is common to implement
the same group of records for all spectral acceleration
levels.

Formulation of the Optimization Problems
The problem is expressed mathematically as single-objective
minimization problem and is shown below:
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FIGURE 5 | Three-story test example—performances of the optimized designs (i.e., DIθmax , DIms, DIfs, DIPA, DIKRL, and DICMS) for three hazard levels compared

with respect (A) maximum drift, (B) maximum softening, (C) final softening, (D) Park and Ang damage index, (E) Kunnath et al. damage index, and (F) Chung et al.

damage index.

mins∈F C(s)
where C(s) = Cb(s)+ Csl(s)+ Ccl(s)+ Cns(s)

subject to DIiHL1(s) ≤ DIallow,iHL1

DIiHL2(s) ≤ DIallow,iHL2
...

DIiHLn(s) ≤ DIallow,iHLn

(10)

subject to the constraints of Equation (9) (Quaranta et al., 2014;
Fiore et al., 2016a). The total initial structural material cost C(s)
is the objective criterion considered, and Ccl(s), Cb(s), Csl(s), and
Cns(s) are the total material cost of columns, slabs, beams ,and
nonstructural members, correspondingly. The ith DI for several
hazard levels (HL1, HL2, . . . , HLn) should remain below the
allowable upper bounds (DIiHLj(s) ≤ DIallow,iHLj ). The limits of the

feasible region are given in Table 2 (Mitropoulou et al., 2014).
The PSO algorithm is adopted for dealing with the resulting

structural design optimization problems. The boundaries for
the maximum interstory drift were obtained by Ghobarah
(2004).

The optimized design is computed by applying the PSO
method with the following characteristic parameters for both
test examples as suggested by the parametric study of Pedersen
(2010): Number of particles NP is equal to 100, inertia weight
w is equal to −0.6, cognitive and social parameters c1 is equal
to −0.65 and c2 is equal to 2.65, respectively. Rectangular cross-
sectional shape is adopted for both columns and beams, which are
separated into different sets. The beams/columns dimensionality
together with the longitudinal reinforcing bars represent the
design parameters, which are allocated to every set of the
beams/columns. The structural members (columns and beams)
are divided in two sets for the three-story and three sets for
the six-story test examples, resulting into five and seven design
variables, respectively.

The optimized designs obtained are labeled as DDI=i

associated with the damage index used (i–vi). The optimized
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FIGURE 6 | Six-story test example—performances of the optimized designs (i.e., DIθmax , DIms, DIfs, DIPA, DIKRL,and DICMS) for three hazard levels compared with

respect (A) maximum drift, (B) maximum softening, (C) final softening, (D) Park and Ang damage index, (E) Kunnath et al. damage index, and (F) Chung et al.

damage index.

designs obtained for different DI considerations with reference
to steel and concrete material demands are shown in Tables 3,
4, respectively. According to Tables 3, 4 it looks that DDI=ms,

DDI=fs, and DDI=CMS are leading to smaller columns for the
three-storys but it does not apply to the six-story where DDI=θ

is the one leading to smaller columns. With respect to beams,
it looks that DDI=θ and DDI=CMS are leading to smaller beams
for the three-stories and DDI=θ and DDI=KRL are leading ones
for the six-story. Compared to design DDI=θ, it can be seen that,
the initial material construction cost of the other five designs is
increased by 23–145% for the three-story and by 26–75% for the
six-story test example.

Assessment of the Optimized Designs
Aiming to evaluate the capacity of the optimized designs
achieved by means of the six design PBD procedures described

previously, a multi-stripe analyses is performed over a properly
selected bin 100 natural records from the list of records
provided in Mitropoulou et al. (2015). Seismic records were
chosen from PEER (2010) database in agreement with the
subsequent characteristics: (i) Records chosen in particular
geographical zone (latitude 32–41◦, longitude −124◦ to −115◦).
(ii) Magnitude (M) to be greater or equal to 5. (iii) Distance from
the epicenter (R) is <150 km. Figures 5, 6 depict the median
values of maximum interstory drifts, maximum softening, final
softening, Park and Ang damage index, Kunnath et al. damage
index, and Chung et al. damage index. These quantities are
obtained for three hazard levels namely 50/50, 10/50, and 2/50
(corresponding to probabilities of exceedance equal to 50, 10,
and 2% in 50 years, respectively) and for the optimized designs
achieved according to the design frameworks discussed above.
Indicatively the multi-stripe analysis results for the three-story
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with reference to the maximum drift for final softening and Park
and Ang designs that were used to derive the corresponding for
these two designs median curves of Figure 5A are provided in
Figure 4. In Figure 5A is represented the structural performance
of the three-stories optimized designs (i.e., DIθmax, DIms, DIfs,
DIPA,DIKRL, andDICMS) for the three hazard levels based only on
maximum drift; the different lines are representing the different
design.

The measure of the performance of one DI over the others
is the structural performance achieved by each optimized design
compared to the other ones, i.e., the design that has on average
the better structural performance for all DIs. For the three-
story test model it is the design obtained according to Park and
Ang damage index that shows an overall better performance
with reference to the six engineering demand parameters. On
the other hand, for the six-story test model it is the design
achieved according to Chung et al. damage index that exhibits the
best performance, with reference to the six engineering demand
parameter. Furthermore, for both test examples the maximum
interstory drift appear to increase smoothly based on the abscissa
escalation for all optimized designs in consideration of the hazard
levels, while the structural behavior of the six designs is nonlinear
with reference to the other damage indices. In general, it can be
said that, for the two test examples considered, it is the Chung
et al. damage index that shows an overall good performance with
reference to the performance criteria considered. This is because
for both test examples the designs obtained through the design
formulation with the Chung et al. DI corresponds to the lower
DI values, with reference to all six damage indices considered.

CONCLUSIONS

In this work we aim to incorporate a number of damage
indices previously assessed by Mitropoulou et al. (2014)
into a performance-based design framework and to identify
the most suitable one for designing reinforced concrete

framed structures. In this direction, structural optimization
problems are formulated with performance-based design criteria
corresponding to six damage indices for two reinforced concrete
buildings.

An investigation was performed on the influence of these
six damage indices incorporated into a performance-based
design procedure. This was achieved by means of lower
bound performance-based design. The ultimate objective was to
compare lower-bound designs that satisfying in the most cost-
efficient way the design code requirements, i.e., those requiring
less material volume for concrete and steel reinforcement. The
optimized designs obtained were subsequently assessed on the
basis of their performance on a number of properly selected
earthquakes with increasing intensity.

From the results obtained it was observed that,
compared to design DDI=θ based on interstory drift,
the initial construction cost of the other five designs is
enlarged by 23–145% for the three-story test example
and by 26–75% for the six-story one. It can also be
concluded that for the two test examples considered it is
the Chung et al. damage index that shows an overall good
performance with reference to the performance criteria
considered.
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In this paper, three specific uniaxial phenomenological models commonly used

for the description of a Shape Memory Alloy (SMA) behavior are examined in

detail. In particular, the models examined are the Graesser-Cozzarelli model, the

Wilde-Gardoni-Fujinomodel, and the Zhang-Zhumodel. The pertinent model parameters

are examined with respect to their physical representation, if any. Based on this analysis,

a new simple rate-independent model is proposed which addresses all issues in a

unified manner. Finally, powerful metaheuristics are employed for system identification,

producing excellent fit with experimental data while revealing valuable information

regarding the relative sensitivity of the proposed model parameters.

Keywords: Shape Memory Alloy (SMA), identification, hysteresis, rate-independent model, phenomenological

model

INTRODUCTION

Throughout history, humanity has sought shelter from natural phenomena. Natural shelters, such
as caves, were abandoned for artificial structures made of primitive materials, i.e., wood, stone,
and brick. The building blocks were held in place by either sole gravity or by primitive paste.
In the classical era, the Romans used opus caementicium, a pozzolanic concrete-like material, to
build arches, vaults, and domes. Following a prolonged period of stagnation, new materials were
introduced around 1800–1850 (i.e., cast iron and, later on, wrought iron and structural steel, as well
as Portland cement), causing a revolution in the construction industry. Nowadays, the extensive use
of high-strength steel and concrete, as well as the combination of them (as in composite structures),
has led to an explosion in the capacity, performance, and size of structures that are feasible.
Nevertheless, there is a consensus that, more or less, these materials have been fully exploited and
groundbreaking development is unlikely to be observed.

Seeking the next revolution in the construction industry, researchers drew their attention
to the so-called smart materials. These materials exhibit extraordinary properties, ranging from
piezoelectricity and pH-sensitivity to magnetostriction and self-healing. A popular class of these
materials, commonly known as Shape Memory Alloys (SMAs), exhibit physical and mechanical
characteristics that allow their integration into structures. SMAs are capable of sustaining large
inelastic strains that can be recovered by heating or unloading, depending on prior loading history.
The origin of this unusual behavior is the ability of SMAs to undergo a first-order solid-solid
diffusionless, and reversible phase change calledmartensitic transformation between a parent phase
called austenite (A), stable at high temperature and low stress, and a product phase calledmartensite
(M), metastable at low temperature and high stress (Olson and Cohen, 1982; Cisse et al., 2016). The
martensitic transformation is at the origin of the two main effects observed in SMAs, namely the
shape-memory effect and superelasticity.

Various innovative systems and devices, mainly using NiTi and Cu-based SMAs, have
been developed for seismic energy absorption, damping control, structural retrofit. Several
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prototypes of SMA braces for the seismic protection of structures
have been designed, numerically assessed and experimentally
tested (Clark et al., 1995; Auricchio et al., 2006; Andrawes
and DesRoches, 2007; Zhu and Zhang, 2008; Asgarian and
Moradi, 2011). Hybrid devices, comprising of a combination
of SMA and other components such as precompressed springs
(Ma and Cho, 2008; Miller et al., 2012), or struts and steel
tubes (Walter Yang et al., 2010) have been presented. Also,
SMA-based isolation devices have been developed finding
various applications on buildings or bridge structures (Krumme
et al., 1995; Wilde et al., 2000). These devices exploit the
hysteretic nature of SMA materials aiming to absorb structural
vibrating energy and mitigate seismic effects. Gur and Mishra
(2013) proposed a combination of steel-Teflon surface isolation
device with superelastic SMA restrainers for energy dissipation
and simultaneous minimization of isolator displacements and
superstructure accelerations. Ozbulut and Hurlebaus (2010)
introduced a sliding-type isolation system, optimally designed
with the help of a multi-objective genetic algorithm, which
consists of a steel Teflon sliding bearing and a NiTi SMA device,
providing vertical load capacity, damping, and self-centering at
the same time. Other applications of SMA materials in structural
engineering include damping devices for bridge structures
(Fujino et al., 1993; Ben Mekki and Auricchio, 2011; Torra
et al., 2013), SMA-based structural connections in steel structures
(Leon et al., 2001; Speicher et al., 2011; Fang et al., 2014) and
reinforced concrete frames (Youssef et al., 2008; Muntasir Billah
and Shahria Alam, 2012), structural retrofit of buildings and
bridges (DesRoches and Delemont, 2002; Andrawes et al., 2010),
use of SMA as reinforcement material in concrete structures
(Deng et al., 2006; Zafar and Andrawes, 2013) as well as self-
rehabilitation of structural elements (Li et al., 2006, 2008).

Obviously, proper modeling of the extraordinary behavior
of SMAs is important and, thus, several models have been
proposed in the literature. These can be broadly categorized into
microscopic thermodynamic models, based on the Ginzburg-
Landau theory or molecular dynamics; micro-macro models,
based on micromechanics, micro-planes or micro-spheres;
and macroscopic models, based on the theory of plasticity,
thermodynamic potentials, finite strains or statistical physics

FIGURE 1 | Schematic representation SMA behavior (A) twinning hysteresis (T < Mf ), (B) superelasticity (T > Af ).

(Cisse et al., 2016). For applications in structural engineering,
however, uniaxial phenomenological models are of special
interest as integration with existing reliable FEM codes, e.g.,
OpenSees (Mazzoni et al., 2006), is straightforward. Falling
under this category, the Graesser-Cozzarelli model (Graesser
and Cozzarelli, 1991), the Wilde-Gardoni-Fujino model (Wilde
et al., 2000), and the Zhang-Zhu model (Zhang and Zhu, 2007)
are examined herein in detail. Their parameters are examined
concerning their physical representation, if any. This process
reveals several limitations and drawbacks, most prominent of
which is the large number of parameters and the unclear effect of
specific parameters in the overall response. These are addressed
in a unified manner in a new rate-independent model proposed
herein. Finally, metaheuristic algorithms are employed for the
identification of unknown parameter values. This process reveals
valuable information regarding the relative sensitivity of the
parameters as well as the mathematical consistency of the model.

BASIC SMA BEHAVIOR

The primary forms of SMA behavior which are pertinent to
the applications examined in this study are shown in Figure 1.
In particular, Figure 1A shows the hysteretic loop observed at
ambient temperatures T < Mf , where Mf is the temperature
at which the microstructure of the material is fully martensitic.
Although the loop strongly resembles the one observed in most
conventional steels, the hysteretic mechanism is quite different.
In steels, hysteresis in cyclic loading is due to dislocation glide
but in SMAs it is due to twinning deformation of martensite that
occurs by rotation, growth, and shrinkage of individual variants
of martensite (Graesser and Cozzarelli, 1991). By application
of sufficient strain, only one martensitic variant remains. This
variant reverts to the original parent crystal orientation upon the
application of heat, thus the term shape-memory effect.

Figure 1B shows the hysteretic loop observed at ambient
temperatures T > Af , where Af is the temperature at which
the microstructure of the material is fully austenitic. This
behavior exhibits two very important properties, i.e., energy
dissipation and zero residual strain upon unloading, and thus
it is termed superelastic. According to this, the stable austenitic
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microstructure is loaded elastically up to a threshold stress
level, at which a transformation from austenite to martensite
is initiated. The transformation is accompanied by the reduced
modulus, as compared to the initial elastic loading, which
strongly resembles the plastic yielding of steels. Gradually, the
volume ratio of martensite is increased within the microstructure
until it becomes dominant. Further loading of the now fully
martensitic microstructure leads to elastic loading with a
modulus smaller than the one of the elastic austenite, yet
significantly higher than the one during transformation. Upon
unloading, the inverse process is observed but at a significantly
lower stress plateau. Ideally, the material returns to its exact
original form (Graesser and Cozzarelli, 1991).

THE GRAESSER-COZZARELLI MODEL

By modifying Ozdemir’s model (Ozdemir, 1973), which is a
particular case of the well-known Bouc-Wen hysteretic model
(Bouc, 1967; Wen, 1976), Graesser and Cozzarelli (1991)
proposed a one-dimensional phenomenological law to describe
both twinning hysteresis and superelasticity, which is described
by the following equations:

σ̇ = E

[

ε̇ − |ε̇|

(

σ − β

Y

)n]

, (1)

β = Eα
[

εin + fT |ε|
cerf (āε) u (−εε̇)

]

, (2)

where, (̇ ) = ordinary time derivative, σ = stress, ε = strain,
β = backstress, E = initial elastic modulus, Y = yield stress,
α = Ey/

(

E− Ey
)

= parameter controlling the post-elastic
slope of the curve (Ey = post-elastic modulus), n = parameter
controlling the abruptness of transition from the elastic to post-
elastic branch, εin = ε− σ/E = inelastic strain, fT , ā, c are model
parameters, erf (·) is the error function defined by:

erf (x) =
2

√
π

∫ x

0
e−t2dt, (3)

and u (·) is the Heaviside step function defined by:

u (x) =

{

1, x ≥ 0
0, x < 0

. (4)

Note that parameter ā is used in Equation (2) to avoid confusion
between parameters a and α in the original paper. Also, in
Equation (1) the term (σ − β) may be negative, which is
problematic when n takes real rather than integer values. This
problem is addressed in a similar manner as in Zhang and Zhu
(2007) in the proposed model which will be presented later.

Rate-Independency
The Graesser and Cozzarelli model is rate-independent, as is
the Bouc-Wen model (Charalampakis and Koumousis, 2008b;
Charalampakis, 2015). This means that in strain-controlled
experiments, as the ones shown next, the same hysteretic loop
will be traced irrespective of the rate of loading. In fact, the input
does not even need to be sinusoidal; any input history with the
specific sequence of local maxima and minima, i.e., 0 → εmax →

−εmax → εmax → . . ., will produce the same result.

Twinning Hysteresis
Twinning hysteresis in the Graesser and Cozzarelli model is
observed by setting fT = 0 in Equation (2). The base model
shown in Figure 2A was used in the original paper (Graesser and
Cozzarelli, 1991), where E = 28, 500 ksi; Y = 30ksi; α = 0.0197;
n = 3. The input history is sinusoidal with εmax = 0.016.

In Figure 2B, the effect of varying parameter E is shown. Apart
from the initial stiffness, which is clearly controlled by E, the
post-elastic stiffness Ey is also affected since Ey = αE/ (1+ α).

In Figure 2C the effect of varying parameter Y is examined.
Obviously, Y controls the yield stress. Note that the term “yield
stress” should be used rather loosely in our context. In SMA,
it corresponds to the stress level at which stress induced phase
transformation takes place in the material and has nothing to do
with plastic deformation. Nevertheless, it will be used for reasons
of simplicity.

In Figure 2D the effect of varying parameter α is shown.
Clearly, α controls the post-elastic stiffness Ey without affecting
the initial stiffness E.

In Figure 2E the effect of varying the exponential parameter
n is shown. As is the case of the Bouc-Wen model, n controls
the abruptness of transition between the initial (elastic) and post-
elastic branches. Small values of n lead to a smooth transition
and vice versa. Note that the sensitivity of the model with respect
to this parameter becomes negligible when n ≥ 3. In the
figure, the responses for n = 3 and n = 5 are practically the
same.

Superelasticity
Superelasticity in the Graesser and Cozzarelli model is observed
by setting fT > 0 in Equation (2). The base model shown
in Figure 3A was used in the original paper (Graesser and
Cozzarelli, 1991), where E = 28,500 ksi; Y = 30 ksi; α =

0.0197; n = 3; fT = 0.07; ā = 2,500; and c = 0.001. The input
history is sinusoidal with εmax = 0.016. In Figure 3B, the effect
of varying parameter fT is shown. It is observed that high values
of fT reduce the size of the energy-dissipating loops exhibited
during the material transformations. Apparently, the sensitivity
of the model with respect to fT is high. In Figure 3C the effect
of varying parameter ā is examined. As is the case with n, high
values of ā do not alter the response significantly. For small values
of ā, the response becomes smooth around the origin, yielding
residual deformations upon unloading. In Figure 3D the effect of
varying parameter c is shown. In general, the sensitivity of the
model with respect to this parameter is very small. Figure 3E
shows the variation of the quantity |ε|c during the experiment.
The responses for c = 0.001 and c = 0.00001 are practically the
same, because |ε|c ∼= 1 for ε 6= 0. For c = 0.1, the graph of |ε|c

takes a form not radically different from the error function erf (·)

used in the same expression, i.e., Equation (2). Thus, the response
observed for c = 0.1, can also be obtained by appropriate values
of fT , n, and ā. To demonstrate this, the optimum values of fT , n
and ā have been obtained which produce a similar curve as the
one with c= 0.1 (Figure 3F) using metaheuristics. In this regard,
the term |ε|c in Equation (2) is deemed redundant and will be
removed in the proposed model which will be presented later.
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FIGURE 2 | Twinning hysteresis (fT = 0) with the Graesser-Cozzarelli model, (A) base model with E = 28,500 ksi, Y = 30 ksi, α = 0.0197, n = 3 (B) variation in E (C)

variation in Y (D) variation in α (E) variation in n.

Error Function
The final note on the Graesser-Cozzarelli model refers to
the error function itself. As the evaluation of this function
is cumbersome [see Equation (3)], its substitution with the
hyperbolic tangent is proposed herein. The hyperbolic tangent is
remarkably similar to the error function but more comfortable to
evaluate, e.g., by using:

tanh (x) = 1−
2

1+ e2x
. (5)

In Figure 4, the similarity of erf (āε) to tanh
(

âε
)

is illustrated.
Three levels of strain coefficients, i.e., ā = {2, 500; 500; 100} are
matched manually to â = {3, 000; 625; 125} to produce similar
curves.

THE WILDE—GARDONI—FUJINO MODEL

The Wilde-Gardoni-Fujino model (Wilde et al., 2000) is an
extension of the Graesser-Cozzarelli model which takes into
account the elastic behavior of the martensite which is activated
after a particular strain level. The following equations describe it:

σ̇ = E

[

ε̇ − |ε̇|

(

σ − β

Y

)n]

uI (ε) + Emε̇uII (ε)

+
(

3α1ε̇ε
2 + 2α2 sgn (ε) ε̇ε + α3ε̇

)

uIII (ε), (6)

β = Eα
[

εin + fT |ε|
cerf (āε) u (−εε̇)

]

, (7)

where the functions uI (ε), uII (ε) , and uIII (ε) are given by:

uI (ε) = 1− uII (ε) − uIII (ε), (8)
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FIGURE 3 | Superelasticity (fT> 0) with the Graesser-Cozzarelli model, (A) base model with E = 28,500 ksi, Y = 30 ksi, α = 0.0197, n = 3, fT= 0.07, ā = 2,500, c =

0.001 (B) variation in fT (C) variation in ā (D) variation in c, (E) value of |ε|c for various values of c, (F) curve-fit of the response obtained with c = 0.1 by altering fT , n,

and ā only (c = 0).

uII (ε) =

{

1, |ε| ≥ εm

0, otherwise
, (9)

uIII (ε) =

{

1, ε̇ε > 0 and ε1 < |ε| < εm

0, otherwise
, (10)

In this model, the response is divided into separate regions
which are activated or deactivated by the flags described by
Equations (8)–(10). The strain εm defines the point at which
the transformation from austenite to martensite is completed.
Beyond this strain, the response is linear elastic with modulus
equal to Em, due to the term Emε̇uII (ε) in Equation (6). A
smooth transition is achieved during loading only, due to the
term activated by uIII (ε).

Although the model is capable of simulating the martensitic
phase of the SMA, its usage is cumbersome. For instance, the
coefficients a1, a2, and a3 do not have physical representation and
plausible value ranges are not easy to establish. As is the case with
the Graesser-Cozzarelli model, the term (σ − β)may be negative,
which is problematic when n takes real rather than integer values.
Smooth transition between austenitic and martensitic phases can
be realized with simpler and more elegant relations, as illustrated
in the proposed model described later on.

THE ZHANG—ZHU MODEL

The Zhang-Zhu model (Zhang and Zhu, 2007) is a modification
of the Wilde-Gardoni-Fujino model which aims to enhance the
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FIGURE 4 | Comparison of the error and hyperbolic tangent functions.

stability of numerical simulation and speed up the computation
time. The following equations describe it:

σ̇ = E

[

ε̇ − K (ε) |ε̇| sgn (σ − β)

(

|σ − β|

Y

)n]

uI (ε)

+Emε̇uII (ε) +

(

Ey
εm − ε

εm − ε1
+ Em

ε − ε1

εm − ε1

)

ε̇uIII (ε) , (11)

β = Eα
[

εin + fTu (−εε̇) sgn (ε) g
(

āεin + sgn (ε) b
)]

, (12)

where the functions uI (ε), uII (ε), uIII (ε), K (ε), g (t) are given
by:

uI (ε) = 1− uII (ε) − uIII (ε) , (13)

uII (ε) =

{

1, ε̇ε > 0 and |ε| ≥ εm

0, otherwise
, (14)

uIII (ε) =

{

1, ε̇ε > 0 and ε1 < |ε| < εm

0, otherwise
, (15)

K (ε) =

{

1, ε̇ε > 0
u (εinε) , otherwise

, (16)

g (t) = 1− e−t2 , (17)

and the signum function is defined as

sgn (x) =







1, x > 0
0, x = 0
−1, x < 0

. (18)

Note that parameters α, E, and n can take different values for
loading and loading phases. Thus, the model contains up to
fourteen parameters. The main improvements with respect to the
Wilde-Gardoni-Fujino are the following:

• The problem with the potentially negative term (σ − β) has
been addressed.

• The coefficients a1, a2, and a3 have been replaced.
• The error function has been replaced.

The following, however, can be listed as disadvantages of the
model:

• The number of parameters is high.
• Plausible value ranges are not provided for the parameters not

having a physical representation.
• The response is still divided into many phases controlled with

on/off flags.

PROPOSED MODEL

Based on the observations above, a simple rate-independent
uniaxial phenomenological model is proposed herein which is
described by the following terms:

σ̇ = (1− s (ε))E

[

ε̇ − |ε̇| sgn (σ − β)

(

|σ − β|

Y

)n]

+s (ε)Emε̇,

(19)

β = Eα
[

ε − σ/E + fT tanh (āε) u (−εε̇)
]

, (20)

s (ε) =
tanh (c (|ε| − εt)) + 1

2
, (21)

where, s (ε) is a smooth logistic functionwhich yields 0 for |ε|≪εt

and 1 for |ε| ≫ εt . Note that s (εt) = 0.5, i.e., at this level of
strain the weights of the Graesser-Cozzarelli term and the elastic
martensitic term in Equation (19) are equal. The coefficient c
controls the abruptness of transition. For high values of c, the
transition is abrupt, as evidenced by Figure 5A.

In total, the model contains only nine parameters (E, Y , α,
n, fT , ā, Em, εt , c) as opposed to the thirteen parameters of the
Wilde-Gardoni-Fujino model (E, Em, Y , α, n, fT , c, ā, εm, ε1,
α1, α2, α3) and the eleven to fourteen parameters of the Zhang-
Zhu model (El, Eu, Em, Y , EY , αl, αu, nl, nu, fT , ā, εm, ε1, b).
A brief description of the model parameters and their effect on
the overall response, based on the evidence examined earlier, is
summarized in Table 1. The last three parameters refer to the
martensitic phase.

TABLE 1 | Brief description of proposed model parameters and their effect on the

overall response.

Parameter Description/Effect

E Initial modulus during the austenitic phase

Y “Yield” stress

α Control of post-elastic stiffness

n Control of abruptness of transition between initial elastic and

post-elastic phases

fT Control between twinning hysteresis and superelasticity

ā Smoothness around the origin during cyclic loading

Em Modulus during the fully martensitic phase

εt Strain of middle point of transition between Graesser-Cozzarelli

and martensitic terms

c Control of abruptness of transition between Graesser-Cozzarelli

and martensitic terms
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FIGURE 5 | (A) Logistic function f (x) = (tanh (cx) + 1)/2 for various values of coefficient c, and curve fit of the proposed model with experimental data obtained from

(B) Zhang and Zhu (2007), (C) Zhuang et al. (2016), (D) Ozbulut et al. (2010), (E) Auricchio et al. (2003), (F) Ozbulut and Hurlebaus (2010).

Despite its simplicity, the proposed model can accurately
capture all the pertinent characteristics of the response curve.
System identification based on metaheuristics produces excellent
fit with experimental data obtained from the literature, as will
be demonstrated. The optimum (best) parameter values were
evaluated by Differential Evolution, a powerful metaheuristic
algorithm (Storn and Price, 1997). The DE/rand/1/bin
configuration was used with population size P = 50, F = 0.5 and
Cr = 0.9. Ten independent runs were conducted with different

random seeds. Each run was terminated after 20000 function
evaluations. The sum of squares of the difference between the
measured and the predicted time history of stress is used as the
objective function to be minimized. Cast in discrete form, this
function can be written as

OF
(

p
)

=
∑

(

σ (ti) − σ̂
(

ti| p
))2

, (22)

where p is the parameter vector.
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TABLE 2 | Statistical analysis of identified parameters of the proposed model for the experimental data obtained from Zhang and Zhu (2007) shown in Figure 5B.

Parameter Lower bound Upper bound Best Min Max Average Standard Deviation Coefficient of variation

E [MPa] 10,000 60,000 46,823.455 34,519.290 46,823.455 42,422.809 3,534.132 0.083

Y [MPa] 200 500 314.844 311.916 317.408 315.654 1.929 0.006

α 0 1 0.148 0.148 0.218 0.168 0.020 0.118

n 0.5 3 1.327 1.327 2.926 1.726 0.452 0.262

fT 0.1 1 0.064 0.061 0.066 0.064 0.001 0.021

ā 1 1,000 194.224 194.224 225.739 202.093 8.711 0.043

Em [MPa] 10,000 60,000 19,291.590 18,991.328 19,906.820 19,230.288 263.735 0.014

εt 0.01 0.08 0.052 0.050 0.052 0.051 0.000 0.006

c 1 1,000 99.135 96.101 107.987 98.857 3.439 0.035

TABLE 3 | Statistical analysis of identified parameters of the proposed model for the experimental data obtained from Zhuang et al. (2016) shown in Figure 5C.

Parameter Lower bound Upper bound Best Min Max Average Standard deviation Coefficient of variation

E [kN/m] 100 2,000 584.159 584.159 587.764 586.236 1.530 0.003

Y [kN] 1 10 4.255 4.253 4.260 4.256 0.002 0.000

α 0 1 0.395 0.390 0.395 0.392 0.002 0.006

n 0.5 3 1.399 1.382 1.399 1.389 0.007 0.005

fT 0.1 1 0.017 0.017 0.017 0.017 0.000 0.004

ā 1 1,000 665.339 663.530 671.228 666.635 3.191 0.005

In Figure 5B the case of tensional tests on cold-drawn nitinol
wires with a diameter of 0.58mm obtained from Zhang and
Zhu (2007) is shown. A statistical analysis of the identified
parameters is summarized in Table 2. It is noted that the initial
side constraints are quite relaxed, yet the identification process
was found to be straightforward. It is also observed that some
parameters are very sensitive to the considered experimental data
set, i.e., parameters εt , Y , Em, fT , and c, while the others are not so.
In general, however, all runs were obviously guided to the same
optimum region of the search space, which is a strong indication
of a well-behaved model with uniquely defined parameters, each
one with a distinct role in the response curve. If needed, the
insensitive parameters can be accurately identified with other
experiments which focus on the pertinent characteristics of the
response curve, e.g., parameter E with a linear elastic experiment
with small strains. Improved results can also be obtained by
gradual tightening of the side constraints based on trial analyses,
as in Charalampakis and Koumousis (2008a), but this lies beyond
the scope of the present study and will be pursued in future
research.

Figure 5C shows excellent fit in the case of the single
SMA helical spring with hook-like ends obtained from Zhuang
et al. (2016). Being phenomenological, the proposed model
can be easily used with force-displacement curves instead
of stress-strain curves, with the necessary semantic changes
concerning parameters E and Y . By inspection, it is clear
that the experimental data does not include any stress-induced
martensitic phase. Therefore, the pertinent parameters (Em, εt , c)
cannot be identified. This fact is manifested clearly in the results
of the identification, where the metaheuristic algorithm selects
arbitrary values for these parameters in order to disable them

(i.e., εt >0.037, any Em, and large c). In this specific case, we can
use s (ε) = 0 instead of Equation (21), or repeat the experiment
with a larger displacement to record martensitic phase data. A
statistical analysis of the identified parameters is summarized in
Table 3, where small coefficients of variation are observed.

Figure 5D shows an excellent fit for the case of NiTi SMA
wires with a diameter of 1mm. The data refers to the response
of different strain levels at a frequency of 1Hz and has been
obtained from Ozbulut et al. (2010). A value of 0.005 has been
subtracted from all strains to compensate for the lack of complete
tautness. The wires have been trained with a set of 10 load cycles
with a strain amplitude of 6% at 0.04Hz. A statistical analysis of
the identified parameters is summarized in Table 4, where, again,
small coefficients of variation are observed.

In Figure 5E, the experimental stress-strain response of an
untrained commercial Ni-Ti wire with a diameter of 2.01mm
is shown. The loading cycles are characterized by an increasing
value of the maximum elongation that varies from 2 to 8%.
The data has been obtained from Auricchio et al. (2003), and
an excellent fit can be observed for the second and last cycle,
indicatively. Apparently, the values differ significantly, which is
the result of the progressive decrement of the initial and final
stress thresholds of the phase transformations during the training
of a specimen (Auricchio et al., 2003). In similar fashion, in
Figure 5F very good fit is observed for the experimental data
obtained from Ozbulut and Hurlebaus (2010). The data refer
to NiTi wires with a diameter of 1.5mm which are subjected
to tensile tests with various temperatures and strain rates. The
identified model parameters for the latter cases are summarized
in Table 5. By appropriate interpolation of model parameters, it
may be possible that aspects which are not covered presently,
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TABLE 4 | Statistical analysis of identified parameters of the proposed model for the experimental data obtained from Ozbulut et al. (2010) shown in Figure 5D.

Parameter Lower bound Upper bound Best Min Max Average Standard deviation Coefficient of variation

E [MPa] 10,000 60,000 39,286.352 32,783.866 40,068.672 36,609.716 2,971.842 0.081

Y [MPa] 200 500 284.271 282.443 290.882 285.069 2.691 0.009

α 0 1 0.130 0.124 0.165 0.144 0.015 0.108

n 0.5 3 1.112 1.018 1.678 1.315 0.254 0.193

fT 0.1 1 0.081 0.078 0.085 0.080 0.002 0.028

ā 1 1,000 135.944 130.274 150.642 140.804 7.059 0.050

Em [MPa] 10,000 60,000 12,084.968 10,988.091 12,690.244 12,122.933 508.070 0.042

εt 0.01 0.08 0.054 0.054 0.055 0.055 0.000 0.007

c 1 1,000 181.706 172.829 217.115 190.377 12.437 0.065

TABLE 5 | Identified parameters of the proposed model for the experimental data shown in Figures 5E,F.

Parameter Auricchio et al.

(2003) 2nd cycle

Auricchio et al.

(2003) last cycle

Ozbulut and

Hurlebaus (2010)

0◦C−1 Hz

Ozbulut and

Hurlebaus (2010)

10◦C−1.5 Hz

Ozbulut and

Hurlebaus (2010)

30◦C−2 Hz

Ozbulut and

Hurlebaus (2010)

40◦C−0.5 Hz

E [MPa] 72,478.332 56,469.931 38,944.849 60,000.000 40,754.313 60,000.000

Y [MPa] 619.072 385.812 204.114 243.092 338.771 444.085

α 0.023 0.075 0.164 0.088 0.174 0.120

n 1.682 2.249 1.076 1.141 2.083 2.550

fT 0.530 0.114 0.031 0.061 0.071 0.100

ā 179.385 254.366 1,000.000 382.420 178.101 208.790

Em [MPa] – 14,899.926 14,932.520 16,418.358 22,441.737 10,000.000

εt – 0.059 0.036 0.042 0.048 0.032

c – 58.753 150.688 144.455 142.488 108.515

TABLE 6 | Statistical analysis of identification results for the Wilde-Gardoni-Fujino model with data obtained from Zhang and Zhu (2007).

Parameter Lower bound Upper bound Best Min Max Average Standard deviation Coefficient of variation

E [MPa] 10,000 100,000 35,995.179 35,048.908 53,552.683 44,130.931 7,752.798 0.176

Em [MPa] 10,000 100,000 16,072.799 10,000.000 16,072.799 11,360.786 2,483.071 0.219

Y [MPa] 100 800 359.596 172.570 417.298 308.840 89.187 0.289

εm 0.01 0.08 0.064 0.010 0.065 0.037 0.020 0.544

ε1 0.01 0.08 0.043 0.010 0.078 0.058 0.023 0.393

fT 0.1 1 0.180 0.103 0.997 0.558 0.341 0.612

α 0.01 1 0.139 0.033 0.152 0.081 0.046 0.565

n 1 2 1.939 1.160 2.000 1.737 0.302 0.174

ā 1 5,000 283.772 271.270 4,982.904 3,102.826 2,097.170 0.676

c 0.0001 1 0.143 0.102 0.368 0.255 0.096 0.376

α1 0 100,000 26,367.269 825.089 99,018.466 36,926.151 33,488.155 0.907

α2 0 100,000 27,821.814 0.000 94,387.750 37,703.847 34,095.015 0.904

α3 0 100,000 9,386.547 0.000 97,085.336 28,741.415 35,912.720 1.250

Objective function 5.211E+05 5.211E+05 1.055E+07 4.834E+06 3.825E+06 0.791

such as strain-rate and temperature dependency, or training
process, are taken into account. This, however, lies beyond the
scope of the present study and will be pursued in future research.

In order to demonstrate the advantages of the proposed
model, the same identification procedure is applied to the Wilde-
Gardoni-Fujino model with data obtained from Zhang and Zhu
(2007). The results are summarized in Table 6, where great
variability in parameter values and quality of solutions can be
observed.

CONCLUSIONS

In this paper, three specific uniaxial phenomenological models
commonly used for the description of a Shape Memory Alloy
(SMA) behavior were examined in detail, and a new simple
rate-independent model was proposed which addresses all
issues in a unified manner. From the presented analysis and
the numerical results, the following main conclusions can be
drawn:
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a) In total, the proposed model contains only nine parameters
as opposed to the thirteen parameters of the Wilde-Gardoni-
Fujino model and the eleven to fourteen parameters of the
Zhang-Zhu model.

b) Despite its simplicity, the proposed model can accurately
capture all the pertinent characteristics of the response curve.

c) For the proposed model, system identification based on
metaheuristics produced excellent fit with experimental data
obtained from the literature.

d) Apart from the best result, all runs produced quality solutions
in the same region of the design space, and the identified
parameters had small coefficients of variation. This is a strong
indication of a well-behaved model, with uniquely defined
parameters, each one with a distinct role in the response
curve.

e) On the contrast, the application of the same identification
process to the Wilde-Gardoni-Fujino model yielded
significantly inferior results, i.e., great variability in parameter
values and quality of solutions.

f) A significant advantage of the proposed uniaxial model is that
it can be incorporated within a Finite Element code such as
OpenSees straightforwardly.
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A Meshless Solution to the Vibration
Problem of Cylindrical Shell Panels
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The Meshless Analog Equation Method (MAEM) is a purely mesh-free method for solving

partial differential equations (PDEs). In the present study, the method is applied to the

dynamic analysis of cylindrical shell structures. Based on the principle of the analog

equation, MAEM converts the three governing partial differential equations in terms of

displacements into three uncoupled substitute equations, two of 2nd order (Poisson’s)

and one of 4th order (biharmonic), with fictitious sources. The fictitious sources are

represented by series of Radial Basis Functions (RBFs) of multiquadric (MQ) type, and

the substitute equations are integrated. The integration allows the representation of

the displacements by new RBFs, which approximate the displacements accurately and

also their derivatives involved in the governing equations. By inserting the approximate

solution in the governing differential equations and taking into account the boundary

and initial conditions and collocating at a predefined set of mesh-free nodal points, we

obtain a system of ordinary differential equations of motion. The solution of the system

gives the unknown time-dependent series coefficients and the solution to the original

problem. Several shell panels are analyzed using the method, and the numerical results

demonstrate its efficiency and accuracy.

Keywords: MAEM, Meshless Analog Equation Method, cylindrical shells, dynamic analysis, radial basis functions,

partial differential equations

INTRODUCTION

Thin shell structures have an outstanding efficiency in fully utilizing the structural material and
have been extensively used in many engineering applications including aircraft structures, pressure
vessels, and others. Static and dynamic analysis is essential for the analysis and design of shell
structures. Various numerical methods, such as the Finite Difference Method (FDM) and especially
the Finite Element Method (FEM) have been used (Lee and Han, 2001) for the dynamic analysis
of linear elastic thin shells characterized by complex geometry, loading and boundary conditions.
Both methods have been employed successfully for the solution of a variety of static and dynamic
shell problems. The Boundary Element Method (BEM) is an efficient alternative to the domain
type methods, especially for thin elastic shallow shells (Beskos, 1991), or combined with the AEM
for cylindrical shells (Yiotis and Katsikadelis, 2000).

Such methods require the generation of a mesh which can be an incredibly tedious and time-
consuming process, while their convergence rate is of 2nd order (Cheng et al., 2003). On the
other hand, Meshless Methods (MMs) present an attractive alternative to FEM or BEM, especially
for shell structures that are complex regarding both the governing equations and the geometry
representation. Comprehensive descriptions of different MMs are presented by Liu (2002); Liu and
Gu (2005) and in a review paper by Nguyen et al. (2008).
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There are several papers on dynamic analysis of shells using
MM. Homogeneous shells are studied using various versions
of MM in Liu et al. (2006), Ferreira et al. (2006b), and Dinis
et al. (2011). Functionally graded (FG) cylindrical thin shells have
also been treated by this method (Ferreira et al., 2006a; Zhao
et al., 2009; Roque et al., 2010), as well as thick cylindrical shells
(Pilafkan et al., 2013) have been analyzed by this method.

The mesh-free multiquadric radial basis functions (MQ-
RBFs) method presented in Kansa (2005) has attracted the
interest of researchers, due to its exponential convergence and
its easiness of implementation. The significant drawbacks of the
method are the ill-conditioning of the coefficient matrix and the
inability to accurately approximate the derivatives of the sought
solution which renders the method inappropriate for a strong
formulation of the problem. These drawbacks of the standard
MQ-RBFmethod, are overcome by a new RBFmethod presented
recently by Katsikadelis (2006, 2008a,b, 2009) and Yiotis and
Katsikadelis (2008, 2013, 2015a,b). Another critical issue is the
implementation of multiple boundary conditions for equations
of order higher than 2nd. In this investigation, the δ-technique
is employed (Jang et al., 1989) for the 4th order equation. The
problem of multiple boundary conditions is not present when
the shell is modeled as a 3D body (Katsikadelis and Platanidi,
2007).

In this paper, the MAEM is extended to the dynamic problem
of cylindrical shell panels as described by section MAEM
Solution. A first approach to this problem was attempted in
a previous work (Yiotis and Katsikadelis, 2015b), where some
preliminary results only for the eigenfrequency analysis were
presented. In section Problem Statement, the statement of
the problem is presented, while several example problems are
worked out in section Numerical Examples, which illustrate the
applicability of the method and demonstrate its efficiency and
section Conclusions contains certain conclusions drawn from
this investigation.

PROBLEM STATEMENT

We consider a thin cylindrical shell with parametric lines x (s =
const.) and s (x = const.) which are assumed to be lines of
curvature, as well; x is measured along the x lines of the shell and
s along the s lines, while z is measured along the normal to the
middle surface of the shell, as shown in Figure 1. R is the radius
of curvature and h is the thickness.

In this investigation we use the Flügge equations for the thin
shell theory, based on the following assumptions (Love, 1944):

1. The thickness of the shell is small compared with (i) its other
dimensions; (ii) the smallest radius of the shell curvature.

2. Strains and displacements are sufficiently small and as a result
quantities of 2nd and higher order of magnitude in the strain-
displacement relations can be neglected.

3. The normal transverse stress is relatively small, compared with
the other normal stresses, and can be neglected.

4. Lines normal to the undeformed middle surface remain
straight and normal to the deformed middle surface.

FIGURE 1 | Cylindrical shell.

The first assumption defines themeaning of “thin shells,” whereas
the second one implies that all calculations refer to the original
undeformed configuration and subsequently leads to linear
differential equations. Further, the assumption z/R << 1 is
adopted in deriving the stress resultants in integrating the stresses
through the thickness of the shell. The 4th assumption is known
as Kirchhoff’s hypothesis yielding

γxz = 0, (1a)

γsz = 0, (1b)

ez = 0, (1c)

which implies σxz = σsz = 0 (Leissa, 1973).
The equations of motion for the case of the thin cylindrical

shell can be derived using Hamilton’s principle as follows

δ

[∫ t1

t0

(5 − K)dt −

∫ t1

t0

Wncdt

]

= 0, (2)

where 5 is the total potential energy given by

5 = U0 −W1 −W2, (3)

in which U0, is the strain energy

U0 =
1

2

∫

ν

(σxex + σses + σxsγxs + σxzγxz + σszγsz)dxdsdz, (4)

andW1,W2 the works produced by the loading and the boundary
forces, i.e.,

W1 =

∫

S

(qxu+ qsν + qzw)dxds, (5)

W2 =

∫

s

(N̄xu+ N̄xsν + Q̄xw+ M̄xθx + M̄xsθs)ds

+

∫

x

(N̄sxu+ N̄sν + Q̄sw+ M̄sxθx + M̄sθs)dx, (6)
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FIGURE 2 | Boundary and domain nodal points.

In Equation (4) σx, σs are the normal stresses, σxs the tangential
shear stress, σxz , σsz the transverse (in the z direction) shear
stresses and ex, es, γxs, γxz , γsz the respective strains at an arbitrary
point of shell cross-section.

In Equation (5), qx(t), qs(t), and qz(t) are the three
components of the loading in the axial, circumferential and
normal to the middle surface directions, respectively, while
u, ν, and w represent the axial, circumferential and normal
displacements at the middle surface of the shell.

In Equation (6) the quantities N̄x, N̄xs, Q̄x, M̄x, M̄xs, and N̄sx,
N̄s, Q̄s, M̄sx, M̄s denote prescribed boundary forces along an edge
(x = const.) and an edge (s = const.) respectively; u, ν and w
represent the axial, circumferential and normal displacements at
the boundary and θx, θs are the rotations of the normal to the
middle surface about the s and x axes respectively.

Furthermore, in Equation (2) the quantity K is the kinetic
energy of the body and is given regarding the shell variables as

K =
hρ

2

∫

x

∫

s

[u̇2 + ν̇
2 + ẇ2 +

h2

12
(θ̇2x + θ̇

2
s )]dxds, (7)

where ρ is the mass density of the material of the shell.
The quantity δWnc represents the work of the damping forces,

non-conservative forces, due to the virtual displacements and is
given by the relation

δWnc =

∫

x

∫

s
(ηu̇δu+ ην̇δν + ηẇδw)dxds, (8)

where η is the damping coefficient.
Neglecting the contribution from the rotatory inertia terms

ρh3θx/12 and ρh3θs/12 in Equation (7), inserting Equation (3)
and taking the variation (Katsikadelis, 2016), we obtain the
Flügge type differential equations (Flügge, 1962; Kraus, 1967), in
terms of the displacements as well as the associated boundary and
initial conditions

(a) Differential equations

u,xx +
1− ν

2
u,ss +

1+ ν

2
ν,xs +

ν

R
w,x

−
h2

12

1

R

[

w,xxx −
1− ν

2
R

(w,xs

R
+

u,s

R2

)

,s

]

− ηu̇

= −
1− ν

2

Eh
(qx − ρhü), (9a)

ν,ss +
1− ν

2
ν,xx +

1+ ν

2
u,xs +

(w

R

)

,s +
h2

12

1

R2

[

3(1− ν)

2
ν,xx

−
(3− ν)

2
Rw,xxs − R,s(w,ss +

w

R2
+

R,s

R2
ν)

]

− ην̇

= −
1− ν

2

Eh
(qs − ρhν̈), (9b)

∇4w+
w,ss

R2
+

( w

R2

)

,ss +
w

R4
−

1

R
u,xxx +

1− ν

2

(u,xs

R

)

,s

−
3− ν

2

(

ν

R

)

,xxs +

(

R,s

R2
ν

)

,ss +
R,s

R4
ν

+
12

h2
1

R

(

ν,s +
w

R
+ νu,x

)

+ ηẇ

= −
12(1− ν

2)

Eh3

(

−qz + ρhẅ
)

, (9c)

where ∇4 = ∂
4

∂x4
+ 2∂4

∂x2∂s2
+ ∂

4

∂s4
is the biharmonic operator

E is the modulus of elasticity and ν is Poisson’s ratio.
(b) The boundary conditions (Kraus, 1967)

On a curved edge (x = 0 or x = l)

u = ū or Nx = N̄x, (10a)

ν = ν̄ or Txs = T̄xs, (10b)

w = w̄ or Vx = V̄x, (10c)

θx = θ̄x orMx = M̄x,

(

θx = −
∂w

∂x

)

. (10d)

On a straight edge (s = 0 or s = a)

u = ū or Tsx = T̄sx, (10e)

ν = ν̄ or Ns = N̄s, (10f)

w = w̄ or Vs = V̄s, (10g)

θs = θ̄s orMs = M̄s,

(

θs =
ν

R
−

∂w

∂s

)

. (10h)

Besides, the following corner conditions must be satisfied
(Leissa, 1973)

w = w̄ or (Mxs −Msx)k = F̄k, k = 1, 2, 3, 4. (10i)

(c) The initial conditions

w(x, 0) = g3(x), ẇ(x, 0) = h3(x), (11a-b)

u(x, 0) = g1(x), u̇(x, 0) = h1(x), (11c-d)

ν(x, 0) = g2(x), ν̇(x, 0) = h2(x), (11e-f)
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FIGURE 3 | The circular cylindrical shell and its geometry.

where gi(x), hi(x) (i = 1, 2, 3) are specified functions and
(x) = (x, s).

The stress resultantsNx,Ns,Nxs,Nsx,Mx,Ms,Mxs,Msx,Qx,Qs

are expressed in terms of the displacements as

Nx =
Eh

1− ν2

[

u,x + ν

(

ν,s +
w

R

)

−
h2

12

1

R
w,xx

]

, (12a)

Ns =
Eh

1− ν2

[

ν,s +
w

R
+ νu,x

+
h2

12

1

R

(

w,ss +
w

R2
+

R,s

R2
ν

)]

, (12b)

Nxs =
Eh

2 (1+ ν)

[

u,s + ν,x −
h2

12

1

R

(

w,xs −
1

R
ν,x

)]

, (12c)

Nsx =
Eh

2 (1+ ν)

[

u,s + ν,x +
h2

12

1

R

(

w,xs +
1

R
u,s

)]

, (12d)

Mx = −D{w,xx + ν

[

w,ss −
(

ν

R

)

,s

]

−
1

R
u,x}, (12e)

Ms = −D

(

w,ss +
w

R2
+

R,s

R2
ν + νw,xx

)

, (12f)

Mxs = −D (1− ν)

(

w,xs −
1

R
ν,x

)

, (12g)

Msx = −D
(1− ν)

2

(

2w,xs −
ν,x

R
+

u,s

R

)

, (12h)

Qx = −D

[

w,xxx + w,xss −
u,xx

R
+

(1− ν)

2

(u,s

R

)

,s

−
1+ ν

2R

(

ν

R

)

,xs

]

, (12i)

Qs = −D

[

w,sss + w,xxs +
( w

R2

)

,s −
(1− ν)

R
ν,xx

+

(

R,s

R2
ν

)

,s

]

, (12j)

where D = E/12(1 − ν
2) and, Txs Vx the effective tangential

membrane and transverse shear forces at the edges x = 0, l given
as

Txs = Nxs +
Mxs

R
=

Eh

2(1+ ν)

[

u,s + ν,x +
h2

4

1

R

(

ν,x

R
− w,xs

)

]

,

(13a)

Vx = Qx +
∂Mxs

∂s
= −D

[

w,xxx + (2− ν)w,xss

−
u,xx

R
+

(1− ν)

2

(u,s

R

)

,s −
3− ν

2

(

ν,x

R

)

,s

]

. (13b)

Similarly,Tsx andVs represent the effective tangential membrane,
and transverse shear force at the edges s = 0, a and are given as

Tsx = Nsx =
Eh

2(1+ ν)
[u,s + ν,x +

h2

12

1

R
(w,xs +

1

R
u,s)], (14a)

Vs = Qs +
∂Msx

∂x
= −D[w,sss + (2− ν)w,xxs −

3(1− ν)

2

ν,xx

R

+

(

R,sν

R2

)

,s +
( w

R2

)

,s +
(1− ν)

2

u,xs

R
].

(14b)

MAEM SOLUTION

MAEM (Katsikadelis, 2002) is used for the solution of the initial
boundary problem (9), (10), (11), as shown in the following. Let
u, ν and w be the solution to the problem. Since Equations (9) are
of the 2nd order with respect to u, ν and of the 4th order with
respect to w, the analog equations which are convenient to use
are

∇2u = b1(x, t), ∇2
ν = b2(x, t), ∇4w = b3(x, t), (15a,b,c)

where bi = bi(x, t) (i = 1, 2, 3) are unknown fictitious sources
depending on time, which, however, is treated as a parameter,
i.e., Equations (15a,b,c) are quasi-static, treated as static at each
instant. The fictitious sources can be established as follows.

The fictitious sources are approximated with MQ-RBFs series.
Thus we have

∇2u ≃

K+L
∑

j=1

a
(1)
j (t)fj(r), ∇2

ν ≃

K+L
∑

j=1

a
(2)
j (t)fj(r),

∇4w ≃

K+2L
∑

j=1

a
(3)
j (t)fj(r)

(16a,b,c)
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FIGURE 4 | (A) Shell collocation scheme MAEM. (B) Shell discretization FEM.

where c is the shape parameter; K, L represent the number of
collocating points inside � and on Ŵ, respectively; fj(r) =
√
r2 + c2, r =

∣

∣x− xj
∣

∣ (see Figure 2), and a
(1)
j , a

(2)
j , a

(3)
j time-

dependent coefficients to be determined. Note that, while the
derivatives of the membrane displacements u, ν are collocated at
K domain and L boundary points, the derivatives of the normal
displacement w according to the δ-technique (Ferreira et al.,
2005) are collocated in K domain and 2L boundary nodal points
placed on the auxiliary boundary Ŵ̃ at a small distance δ from the
actual one.

Equations (16) can be directly integrated to yield

u ≃

K+L
∑

j=1

a
(1)
j (t)ûj, ν ≃

K+L
∑

j=1

a
(2)
j (t)ν̂j, w ≃

K+2L
∑

j=1

a
(3)
j (t)ŵj,

(17a,b,c)
where ûj(r), ν̂j(r), ŵj(r) are solutions of the equations

∇2ûj = fj(r), ∇2
ν̂j = fj(r), ∇4ŵj = fj(r). (18a,b,c)

Since the functions fj(r) depend only on the radial distance r, the
solution of Equations (18) can be obtained after writing them in
polar coordinates. For the 2nd order equations, we have

∇2ûj =
1

r

d

dr

(

r
dûj

dr

)

= fj(r), (19)

which after integration gives

ûj =
1

9
fj
3
+

1

3
fjc

2 −
c3

3
ln

(

c+ fj
)

+ G1 ln(r)+H1. (20)

Similarly, we have

ν̂j =
1

9
fj
3
+

1

3
fjc

2 −
c3

3
ln

(

c+ fj
)

+ G2 ln(r)+H2. (21)

The regularity condition at r = 0 demands G1 = G2 =

0. The remaining constants H1, H2 together with the shape

TABLE 1 | Eigenfrequency parameters of the shell in Example 1.

Mode c �f = Rω

√

(1 − ν2)ρ/E

MAEM FEM

1 0.06 0.6944 0.6969

2 0.8677 0.8672

3 1.0469 1.0440

4 1.1111 1.1220

5 1.2044 1.2113

6 1.4421 1.4452

parameter c, if not arbitrarily specified, can be determined with
an optimization procedure, such as to ensure the regularity of
coefficients matrix (control of the condition number) and the
error minimization. It has been shown that the coefficient matrix
resulting from the new RBFs is always invertible (Sarra, 2006),
and as a result, we take in this analysis H1 = H2 = 0 for
convenience. Thus only c, the shape parameter is involved in the
error minimization procedure (Katsikadelis, 2008a).

For the 4th order equation, one can write

∇4ŵ = ∇2(∇2ŵ) = fj. (22)

Integrating Equation (22), and removing the singular terms and
the terms including the arbitrary constants (Yao et al., 2010) yield

ŵj = −
7

60
c4fj+

2

45
c2fj

3
+

1

225
fj
5
+
2c2 − 5r2

60
c3 ln(c+fj)+

1

12
r2c3.

(23)
Direct differentiation of Equations (17) obtains the derivatives of
the displacements involved in the governing equations (9a,b,c).

u,ikl ≃

K+L
∑

j=1

a
(1)
j (t)ûj,ikl, ν,ikl ≃

K+L
∑

j=1

a
(2)
j (t)ν̂j,ikl,

w,ikl ≃

K+2L
∑

j=1

a
(3)
j (t)ŵj,ikl,

(24a,b,c)
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FIGURE 5 | (A) 1st vibration mode of the shell in Example 1. (B) 2nd vibration

mode of the shell in Example 1.

where i, k, l stand for x, s.
Furthermore, the derivatives of the displacements with respect

to time can also be obtained by direct differentiation of Equations
(17). Thus we have

u̇ ≃

K+L
∑

j=1

ȧ
(1)
j (t)ûj, ν̇ ≃

K+L
∑

j=1

ȧ
(2)
j (t)ν̂j, ẇ ≃

K+2L
∑

j=1

ȧ
(3)
j (t)ŵj,

(25a,b,c)

ü ≃

K+L
∑

j=1

ä
(1)
j (t)ûj, ν̈ ≃

K+L
∑

j=1

ä
(2)
j (t)ν̂j, ẅ ≃

K+2L
∑

j=1

ä
(3)
j (t)ŵj.

(26a,b,c)
Collocating Equations (9) at the K nodal points inside �

and the four boundary conditions, Equations (10), at the L
boundary nodal points (Figure 2) using the well-known δ-
technique for multiple boundaries (Yiotis and Katsikadelis,
2015a), and inserting Equations (17) and (24) to (26) in the
resulting expressions, a system of ordinary differential equations
is obtained, namely

Mä+ Cȧ+ Ka = g, (27)

whereM, C, and K are known square matrices having dimension
3K+ 4L; g is a vector including the 3K values of the external load
g(x, t) and a is the vector of the 3K + 4L values of the unknown

time-dependent coefficients a
(1)
j (t), a

(2)
j (t), a

(3)
j (t).

Equation (27) is the semi-discretized equation of motion
of the cylindrical shell with M, C, and K representing the

TABLE 2 | Eigenfrequency parameters of the shell in Example 2.

Mode c �f = Rω

√

(1 − ν2)ρ/E

MAEM FEM

1 0.06 0.9026 0.9039

2 0.9086 0.9139

3 1.2032 1.1939

4 1.3662 1.3751

5 1.5473 1.5649

6 1.7498 1.7487

FIGURE 6 | (A) 1st vibration mode of the shell in Example 2. (B) 2nd vibration

mode of the shell in Example 2.

generalized mass, damping and stiffness matrices, respectively.
It can be solved numerically, using any time step integration
technique to establish the time-dependent unknown coefficients.
Here themethod presented in Katsikadelis (2014a,b) is employed.
The initial conditions of Equation (27) result from Equations (17)
and (25) on the basis of Equations (11) as follows:

a(1)(0) = û−1g
1
(x), ȧ−1(0) = û−1h1(x), (28a)

a(2)(0) = ν̂
−1g

2
(x), ȧ(2)(0) = ν̂

−1h2(x), (28b)

a(3)(0) = ŵ−1g
3
(x), ȧ(3)(0) = ŵ−1h3(x). (28c)

Once the coefficients a
(1)
j (t), a

(2)
j (t), a

(3)
j (t) have been computed,

the field functions u, ν,w, their derivatives, and the stress
resultants can be evaluated from Equations (17), (24) to (26) and
(12) to (14).
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FIGURE 7 | Shell irregular collocation scheme: MAEM.

TABLE 3 | Eigenfrequency parameters of the shell in Example 3: case (a).

Mode c �f =
2lωRsin (φ/2)

h

√

12 × (1 − ν2)ρ/E

MAEM Lim and Liew (1994)

1 0.05 99.716 99.263

2 118.227 119.00

3 150.854 151.13

4 155.536 156.35

5 171.666 172.52

6 190.027 192.43

7 200.254 201.67

8 205.107 207.80

For free vibrations it is C = g(x, t) = 0 and the equation of
motion, Equation (27), takes the form

Mä+ Ka = 0, (29)

while the essential boundary conditions, Equations (10), become
homogeneous.

By setting

a(t) = αeiωt , (30)

Equation (29) results in the eigenvalue problem

[

K− ω
2M

]

α = 0, (31)

which gives the eigenfrequencies ωi and the eigenvectors

α = [α(1),α(2),α(3)]
T
, where α(1) = [α

(1)
1 ,α

(1)
2 , ...,α

(1)
K+L]

T
,

α(2) = [α
(2)
1 ,α

(2)
2 , ...,α

(2)
K+L]

T
, α(3) = [α

(3)
1 ,α

(3)
2 , ...,α

(3)
K+2L]

T
.

TABLE 4 | Eigenfrequency parameters of the shell in Example 3: case (b).

Mode c �f =
2lωRsin (φ/2)

h

√

12 × (1 − ν2)ρ/E

MAEM Lim and Liew (1994)

1 0.05 45.909 46.241

2 73.250 74.300

3 79.160 79.239

4 109.855 110.14

5 130.664 132.35

6 136.049 135.51

7 165.271 165.57

8 167.891 166.82

FIGURE 8 | (A) 1st vibration mode of the shell in Example 3-case (a). (B) 2nd

vibration mode of the shell in Example 3-case (a).

The elements of these vectors are the three sets of coefficients
corresponding to the functions u, ν, and w, respectively.
Subsequently, the mode shapes are obtained by substituting

α = [α(1),α(2),α(3)]
T
in Equations (17).

The accuracy of the approximation (9) depends heavily on c
(see Equations 20-21-23). This was also verified in the problem
at hand. Thus we come across to the problem of selecting a
“good” value for c, that is, a value of the shape parameters
that produces results of acceptable accuracy. Several methods
have been suggested (Hardy, 1971; Franke, 1982; Foley, 1994;
Rippa, 1999; Katsikadelis, 2009) for selecting a good value for
c in 2D problems. Katsikadelis (2006, 2008b) proposed the
minimization of the functional (total potential) for obtaining
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FIGURE 9 | (A) 1st vibration mode of the shell in Example 3-case (b). (B) 2nd

vibration mode of the shell in Example 3-case (b).

an optimal value for c. For the present problem, the optimal
value is obtained by the search method as the value of c
which yields the minimum value of the eigenfrequencies ωi.
It was observed that the optimum c giving the minimum 1st
eigenfrequency differs negligibly from that yielding the higher
minimum eigenfrequencies. Therefore the same optimum value
of c can be used to avoid the search method for higher
eigenfrequencies.

NUMERICAL EXAMPLES

On the basis of the above analysis, a Fortran program has been
written. The expressions of the derivatives involved in Equations
(9) to (11) and Equations (12) to (14) have been obtained using
the symbolic language MAPLE. Though the method applies to
cylindrical shell of variable radius of curvature, for reasons of
simplicity, the efficiency and accuracy of the developed method
are demonstrated by studying the forced and free vibrations
of circular cylindrical panels, (Figure 3), under different sets of
boundary conditions. The NASTRAN FEM code and a model
with 400 rectangular elements (Figure 4B) are used to compare
the results. In all examples the employed material constants are:
E = 21 × 106kN/m2, ν = 0.30. The results have been obtained
running the relevant programs on an Intel Core 1.6 GHz with
RAM 4 GB computer.

 

 

 

FIGURE 10 | Time history of the normal displacement w, bending moment

Ms, and membrane force Ns at the center of the shell in Example 4.

Example 1
We study the dimensionless eigenfrequency parameter �f =

Rω

√

(1− ν2)ρ/E of a simply supported circular cylindrical shell
panel with movable curved edges in the axial direction (Nx =

v = w = Mx = 0 along the curved edges and u = v = w =
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Ms = 0 along the straight edges). The first six eigenfrequency
parameters from MAEM are given in Table 1 and are compared
with a FEM solution. The 1st and 2nd vibration modes for the
normal displacement are shown in Figure 5, respectively. The
numerical results have been obtained with the parameters L =

80, K = 361 and δ = 1.e − 6 as shown in Figure 4A. The
optimal value copt = 0.06 corresponds to the 1st mode and
has also been used for the other five modes. This value is close
to that obtained by the formula c = 2/

√
(K + 2L) = 0.088

proposed in Ferreira et al. (2006b). The employed geometrical
data are: h = 0.10m, R = 10.00m, l = 5.00m, a = 5.00m.
The CPU time for the FEM solution was 10 s, while for the
MAEM was 85 s. Note that the employed code has not been
optimized.

Example 2
In this example the same shell as in Example 1 is analyzed under
the following boundary conditions: Nx = ν = w = θx = 0
along the curved edges and u = ν = w = θs = 0 along the
straight edges. The same collocation points as in the Example
1 have been used. The first six eigenfrequency parameters are
shown in Table 2 as compared again with those obtained from
a FEM solution. The 1st and 2nd vibration modes for the
normal displacement are shown in Figure 6 respectively. The
value copt = 0.06 was employed to obtain results for the first six
modes. The CPU time for the FEM solution was 10 s, while for
the MAEM was 88 s.

Example 3
In this example, a cylindrical shell panel with geometrical data
R = 9.896m, l = 4.949m, a = 5.00m is analyzed. Two
cases with regard to the thickness have been considered: (a)
2R sin(φ/2)/h = 100 and (b)2R sin(φ/2)/h = 20 . All edges
are clamped, i.e., u = ν = w = θx = 0 along the curved
edges and u = ν = w = θs = 0 along the straight edges.
The numerical results have been obtained with L = 80, K =

361 randomly distributed as shown in Figure 7, that is using an
irregular distribution, and δ = 1.e − 6. In both cases, the search
method resulted copt = 0.05. The first eight eigenfrequency
parameters are shown in Tables 3, 4 as compared with those
obtained from an analytical solution (Lim and Liew, 1994). The
1st and 2nd vibration modes for the normal displacement are
shown in Figure 8 for case (a) and in Figure 9 for case (b),
respectively. These figures show that that the vibration modes
are influenced by the thickness of the shell, which is verified in
(Webster, 1968; Lim and Liew, 1994).

Example 4
In this example, the forced vibrations of a simply supported
circular cylindrical shell panel (u = ν = w = Mx = 0

along the curved edges and u = ν = w = Ms = 0
along the straight edges) with zero initial conditions (u(x, 0) =

u̇(x, 0) = ν(x, 0) = ν̇(x, 0) = w(x, 0) = ẇ(x, 0) = 0)
has been studied. Its geometrical data are those of Example
1. The applied load is the normal pressure given by qz =

sin(t) kN/m2. The mass density is ρ = 2.446kNm−4sec2. The
numerical results have been obtained with L = 80, K = 361
distributed as shown in Figure 4A and δ = 1.e−6. The employed
optimal value is copt = 0.06. The time history of the normal
displacement w, the bending moment Ms and the membrane
force Ns at the center of the shell are shown in Figure 10 as
compared with those obtained by a FEM solution. The CPU
time for the FEM solution was 40 s, while for the MAEM was
325 s.

CONCLUSIONS

The Meshless Analog Equation Method, a truly meshless
method, has been applied to the dynamic analysis of thin
cylindrical shell panels in the present study. MAEM is based
on the principle of the analog equation, converting the original
equations into three substitute equations, two Poisson’s and
one biharmonic, which are solved using a meshless method.
The use of integrated MQ-RBFs to approximate the fictitious
sources allows the approximation of the sought solutions by new
RBFs, which approximate both the solution and its derivatives
accurately. This way the strong formulation of the problem
avoids the drawbacks inherent in the conventional MQ-RBFs,
while maintaining all the advantages of a truly mess-free method.
A method is presented to obtain optimum values for the shape
parameter, eliminating the uncertainty in its choice. It was
observed that the optimum value of the shape parameter for
the 1st mode differs negligibly from those of higher modes
and therefore the same value can be used to obtain the
eigenfrequencies of higher modes. The solution algorithm is
straightforward and quite reasonably easy to program. The
numerical examples presented demonstrate the efficiency and
accuracy of the proposed method and show that MAEM can
be used as an efficient solver for challenging problems in
engineering analysis.
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Hybrid steel to timber connections are found in many buildings and bridges. These

connections offer several advantages such as ease of construction and energy

dissipation. This research paper aims to study the mechanical behavior of bolted hybrid

connections that consists of a square hollow steel column (SHS) and a glulam timber

beam. The connection between the two structural members is achieved by means of

angles and preloaded bolts. A referencemodel is constructed and verified by comparison

to experimental and numerical data from the international literature. Additionally, several

parameters that affect the response of the connection are modified in order to investigate

and quantify their effect, resulting in seven different case studies. These parameters are

the size of the bolts, the thickness of the angles and the addition of stiffener. Themoment-

rotation curve of each case study is constructed and the results are commented. Finally,

a proposed optimal configuration of the hybrid connection is presented.

Keywords: FEM analysis, parametric investigation, hybrid steel-timber connections, bolted connections, hollow

sections

INTRODUCTION

Steel and wood are materials that have been extensively used in constructions worldwide,
even from ancient times. Nowadays, the need for a sustainable built environment encourages
structural engineers to think of new design options that can maximize the benefits of the
aforementioned materials. By combining the strength and ductility of steel with the low weight
of wood, environmental friendly structures are achieved. The structural members in this type of
constructions are connected using hybrid solutions. In countries like Norway where the access
to wood resources is easy, these hybrid structures could become the norm for future lightweight
structures.

METHODS

Problem Formulation
Connections between steel and concrete or steel and timber structural elements are referred as
hybrid. In general, the design of connections between members is always a challenge for the
structural engineers. Loads and stresses need to be transferred from one structural member to
another. In the presented paper, finite element modeling is used as a tool to investigate the
behavior of hybrid bolted steel- timber connections considering several proposals made in technical
literature, such as Amara and Embaye (2017). This type of connections has not been thoroughly
examined. The numerical simulations of the hybrid connections under study are governed by the
contact conditions at the steel-timber interface. Emphasis is placed on the construction of moment-
rotation curves of the connections. Only the elastic stiffness of the connection is determined since
elastic design is traditionally selected in the case of connections. The reference beam to column
hybrid connection is depicted in Figure 1.
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FIGURE 1 | Rendering of the reference connection, figure based on

Karagiannis et al. (2017).

Moment-Rotation Curve
In structural engineering, the behavior of a certain structure
under design load situations is represented by unique action-
deformation curves. If the structure is examined at member
level then the moment-rotation (M-φ) curve represents the
behavior of a certain connection between structural members.
The rotational stiffness of the connection is equal to the slope
of the curve and the initial value of this stiffness is used for the
classification of the connection, which is important for the design
of MRFs. According to Eurocode 3 part 1.8 (EN 1993-1-8, 2005),
a connection can be classified as pinned, semi-rigid or rigid, if
it satisfies the respective criteria presented below in Equations
(1)–(5):

Nominally pinned Sj,ini < 0.5EIb/Lb (1)

Semi-rigid 0.5 EIb/Lb < Sj < 8EIb/Lb

(braced frame) (2)

0.5EIb/Lb < Sj < 25EIb/Lb

(unbraced frame) (3)

Rigid Sj,ini > 8EIb/Lb(braced frame) or (4)

FIGURE 2 | Connection classification by initial rotational stiffness, figure from

Eurocode (EN 1993-1-8, 2005).

Sj,ini > 25EIb/Lb(unbraced frame) (5)

where:
Sj,ini is the initial rotational stiffness of the connection

(kN/mrad)
EIb is the bending stiffness of the beam (kN/mrad)
Lb is the span of the beam (mm)
The classification of the joint according to the initial rotational

stiffness presented in Eurocode 3 (EN 1993-1-8, 2005) and
Eurocode 5 (EN 1995-1-1, 2004) is depicted in Figure 2. TheM-φ
curve can be either non-linear or have a simplified tri-linear or
even bi-linear form as described in Eurocode 3. In our analysis,
only the first linear branch of the M-φ curve is plotted since it
is adequate to classify the hybrid connections when performing
elastic analysis of connections at the Serviceability Limit
State (SLS).

Analytical Solution
The general procedure for determining the rotational stiffness
of a connection proposed by Eurocode (EN 1993-1-8, 2005)
is the component method. The key idea of this method
is to calculate the stiffness of all the components of a
connection and then the total stiffness by assembling a
mechanical model of the whole system of elementary springs.
The components of a connection are the connected parts and
the connecting elements. Of course, the identification of the
active components of the connection and the evaluation of
their contribution according to Porteous and Kermani (2013)
must be done in the beginning. The problem with this method
is that it cannot be applied in hybrid connections without
assumptions. These assumptions are often very conservative
thus leading to overdesigned connection solutions. Therefore,
the following method is used. First, the rotation φ of the
connection is calculated, for every load step, using the
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trigonometric Equation (6), neglecting the elastic deformation of
the column:

φ = arctan(1e/db) (6)

where:
φ is the rotation of the connection (mrad)
1e is the elastic deformation of the beam (mm)
db is the depth of the beam (mm)
Then, the reaction force Pe, as shown in Figure 3, is calculated

using the Eq. (7):

Pe = 12EI/g3∗1 (g1 + g2/g1 + 4g2)
∗
1e (7)

where:
Pe is the reaction force (kN)
g1 is the gauge distance parallel to the column (mm)
g2 is the gauge distance parallel to the beam (mm)
Finally, the elastic moment of the connection is found, using

the Equation (8):

M = (P∗e le)
∗(db + g1)

∗(db/1e)
∗
φ (8)

where:
M is the elastic moment of the connection (kNm)
le is the effective length of the angle (mm)
Equations (7) and (8) together with the corresponding

Figure 3, are empirical analytical formulas that are valid for semi-
rigid connections with angles. These formulas were proposed by

FIGURE 3 | Analytical solution of semi-rigid angle connection, figure based on

Lee and Moon (2002).

Lee andMoon (2002) and predict accurately the early response of
the connection.

The final step is to construct the moment-rotation curve
and to calculate the initial rotational stiffness, which is equal to
the slope of the M-φcurve. The calculation is done using the
Equation (9):

Sj,ini = arctan(M/φ) (9)

where:
Sj,ini is the initial rotational stiffness of the connection

(kN/mrad)

NUMERICAL ANALYSIS

Reference Model
The reference beam-column hybrid connection consists of
glulam beam and a steel SHS column. The beam has a height of
405mm and width of 140mm, whereas the column is 150mm
wide and 10mm thick. Top and seat angles are 150∗200mm,
15mm thick and they are connected using M12 HR bolts to the
glulam beam and M16 HR bolts to the tubular steel column,
respectively. The steel grade of the column is S355, of the top
and seat angle is S275 and of the bolts. Glulam is of category
GL28h. The model is constructed according to the geometric and
mechanical characteristics of an experimental specimen found
in the international literature by Karagiannis et al. (2017). The

FIGURE 4 | Verification of numerical model.

TABLE 1 | Case studies examined.

Nr Description

1 Reference model

2 Thickness of the top and seat angle equal to 18mm

3 Thickness of the top and seat angles equal to 20mm

4 Diameter of the vertical bolts equal to 16mm

5 Diameter of the vertical bolts equal to 20mm

6 Reduction of 20mm in the width of the top and seat

angle

7 Thickness of the top and seat angle equal to 12mm and

use of a 14mm stiffener in the middle of the top angle
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FIGURE 5 | Von Mises stress distribution in the top angle for case 1.

FIGURE 6 | Von Mises stress distribution in the seat angle for case 1.
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FIGURE 7 | Von Mises stress distribution in the vertical bolts for case 1.

FIGURE 8 | Von Mises stress distribution in the glulam beam for case 1.

Frontiers in Built Environment | www.frontiersin.org 5 September 2018 | Volume 4 | Article 4846

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Tsalkatidis et al. Hybrid Steel-Timber Connections

reference model does not have blind bolts penetrating the SHS
column for simplicity reasons although mechanical models that
describe the behavior of blind-bolted angle connections have
been proposed byMalaga-Chuquitaype and Elghazouli (2010). In
this paper, the focus is on the effect of the different components
on the connection by Anwar and Najam (2016), in relation to
the strength and the rotational stiffness of the joint. The support
and loading conditions of the three-dimensional finite element
simulation are the same as the experiment by Karagiannis et al.
(2017) for verification purposes.The displacement-induced load
at the end of the beam is limited to 7mm in order the behavior
of the joint to remain elastic. Only one quarter of the joint

FIGURE 9 | Numerical moment-rotation curves.

is modeled due to symmetry. The model is constructed using
ANSYS version 17.2 finite element package (Ansys Inc., 2017).
Figure 4 depicts the comparison of the moment-rotation curve
between the numerical and the experimental analysis, within the
elastic response of the connection.

The beam, the column and the angles are simulated with
three-dimensional structural solid finite elements and the contact
interfaces with surface-to-surface contact elements. Contact,
itself, is a complex phenomenon that adds nonlinearities to
a finite element simulation as presented by Bathe (1996) and
Mistakidis and Stavroulakis (1998). In the case of hybrid
connections, the interaction of different materials adds an extra
level of difficulty. ANSYS software offers the option of pair-
based contact where one surface is regarded as the contact
and the other as the target one. The interface behavior is set
as bonded with a Coulomb coefficient of friction equal to 0.7
in order to simulate unilateral frictional contact conditions
described by Popov (2010) and Tsalkatidis and Avdelas (2010).
The contact elements overlay the solid elements and the contact
is detected at Gauss points. The pretension of the bolts and the
resulting clamping forces are modeled by using the PRETS179
element from the ANSYS library. As stated before, the blind
bolts of the experimental specimen are replaced by bolts
with nuts.

Case Studies
A total number of seven case studies is examined by Amara
and Embaye (2017), as presented in the Table 1. The parameters
examined are the thickness of the angles (case studies 2, 3, and 7),
the diameter of the vertical bolts (case studies 4 and 5), the width

FIGURE 10 | Von Mises stress distribution in the top angle for case 7.
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of the angles (case study 6) and the addition of stiffener (case
study 7). The aforementioned parameters have been examined in
several research studies such as Theofanous et al. (2015), Tartaglia
et al. (2018), and Gil et al. (2015).

RESULTS

The main results of the numerical analysis are the moment-
rotation curves together with the corresponding initial rotational
stiffness and the von Mises stresses that develop in the
connection. The results are presented in Figures 5–10.

DISCUSSION AND CONCLUSION

The numerical analysis of the hybrid steel-timber connection
focuses on the initial rotational stiffness and the developing von
Mises stresses in the top angle.

Effect of angle thickness

• By changing the thickness of the top and the seat angles
from 15mm (case study 1) to 18mm (case study 2) or to
20mm (case study 3), the rotational stiffness of the connection
increases. For case 2 the increase is 73% and for case 3 is
137%, in comparison to case 1. This denotes that even a small
increase in thickness of the angles has a significant effect on
the rotational stiffness of the connection. As expected, the
connection becomes stiffer when the thickness of the angles
is increased. Moreover, the maximum von Mises stress in the
top angle is decreased by 12.2% in case 2 and by 15.5 % in
case 3. The increase in the amount of steel used is 21 and
35.2%, respectively.

Effect of bolt diameter

• By changing the diameter of the vertical bolts from12mm
(case study 1) to 16mm (case study 4) or to 20mm (case
study 5), the rotational stiffness of the connection is not
affected. The change in the diameter of the bolts is reciprocal
to the change in the pretension force. Moreover, the maximum
von Mises stress in the top angle is decreased by 20.7% in case
4 and by 32.7% in case 5. The increase in the amount of used
steel is higher by 21 and 35.2%, respectively.

Effect of angle width

• By reducing the width of the of the top and the seat angles from
150mm (case study 1) to 130mm (case study 6), the rotational
stiffness of the connection is reduced by 14.15%. Moreover,
the maximum von Mises stress in the top angle increases by
14.28%.

Effect of stiffener

• By adding a stiffener at the top angle (case study 7), the
rotational stiffness of the connection increases by 53.6% in
relation to the reference model. The addition of stiffener leads
to the development of high von Mises stresses in the seat angle
near the bolt heads due to bending of the horizontal leg of the
seat angle. After the pretension of the bolt, the stiffener also
enhances the clamping forces at the bolt-angle interface.

• Local surface crushing of the glulam beam is present in all
models, due to compression from the top and seat angle.
The effect is more significant when the stiffness of the angle
is higher, thus resulting in a huge difference in deflection
between the beam and the angle.

• The connection in all the case studies remains semi-rigid, as
assumed. Case studies 2, 3, and 7 have the higher values of
initial rotational stiffness. The von Mises stress in case study
5 has its minimum value.

• The recommended connection is a combination of case
studies 3 and 5. The geometry of the joint remains the
same, as in the reference model, but the thickness of both
angles and the diameter of the bolts are set equal to 20mm.
This design option increases the initial rotational stiffness

of the connection by 137%, whereas the von Mises stress

decreases by at least 32.7%. The aforementioned benefits in
the response of the connection by far outweigh the increase in

steel use.
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This work aims to introduce a new layered approach to the nonlinear analysis of initially

straight Euler-Bernoulli beams by the Boundary Element Method (BEM). The beam is

studied in the context of both geometrical and material nonlinearity. The governing

differential equations, derived by applying the principle of minimum total potential energy,

are coupled and nonlinear, while the boundary conditions are the most general and may

include elastic support or restraint. The boundary value problem, regarding the axial and

transverse displacements, is solved using the Analog Equation Method (AEM), a BEM

based method, together with an iterative procedure. Although a direct solution to the

geometrical nonlinear problem has already been presented, in this work an alternative

layered analysis is proposed. The discretization is applied in both the longitudinal

direction and the cross-sectional plane, and an iterative process is commenced. First,

initial fictitious load distributions are assumed at beam’s each cross-section, and the

displacements, as well as their derivatives, are computed using the AEM. Second,

the two stress resultants, i.e., the axial force and bending moment, are evaluated by

appropriate integration over the cross-section. In the end, the derivatives of the stress

resultants are evaluated, and the equilibrium of the governing equations is checked.

If the equilibrium is satisfied, the process is terminated. Otherwise, the fictitious load

distributions are updated, and the procedure starts over again. Several representative

examples are studied, and the results are compared with those presented in the literature,

validating the reliability and effectiveness of the proposed method.

Keywords: beams, geometrical nonlinear analysis, material nonlinear analysis, Boundary Element Method (BEM),

layered analysis, shape memory alloys (SMA)

INTRODUCTION

Beam elements have historically found applications in the process of structural modeling and
analysis in a wide range of engineering disciplines, from civil (e.g., buildings, bridges) tomechanical
(e.g., shafts, wind turbine parts, nuclear reactor components) to aeronautical (e.g., aircraft wings,
spacecraft parts) (Hodges, 2006) to name only a few. For this reason, considerable research has
been directed at studying the static and dynamic structural behavior of beams. Over the years, the
exponential growth in computational power in conjunction with significant advances in numerical
methods have led tomore sophisticated simulations; the initially simplifyingmodeling assumptions
have been gradually diminished, and more realistic nonlinear formulations are employed.

In general, two conventional sources of nonlinearity may affect the response of structural
elements: material and geometrical (Reddy, 2005a). On the one hand, material nonlinearity stems
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from the inherent nonlinear constitutive behavior of several
materials. In this case, the stress-strain relation may be a function
of the combined or individual stress, strain or strain rate andmay
also be path dependent about the load history. Nonlinearmaterial
behavior in solid mechanics can be rate-independent or rate-
dependent (Taylor, 1996). On the other hand, the geometrical
nonlinearity results from maintaining the square of the slope in
the strain-displacement relations (Katsikadelis and Tsiatas, 2003).
In this case, the transverse deflection affects the axial force, and
the resulting governing equations are coupled nonlinear with
variable coefficients.

An analytical solution to the mathematical model describing
the behavior of the beam cannot be obtained when general
boundary conditions are imposed at its ends; therefore, a
numerical approach should be adopted (Katsikadelis and
Tsiatas, 2003). The most widely used numerical methods in
Computational Mechanics are the Finite Element Method
(FEM), the Boundary Element Method (BEM), and the Finite
Difference Method (FDM) (Banerjee and Butterfield, 1981;
Becker, 1992). Firstly, FDM can be applied to any system of
differential equations by substituting the differential operators
with algebraic ones at representative nodes after the problem
domain discretization. It is the simplest of the three methods
and relatively easy to program. However, it is not suitable for
problems with irregular domain geometries and rapidly changing
variables, due to the difficulty of establishing a non-uniform grid
of nodes. Secondly, according to FEM, the domain of the solution
is decomposed into a finite number of smaller subdomains, called
finite elements. On each subdomain the behavior of the whole
body is approximated, and then continuity and balance rules
are applied at the boundaries of the elements to obtain the
solution for the entire domain (Plevris and Tsiatas, 2018). FEM
is appropriate for problems with geometrical complex solution
domains. However, discretizing the whole body results in a large
number of finite elements leading to significant computational
cost. Lastly, BEM, applying the concept of the Fundamental
Theorem of Calculus, transforms the governing differential
equations into equivalent integral ones, thus transferring the
solution domain to its boundary, where a discretization scheme
is then established. In this respect, the dimension of the problem
is reduced by one order while the number of unknowns is also
significantly reduced (Plevris and Tsiatas, 2018). Moreover, the
BEM allows the evaluation of the derivatives of the solution
at any point of the original solution domain (before the initial
integration), whereas it is suitable for the analysis of structures
with complex boundaries and geometric peculiarities, such as
cracks (Katsikadelis, 2016).

To the problem at hand, FEM has been adopted by many
researchers for the materially and/or geometrical nonlinear
analysis of beams. In particular, Mondkar and Powell (1977),
examined structures accounting for large displacements with
finite strains and formulated the incremental equations ofmotion
using the principle of virtual displacements. Argyris et al.
(1978a,b, 1979), to circumvent the complications emerging from
the noncommutative nature of rotations about fixed distinct axes,
presented the concept of semi-tangential rotation in the matrix
displacement analysis of geometrically nonlinear structures.

Bathe and Bolourchi (1979) studied the behavior of a beam
element undergoing large displacements and large rotations
formulating a total Lagrangian and an updated Lagrangian
approach. Yang and McGuire (1986) presented a nonlinear
analysis of beams with a doubly symmetric cross-section
employing an updated Lagrangian finite element formulation.
Cai et al. (2009) performed a large deformations-large rotations
finite element analysis of a three-dimensional frame with
members of arbitrary cross-sections by the nonlinear Von
Karman theory of deformation.

Furthermore, linear and nonlinear analysis of beams has also
been performed employing BEM. Banerjee and Butterfield (1981)
and Providakis and Beskos (1986) employed BEM in order to
solve the static and dynamic problems of Euler-Bernoulli beams,
respectively. Further, the Analog Equation Method (AEM), a
numerical technique based on BEM, was applied to the nonlinear
static (Katsikadelis and Tsiatas, 2003) and dynamic (Katsikadelis
and Tsiatas, 2004) flexural analysis of beams with variable
cross-section. Sapountzakis and Mokos (2008) and Sapountzakis
and Panagos (2008) studied the nonlinear flexural behavior of
beams of doubly symmetric constant and variable cross-section
using BEM and adopting the assumptions of the Timoshenko
beam theory. Tsiatas (2010) examined the nonlinear problem of
non-uniform beams resting on a nonlinear elastic foundation
presenting a boundary integral equation solution. Sapountzakis
and Dourakopoulos (2010) formulated a BEM solution to
the moderate large deflections flexural-torsional analysis of
Timoshenko beams of a constant cross-section of arbitrary shape
under general boundary conditions. Sapountzakis and Dikaros
(2011) adopted a BEM methodology to examine the effects of
warping and rotary inertia to the moderate large deflections and
twisting rotations flexural-torsional dynamic analysis of beams.

In formulating a one-dimensional element for the linear or
nonlinear analysis of beams, two considerations have to be made:
First, the prediction of the cross-sectional response. Second, the
integration of the cross-sectional response over the length of the
element to obtain its response regarding the available degrees of
freedom (Izzuddin et al., 2002). Although the latter consideration
has been extensively presented in the previous works, an open
issue remains regarding the former consideration.

As far as cross-sectional response is concerned, three main
approaches have been widely adopted (Izzuddin et al., 2002):
According to the first one, explicit expressions for cross-sectional
response parameters (e.g., stress-strain functions) are provided.
The second one utilizes interaction relationships based mainly
on principles of plasticity. The third approach, known as the
fiber approach, utilizes a cross-sectional decomposition into a
finite number of subdomains adequately small to readily evaluate
stresses and strains at representative points. The fiber approach
is the most general, as it can be applied even in cases where
the stress-strain relation is not a priori known, or even if a
mathematical function can not explicitly describe it, but only by
sets of experimental data.

In this respect, the fiber model has been extensively applied
in the analysis and design of beams. Kaba and Mahin (1984)
first introduced a beam element divided into fibers for the
analysis of reinforced concrete or steel members assuming
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that plane sections remain plane. They used both force and
displacement shape functions to compute the element flexibility
and the element-resisting forces, respectively. Filippou et al.
(1991) presented a FEM solution for the problem of reinforced
concrete members under cyclic loading conditions that induce
biaxial bending and axial force. Zbiciak (2010) presented
a formulation of an initial-boundary-value problem for the
Euler-Bernoulli beam made of pseudoelastic shape memory
alloy (SMA). A 2D finite difference discretization scheme
was established in the longitudinal sense and on the cross-
sectional plane dividing the cross-section into layers of constant
thickness. More recently, Sapountzakis and Kampitsis (2017)
developed a hybrid domain BEM formulation for the geometrical
nonlinear analysis of inelastic Euler-Bernoulli beams resting on
viscous inelastic Winkler foundation, employing an inelastic
redistribution modeled through a fiber approach. Finally, Tsiatas
et al. (2018) presented a first step toward the solution of the
problem presented in this work, employing a fiber approach to
the large deflections analysis of beams by BEM. In this solution,
the material nonlinearity of the beam was not considered.

In this work, a layered approach to the nonlinear analysis
of initially straight Euler-Bernoulli beams by BEM is presented.
The beam is studied in the context of both geometrical and
material nonlinearity. It must be noted that in the current
analysis, the cross-sections under consideration are rectangular.
In this case, the fiber model can be reduced to a layered
model; more specifically, fibers can be substituted by layers of
constant thickness. The formulation of the problem is based
on the displacements, and the equations of equilibrium, derived
from the principle of minimum total potential energy, are
coupled and nonlinear. The solution to the system of those
equations is achieved using AEM according to which the
obtained equations of equilibrium are substituted by the same
number of uncoupled linear equations (Analog Equations) of the
same order of differentiation for each displacement component,
i.e., a second order for the axial deformation and fourth order for
the transverse deformation respectively. It is worth noting that,
from a physical point of view, each substitute linear equation
describe the response of a beam with unit stiffness, for the
axial and bending problem respectively, subjected to unknown
fictitious loads (Katsikadelis and Tsiatas, 2003). Although a direct
solution to the problem at hand has already been presented
by Katsikadelis and Tsiatas (2003), in this work, an alternative
layered analysis is proposed. In this case, a discretization is
applied in both the longitudinal direction and the cross-sectional
plane, and an iterative numerical process is commenced. First,
initial fictitious load distributions are assumed at beam’s each
cross-section and the displacements and their derivatives are
computed using AEM. Consequently, the stress resultants are
evaluated by appropriate integration over the cross-section. In
the end, the derivatives of the stress resultants are evaluated,
and the equilibrium of the governing equations is checked. If
the equilibrium is satisfied, the process is terminated. Otherwise,
the fictitious load distributions are updated, and the procedure
starts over again. Several representative examples are examined
considering not only geometrical nonlinearity but material
nonlinearity as well. The reliability and effectiveness of the

FIGURE 1 | Forces and moments acting on the element.

proposedmethod are validated by comparing the obtained results
with those presented in the literature or produced by other Finite
Element models.

STATEMENT OF THE PROBLEM

Kinematics
An initially straight beam of length L is considered. The beam
has variable axial and bending stiffness EA and EI (Figure 1),
respectively, which may result from the variation of the cross-
section,A = A(x) and I = I (x), and/or from the inhomogeneous
nature of the linearly elastic material, E = E(x). The x axis
of the beam is assumed to coincide with its neutral axis. The
beam is subjected to the combined action of the distributed
loads px = px(x) and pz = pz(x), along with the x and z-
direction, respectively, and it is bent in its plane of symmetry xz
(Katsikadelis and Tsiatas, 2003).

The bending of the beam is studied in the context of the Euler-
Bernoulli beam theory, according to which plane cross-sections
of the beam perpendicular to the beam axis before deformation
remain (i) plane, (ii) rigid, and (iii) perpendicular to the
(deformed) axis after deformation. Following these assumptions,
the displacement field is written as.

ū
(

x, y, z
)

= u (x) − zw,x (x) , (1)

v̄
(

x, y, z
)

= 0, (2)

w̄
(

x, y, z
)

= w(x), (3)

where (�) ,x denotes differentiation with respect to x; ū, v̄, w̄ are
the displacements of an arbitrary point of the beam along the
x, y, z axes respectively and u,w are the displacements of a point
on the neutral axis.

The components of the three-dimensional Green-Lagrange
strain tensor are given (Reddy, 2005a)

εxx = ū,x +
1

2

[

(ū,x)
2 + (v̄,x)

2 + (w̄,x)
2
]

, (4)

εyy = v̄,y +
1

2

[

(

ū,y
)2

+
(

v̄,y
)2

+
(

w̄,y
)2

]

, (5)
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εzz = w̄,z +
1

2

[

(ū,z)
2 + (v̄,z)

2 + (w̄,z)
2
]

, (6)

γxy = 2εxy =
(

v̄,x + ū,y
)

+
(

ū,xū,y + v̄,xv̄,y + w̄,xw̄,y
)

, (7)

γyz = 2εyz =
(

w̄,y + v̄,z
)

+
(

ū,yū,z + v̄,yv̄,z + w̄,yw̄,z
)

, (8)

γzx = 2εzx = (ū,z + w̄,x) + (ū,zū,x + v̄,z v̄,x + w̄,zw̄,x) . (9)

Assuming that the strains are small, the terms (ū,x)
2, εzz , ū,xū,z

are negligible compared to u,x (Reddy, 2005a) and substituting
the displacement components from Equations (1)–(3) to the
strain-displacement relations (4)–(9) the only non-vanishing
component of the strain tensor is

εxx(x, z) = u,x +
1

2
(w,x)

2 − zw,xx. (10)

Furthermore, the only non-vanishing stress component of the
second Piola-Kirchhoff stress tensor is

Sxx = Eεxx. (11)

Governing Equations of the Problem and
Boundary Conditions
To establish the equations of equilibrium of the beam, the
principle of minimum total potential energy is employed. To this
end, the total potential energy of the elastic beam is

5(u,w) = U + V , (12)

where U,V are the strain energy of the beam and the potential
of the external forces, respectively. The strain energy per unit
volume is given by the integral

Uo =

εxxw

0

Sxxdεxx =

εxxw

0

Eεxxdεxx =
1

2
Eε

2
xx, (13)

and the total strain energy of the beam is

U =
w

V

UodV =
w

V

1

2
Eε

2
xxdV . (14)

The potential of the external forces applied to the beam is
equivalent to the work done on the beam by them

V =

lw

0

[

−pxu− pzw
]

dx. (15)

The stress resultants, namely the axial force N and the bending
momentM are defined as

N =
w

A

SxxdA M =
w

A

SxxzdA. (16)

According to the principle of minimum total potential energy,
the first variation of the total potential energy of the beam must
be equal to zero

δ5 = δU + δV = 0. (17)

Substituting Equations (14), (15) in Equation (17) and by virtue
of Equations (10), (11), (16) leads to

lw

0

{N [(δu) ,x + w,x (δw) ,x]−M (δw) ,x}

+

lw

0

(

−pxδu− pzδw
)

dx = 0. (18)

By applying the Gauss-Green theorem (integration by parts) and
collecting the coefficients δu and δw, we obtain

lw

0

{(

−N,x − px
)

δu+
[

− (Nw,x) ,x −M,xx − pz
]

δw
}

dx

+ [Nδu+ (Nw,x +M,x) δw+Mδ (w,x)]
l
0 = 0 (19)

Since δu, δw are arbitrary and independent of each other in the
interval

(

0, l
)

, by virtue of the fundamental lemma of calculus of
variations the governing equations become

− N,x − px (x) = 0, (20)

− (Nw,x) ,x −M,xx − pz (x) = 0. (21)

In case the stress-strain relation is a known function, and
analytical integration can be performed on Equation (16), then
with respect to Equation (10) the stress resultants in terms of the
displacements are written as

N = EA

[

u,x +
1

2
(w,x)

2

]

, (22)

M = −EIw,xx. (23)

Using Equations (22), (23) the governing equations take the form

[

EA
(

u,x +
1
2w,

2
x

)]

,x = −px (x) , (24)

− (EIw,xx) ,xx +
[

EA
(

u,x +
1
2w,

2
x

)

w,x
]

,x = −pz (x) . (25)

Examining now the boundary terms of Equation (19), we
conclude that (Reddy, 2005b):

• δu, δw, δw,x are the primary variables, and their specification
constitutes the essential boundary conditions of the problem.

• N, Nw,x + M,x, M are the secondary variables, and their
specification constitutes the natural boundary conditions of
the problem.

Among the values comprising the pairs (u,N), (w,Nw,x +M,x),

(w,x,M) only one can be prescribed.
Moreover, the boundary conditions of the problem can be

written as (Katsikadelis and Tsiatas, 2003)

a1u (0) + a2N (0) = a3, (26)

a1u
(

l
)

+ a2N
(

l
)

= a3, (27)

β1w (0) + β2 (Nw,x +M,x) (0) = β3, (28)

β1w
(

l
)

+ β2 (Nw,x +M,x)
(

l
)

= β3, (29)
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γ1w,x (0) + γ2M (0) = γ3, (30)

γ1w,x
(

l
)

+ γ2M
(

l
)

= γ3, (31)

where ακ , ᾱκ , βκ , βκ , γκ , γ κ (κ = 1, 2, 3) are known constants.
In Equations (26)–(31) the most general boundary conditions of
the problem are described. It is worth noting that they include the
case of elastic support of the beam, as well.

Equations (20), (21) in terms of stress resultants or (24),
(25) in terms of displacements, along with Equations (26)–
(31) constitute the boundary value problem that describes the
nonlinear bending of the beam. Analytical solution of the
problem is somewhat cumbersome, so a numerical scheme has
to be introduced.

NUMERICAL FORMULATION

The AEM Solution
A direct solution to the boundary value problem described by
the coupled Equations (24) and (25) together with the boundary
conditions (26)–(31) is achieved on the basis of the AEM
formulation for the large deflection analysis of beams of variable
stiffness as developed in Katsikadelis and Tsiatas (2003). Briefly
discussed, let u = u (x) and w = w (x) be the sought solutions
of the problem, having continuous derivatives up to the 2nd and
4th order respectively in (0, L). According to the analog equation
principle, the two coupled nonlinear equations can be substituted
by the following analog equations

u,xx = b1 (x) , (32)

w,xxxx = b2 (x) , (33)

applying the linear differential operators of the second and
fourth order respectively to u = u (x) and w = w (x). Both
operators have known fundamental solutions. It is noteworthy
that Equations (32) and (33) are attributed independently to the
linear response of a beam of constant unit stiffness under the
fictitious loads b1 and b2 for the axial and bending problem
respectively. According to the AEM, the solution of the system of
Equations (24) and (25) can be achieved by solving the uncoupled
system of Equations (32) and (33) under the same boundary
conditions (26)–(31), after the determination of the fictitious load
distributions b1, b2. Accordingly, a procedure can be developed
by the integral equation method. In this sense, the integral
representations of the solutions of Equations (32) and (33) take
the following form

u (x) = c1x+ c2 +

lw

0

G1 (x, ξ) b1 (ξ) dξ , (34)

w (x) = c3x
3 + c4x

2 + c5x+ c6 +

lw

0

G2 (x, ξ) b2 (ξ) dξ , (35)

where ci (i = 1, 2, . . . 6) are arbitrary integration constants that
will be determined from the boundary conditions and

G1 = 1
2 |x− ξ | , (36)

G2 = 1
12 |x− ξ | (x− ξ)

2, (37)

are the fundamental solutions (free space Green’s functions) of
Equations (32) and (33), respectively.

By direct differentiation of Equations (34) and (35) the
derivatives of u and w can be obtained as

u,x (x) = c1 +

lw

0

G1,x (x, ξ) b1 (ξ) dξ , (38)

u,xx (x) = b1 (x) , (39)

w,x (x) = 3c3x
2 + 2c4x+ c5 +

lw

0

G2,x (x, ξ) b2 (ξ) dξ , (40)

w,xx (x) = 6c3x+ 2c4 +

lw

0

G2,xx (x, ξ) b2 (ξ) dξ , (41)

w,xxx (x) = 6c3 +

lw

0

G2,xxx (x, ξ) b2 (ξ) dξ , (42)

w,xxxx (x) = b2 (x) . (43)

Substituting Equations (38)–(43) into Equations (24) and (25)
they can be written in terms of the unknown fictitious sources
b1and b2.

The next step of the AEM requires the discretization of
the domain (0, L) into N elements, not necessarily equal. On
each element the variation of each fictitious load b1 and b2 is
approximated by a predefined law (constant, linear, parabolic,
etc.). In what follows, the elements are considered equal and the
constant law is adopted (constant elements).

Subsequently, the integral representation of Equations (34)
and (35) can be written in matrix form as

u(x) = H1(x)c1 + G1(x)b1, (44)

w(x) = H2(x)c2 + G2(x)b2, (45)

where G1(x) and G2(x) are 1 × N known matrices obtained
by integrating the kernels G1(x, ξ ) and G2(x, ξ ) on the constant
elements, respectively; H1(x) =

[

x 1
]

and H2(x) =
[

x3 x2 x 1
]

;

c1 = {c1, c2}
T ; c2 = {c3, c4, c5, c6}

T ; b1, b2 are vectors containing
unknown fictitious loadings at the N nodes. Likewise, Equations
(38)–(43) can be written as

u,x(x) = H1x(x)c1 + G1x(x)b1, (46)

u,xx(x) = b1, (47)

w,x(x) = H2x(x)c2 + G2x(x)b2, (48)

w,xx(x) = H2xx(x)c2 + G2xx(x)b2, (49)

w,xxx(x) = H2xxx(x)c2 + G2xxx(x)b2, (50)

w,xxxx (x) = b2, (51)

where G1x(x), G2xx(x),. . . G2xxx(x) are 1 × N known matrices,
stemming from the integration of the derivatives of the kernels
G1(x, ξ ),G2(x, ξ ) on the elements;H1x(x) is a 1×2 knownmatrix
resulting from the differentiation of H1(x), whereas H2x(x),
H2xx(x), H2xxx(x) are 1 × 4 known matrices resulting from the
differentiation ofH2(x).

Frontiers in Built Environment | www.frontiersin.org 5 October 2018 | Volume 4 | Article 5254

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Tsiatas et al. A Layered BEM Nonlinear Analysis

The final step of the AEM is the collocation of the Equations
(24) and (25) at the N internal nodal points and the substitution
of the displacements and their derivatives according to the
Equations (44)–(51)

F1 (b1, b2, c) = −px, (52)

F2 (b1, b2, c) = −pz , (53)

where Fi(b1, b2, c) are generalized stiffness vectors, and c =

{c1, c2, . . . c6}
T . Equations (52) and (53) constitute a system of

2N nonlinear algebraic equations of 2N + 6 unknowns. The
additional six equations required to solve the system can be
derived from the exploitation of the boundary conditions of the
problem. To this end, the related derivatives are substituted into
Equations (26)–(31) to give

fi (b1, b2, c) = 0 (i = 1, 2, . . . 6). (54)

The nonlinear Equations (52)–(53) in combination with the
Equations (54) constitute a system of 2N + 6 algebraic equations
with respect to the unknown vectors b1, b2 and c. The solution of
the system by any numerical technique provides the values of the
fictitious loads at the internal nodal points.

However, when the stress resultants and their derivatives
cannot be evaluated analytically, the following layered analysis
should be employed.

The Layered Analysis
As a first step to the layered analysis, an appropriate number of
monitoring cross-sections is defined along the length of the beam.
For convenience purposes, the position of each cross-section
coincides with the nodal points of the longitudinal discretization
and the two points that correspond to the ends of the beam.
Consequently, each cross-section is decomposed into a number
of layers of constant height. At the center of each layer, the strain
is expressed in terms of the nodal displacement components.
Next, given the strain expressions, stresses are computed
and employing an appropriate integration scheme, stress
resultants are evaluated. The discretization scheme is depicted in
Figure 2.

An odd number of layers k is selected so as the center of the
beam’s cross-section is located at the middle of the

(

k+ 1
)

/2
layer. The constant height of the layers is 1h. The z coordinate
of the center of the i-th layer is written as

zi =

(

k+ 1

2
− i

)

1h. (55)

The axial forceNi and the bending momentMi for each layer can
be computed as

Ni = Sixx1Ai, (56)

Mi = Sixxzi1Ai, (57)

where Sixx, 1Ai are the stress component at the center of each
layer and the area of each layer respectively. Therefore, the stress

FIGURE 2 | Discretization of the beam into monitoring cross-sections and

cross-section layers.

resultants can be approximated as

N =

k
∑

i= 0

Sixx1A, (58)

M =

k
∑

i= 0

Sixxzi1Ai. (59)

After evaluating the axial force and the bending moment at
each nodal point, their derivatives must be computed to check
if the equations of equilibrium hold. To this end, the procedure
thoroughly described in Tsiatas and Charalampakis (2017) is
adopted.

Having established the numerical expressions of the stress
resultants and their derivatives in terms of the unknown fictitious
loads, the nonlinear Equations (52)–(54) are solved iteratively.
The first iteration starts with an initial guess for the unknown
fictitious loads. Next, the displacements and their derivatives are
evaluated at all the definedmonitoring cross-sections of the beam
using the respective integral representations. Subsequently, the
stress resultants are computed at each layer using Equations (56),
(57) and the whole cross-section by applying Equations (58),
(59). Lastly, the governing Equations (20) and (21) are checked
for equilibrium. In case the equilibrium is satisfied, the process
is terminated. Otherwise, the fictitious load distributions are
updated, and the procedure continues with further iterations.

NUMERICAL EXAMPLES

Based on the presented numerical procedure, a computer
program has been developed, and representative examples have
been studied to demonstrate the accuracy and the efficiency of
the proposed method of nonlinear analysis.
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FIGURE 3 | Fixed beam in Example 1.

Example 1: Beam With Fixed Ends Under
Concentrated Loading
The first example deals with the geometrical nonlinear static
analysis of a fully fixed beam under concentrated loading applied
at the midspan. The cross-section of the beam is rectangular b×h
and its length is L. The geometrical characteristics of the beam
and the cross-section are shown in Figure 3. The beam is made
of a linearly elastic material. The employed data for the elastic
properties of the material and the geometry of the beam are:
E = 2.07 × 108kN/m2, b = 0.0254m, h = 0.003175m, and
L = 0.508m.

The present example has been also examined in the studies of
Katsikadelis and Tsiatas (2003) and Mondkar and Powell (1977).
It is noted that in the study of Katsikadelis and Tsiatas (2003) a
BEM scheme for the longitudinal problem is also established, but
an analytical procedure to obtain the stress resultants is adopted.
Furthermore, Mondkar and Powell (1977) modeled the half of
the beam using five eight-node plane stress elements and applied
a 2×2 Gauss quadrature. Results from both these works are used
herein for comparison purposes.

Figures 4A,B show the profiles for the vertical and horizontal
displacements respectively, corresponding to load value
Pz = 3.11kN. The results of the proposed method are
compared with those presented by Katsikadelis and Tsiatas
(2003); it can be seen that they are in excellent agreement.
In Figure 5, the variation of vertical displacements w at the
middle of the beam with respect to the force Pz is presented
for the layered approach as well as for both the references
above; the identification of the results is noteworthy. In
Table 1, deflections at the middle of the beam length are
presented for several numbers of longitudinal elements and
layers; it can be observed that satisfactory convergence can be
achieved for a small number of layers. Finally, Figures 6A–C
depict the bending, axial, and shear stress resultants
respectively.

FIGURE 4 | Profiles of the (A) deflection and (B) axial displacement in

Example 1.

TABLE 1 | Deflection at the midspan in Example 1.

Number

of Fibers

k

Number of beam elements N

31 41 51 61 71

Deflection at the midspan

5 −0.012828 −0.012945 −0.013008 −0.013047 −0.013073

7 −0.012817 −0.012933 −0.012996 −0.013035 −0.013060

9 −0.012813 −0.012928 −0.012991 −0.013029 −0.013055

11 −0.012810 −0.012926 −0.012989 −0.013027 −0.013052

13 −0.012809 −0.012925 −0.012987 −0.013025 −0.013050

15 −0.012808 −0.012924 −0.012986 −0.013024 −0.013049

17 −0.012808 −0.012923 −0.012986 −0.013024 −0.013049

19 −0.012808 −0.012923 −0.012985 −0.013023 −0.013048

21 −0.012807 −0.012922 −0.012985 −0.013023 −0.013048

23 −0.012807 −0.012922 −0.012985 −0.013023 −0.013048

25 −0.012807 −0.012922 −0.012985 −0.013023 −0.013048

Example 2: Simply Supported Beam Made
of Nonlinear Material
For comparison reasons, in the second example an initially
straight beam made of a nonlinear elastic material is examined.
The cross-section of the beam is rectangular b× h and its length
is L. It is pinned at its both ends and is subjected to a uniformly
distributed vertical load pz . The employed geometrical data, as
shown in Figure 7, is: b = 0.10m, h = 0.50m, L = 2.0m. The
constitutive law of the nonlinear elastic material is given by the
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FIGURE 5 | Deflection versus Load at the center of the beam in Example 1.

FIGURE 6 | Profile of the (A) bending moment, (B) axial force, and (C) shear

force in Example 1.

FIGURE 7 | Simply supported beam in Example 2.

relation

σ = σ0
ε

√

ε2 + ε
2
0

, (60)

where σ0 = 410000 kPa, ε0 = 0.017143512. The stress-strain
curve is depicted in Figure 8. In this example, the geometrical
nonlinear effect is not considered.

In the context of the presented layered methodology, static
geometrical linear-material nonlinear analyses are performed for
several loading values. The beam length is discretized into 51
elements, and the cross-section is decomposed into 21 layers.
The obtained results are compared with corresponding results
obtained from two FEM models: (i) a FEM model with 51
beam elements, and (ii) a solid FEM model comprising 12500
hexahedral 8-node elements.
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FIGURE 8 | Stress-strain curve for the nonlinear material in Example 2.

FIGURE 9 | Deflection at the middle of the beam vs. load in Example 2.

FIGURE 10 | Profile of deflections for pz = 4541.42kN/m in Example 2.
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Figure 9 presents the vertical deflections at the middle of
the beam versus the vertical load pz . It can be readily observed
that the layered model satisfactorily converges to the solid
FEM solution, while the beam FEM solution exhibits significant
discrepancies for a relatively low value of loading. In Figure 10

the deflection profile for pz = 4541.42kN/m is shown. It is
remarkable that the layered analysis yields deflections along the
beam that are in excellent agreement with the ones obtained from
the solid model.

Example 3: Shape Memory Alloy Beam
Under Concentrated Loading
In order to demonstrate the range of applications of the proposed
methodology of analysis, in this final example, an initially straight
clamped beam made of a superelastic Shape Memory Alloy
(SMA) is considered. One of the most important mechanical

FIGURE 11 | Fixed beam in Example 3.

property of SMAs is that they can undergo large inelastic
strains recoverable upon load removal (Superelasticity). The
SMA’s stress-strain relation adopted herein was obtained by
interpolating the experimental curve presented in Charalampakis
and Tsiatas (2018).

The beam under consideration has a uniform rectangular
cross-section b×h, and length L, as shown in Figure 11. It is fixed
at its both ends and is subjected to a concentrated vertical load Pz
at the middle of its length. The geometrical data is: b = 0.50m,
h = 0.80m, and L = 1.0m. The beam is divided into 51 elements
along its length, and the cross-section is discretized into 21 layers.

In this example two cases of analysis are performed, for several
loading values: (i) geometrical linear analysis, and (ii) geometrical
nonlinear analysis. It is noted that material nonlinearity is
taken into account in both cases, and the stress-strain relation
is depicted in Figure 12. In Figure 13, the deflections at the
midspan vs. the loading variation are presented for both cases of
analysis. The effect of geometrical nonlinearity in the decrease
of the central deflection for a specific loading range is verified.
This effect can also be verified in the comparison of the stress
resultants. More specifically, Figure 14A shows the bending
moment profiles (Pz = 400kN) where it can be readily observed
the decrease of the bending moment, in case of the geometrical
nonlinear case, due to the contribution of the axial forces to the
loading carriage. Finally, Figure 14B shows the axial force profile
(Pz = 400kN) only for the geometrical nonlinear case since in
the geometrical linear analysis the axial force is zero.

CONCLUSIONS–FUTURE RESEARCH

In this work, a layered approach to the nonlinear analysis of
beams has been presented. The beam is studied considering both
geometrical andmaterial nonlinearity. The governing differential
equations were obtained with a variational approach and their
systemwas solved using the AEM in conjunction with an iterative
numerical process. To this end, a discretization scheme was

FIGURE 12 | Stress-strain curve for the nonlinear SMA material in Example 3.
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FIGURE 13 | Deflection at the middle of the beam vs. load in Example 3.

FIGURE 14 | Profile of the (A) bending moment, and (B) axial force, for

Pz = 400kN in Example 3.

established in both the longitudinal sense and the cross-sectional
plane. According to the presented analysis and the numerical
results, the following main conclusions can be drawn:

a) The layered method has proven to be very competent and
together with the AEM can be employed in the solution of
difficult nonlinear coupled problems.

b) The method can treat both geometrical and material
nonlinearity in a more general context, as compared to
existing direct solution methods which are confined only to
handling geometrical nonlinearity.

c) The numerical solution is efficient and stable, while a small
number of line elements and layers are adequate to achieve
significant accuracy for the displacements and the stress
resultants.

d) In comparison with the FEM beam model, the layered
approach model is capable of giving results that
better converge to the ones obtained by a FEM solid
model.

e) The proposed layered approach can be easily extended to solve
problems of curved beams, as well as beams with arbitrary
cross-sections.

f) Furthermore, the limitation of the number of monitoring
cross-sections only in locations of high-stress concentration
(e.g., beam supports) can be considered as a future application
of the layered approach.
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An integrated reverse engineering methodology is proposed for a large-scale fully

operational steam turbine rotor, considering issues that include developing the CAD and

FE model of the structure, as well as the applicability of model updating techniques

based on experimental modal analysis procedures. First, using an integrated reverse

engineering strategy, the digital shape of the three sections of a steam turbine rotor

was designed and the final parametric CAD model was developed. The finite element

model of the turbine was developed using tetrahedral solid elements resulting in fifty-five

million DOFs. Imposing impulsive loading in a free-free state, measured acceleration

time histories were used to obtain the dynamic responses and identify the modal

characteristics of each section of the complete steam turbine. Experimentally identified

modal modes and modal frequencies compared to the FE model predicted ones

constitute the actual measure of fit. CMA-ES optimization algorithm is then implemented

in order to finely tune material parameters, such as modulus of elasticity and density,

in order to best match experimental and numerical data. Comparing numerical and

experimental results verified the reliability and accuracy of the applied methodology.

The identified finite element model is representative of the initial structural condition

of the turbine and is used to develop a simplified finite element model, which then

used for the turbine rotordynamic analysis. Accumulated knowledge of the dynamic

behavior of the specific steam turbine system, could be implemented in order to evaluate

stability or instability states, fatigue growth in the turbine blades, changes in the damping

of the bearing system and perform necessary scheduled optimal and cost-effective

maintenance strategies. Additionally, upon a series of scheduled experimental data

collection, a permanent output-only vibration SHM system could be installed and even a

proper dynamic balancing could be investigated and designed.

Keywords: integrated reverse engineering, system identification, large scale models, FE model updating,

rotordynamic analysis
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INTRODUCTION

The largest proportion of electricity worldwide is produced
using some kind of turbine (Steam, Hydro, Nuclear, etc.) As
large density of energy flows through the turbines, the rotation
speeds are extremely high, large inertia loads are developed, shaft
and blade deform extensively, blades corrode and high levels
of vibration occur, all leading to strong dynamic instabilities
(Bavastri et al., 2008). Instability problems of turbines, especially
when rotating at high speeds, can result in partial failures or
system shutdown. Taking into account the size of these structures,
it is necessary to avoid interruptions due to system failure,
but most importantly, accidents that, in addition to financial
damage, can cause serious injuries or even fatalities. This implies
that detailed study and development of each turbine in various
operating scenarios combined to proper maintenance, even
outside the limits of normal use, are necessary.

Moreover, in the fast paces of today’s most developed
societies, industries are constantly trying to cope with rapid
technological developments, increasing technology penetration
in our everyday life, and enormous competition soaring as a
result of globalization. Thus, it is imperative to minimize the
time and cost, from design to production and maintenance, for
a product to be developed and function as intended. So either
for competition reasons, safety or reliability enhancements in
addition to lack of information about a product, a widespread
methodology is used, i.e., reverse engineering (Abella et al., 1994;
Várudy et al., 1997; Wang et al., 2012; Ouamer-Ali et al., 2014;
Dagli and Idowu, 2015). Reverse engineering is this process in
which we extract knowledge, design information about the parts
that make up a machine and the way they function. Issues that
include developing the CAD and FE model of the examined
structure, as well as experimental modal analysis procedures
and the application of robust and effective computational finite
element model updating techniques are taken into account.

The main objective of the present work is to demonstrate the

advantages of a reverse engineering strategy applying a developed

model updating computational framework (Giagopoulos and
Arailopoulos, 2017) to handle large-scale linear and nonlinear
models. The applicability of the framework is examined by
calibrating the structural parameters of a high-fidelity FE model
of a steam turbine rotor with several millions degrees of freedom,
using experimentally identified modal parameters. Modal
identification techniques (Eykhoff, 1974; Beck and Katafygiotis,
1998; Beck, 2011) are used to extract natural frequencies
and modal damping ratios from acceleration measurements.
Measured and predicted modal parameters are used to quantify
the discrepancy between numerical and experimental models,
defining both modal and response residuals (Giagopoulos and
Arailopoulos, 2015a,b, 2016; Arailopoulos and Giagopoulos,
2016), in a single-objective optimization problem. Next, a free
distribution of the non-gradient, non-intrusive optimization
algorithm, Covariance Matrix Adaptation—Evolution Strategy
(CMA-ES) (Hansen et al., 2003; Hansen, 2006, 2011), within
54U framework (Hadjidoukas et al., 2015), coupled to robust
and accurate FE Analysis software (DTECH, 2013) are applied
in parallel computing, based on a parallel computing library,

i.e., TORC (Hadjidoukas et al., 2012). Structural material model
parameters, such as modulus of elasticity and density are tuned,
in order to best match experimental and analytical data.

Moreover, in this work a simplified numerical model based
on the updated full large-scale FE model of the steam turbine
is introduced, in order to get deep insight of the rotordynamic
behavior and gyroscopic phenomena of the examined rotor.
The main purpose is to examine the axial, lateral, and torsional
dynamic characteristics, so as to evaluate shaft’s vibration levels
and acquire experience of the acceptable vibration limits and
the limits at which maintenance is needed. System stability
and critical speeds are also being determined by plotting the
Campbell diagram (Campbell, 1924; Meher-Homji and Prisell,
2005) of turbine’s response spectrum as a function of spin speed.
Its tolerance to normal or even abnormal vibration levels on
critical speeds, define the adequacy of the turbine’s performance.
Hence, as damping bearing properties influence significantly
the turbine’s levels of vibration, an optimum design could be
adopted by minimizing the imbalances in operational rotation
speeds. Accumulated knowledge of the dynamic behavior of
the steam turbine system, could be later implemented in order
to evaluate stability or instability states, fatigue growth in the
turbine blades, changes in the damping of the bearing system
and perform necessary scheduled optimal and cost-effective
maintenance strategies (Bavastri et al., 2008; Booysen et al.,
2015; Plesiutschnig et al., 2016). Additionally, upon a series of
scheduled experimental data collection, a permanent output-only
vibration Structural Health Monitoring system could be installed
and even a proper dynamic balancing could be investigated and
designed.

The work deals with the study of a steam turbine rotor
operating in the IV unit of a Greek Public Power Corporation
(PPC) power plant. The steam turbine is a Leningradsky
Metallichesky Zavod© (LMZ) K-300-170-1 steam turbine system
of maximum nominal output power of 310 MW. The examined
turbine shaft consists mainly of three rotors, high, intermediate,
and low pressure, starting from left to right as shown in Figure 1.
Between the intermediate and low pressure turbines there is a
cylindrical part used to join the two sections together. The length
of the high, intermediate, and low pressure turbines is 5.7, 6.9,
and 5.9m, consisting of 10, 17, and 10 stages (discs) that host
954, 1,948 and 1,224 blades, respectively. The total length of the
turbine is 18.5m, but in the assembly of the whole turbine system
additional components may apply, in order to secure connection
to the generator. So at 310 MW power output there are 37 stages
with a total number of 4,126 blades. The stages of the right half
of the low pressure turbine, consist of the same last five stages
of the intermediate pressure turbine. On the other hand, the left
half is consisted of the same stages, in a mirrored arrangement
so that the induced momentum is the same as the momentum
of the rest of the turbine. So for convenience, the blades of the
low pressure will be referred to by names already given in the
intermediate pressure shaft.

The organization of this work is set as follows. The theoretical
formulation of the actual measure of fit of the updating
methodology based on modal modes, modal frequencies and
frequency response functions is briefly presented in section
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FIGURE 1 | High, intermediate and low pressure turbines with numbered stages.

Formulation of Objective Function. Section Linear FE Model
Updating Framework presents the implemented FE model
updating methodology. Section Reverse Engineering Strategy
presents the 3D digitization of the blades and the 2D designing of
the three shafts of the individual sections of the complete turbine,
as well as their combination leading to the final parametric
CAD model. Next, the experimental modal identification
procedure is described, in order to identify modal modes and
frequencies of the actual structures of the intermediate pressure
sections. The updating results of the parameterized intermediate
pressure turbine is presented in section Finite Element Model
Updating. Section Rotordynamic Analysis of the Simplified
Equivalent Model of the Complete Steam Turbine presents a
brief formulation and a rotordynamic analysis of the introduced
simplified FE model based on Timoshenko beam and disk
elements. Finally, some conclusions about the applicability and
future work are summarized in section Conclusions.

FORMULATION OF OBJECTIVE FUNCTION

Modal Measure of Fit
We consider the data D = {λ̂r , ϕ̂r ∈ RNo,r , r = 1, · · · ,m}

to be the squared of the measured modal frequencies, λ̂r = ω̂
2
r

and the respective mode shapes ϕ̂r of the examined turbines,
whereNo,r is the number of measured components for each r and
m is the number of identified modes. Consider a parameterized
linear FE model of the structures and let θ ∈ RNθ be a vector
of free material model parameters to be tuned. The objective
is to estimate the values of the parameter set θ so that the
predicted modal frequencies and mode shapes {λr(θ),ϕr(θ) ∈

RN0,r , r = 1, · · · ,m} at the corresponding N0,r DOFs, diminishes
discrepancies between modal frequencies identified in D. Thus,
the modal frequency and mode shape residualsh are formulated

as Mottershead et al. (2011); Giagopoulos and Arailopoulos
(2015a,b, 2016), and Arailopoulos and Giagopoulos (2016):

ε
2
λr
(θ) =

(

λr(θ)− λ̂r

)2

λ̂2r

and ε
2
φr
(θ) =

∥

∥

∥
βr(θ)φr(θ)− φ̂r

∥

∥

∥

2

∥

∥

∥
φ̂r

∥

∥

∥

2
(1)

where ||Z||2 = ZTZ is the usual Euclidean norm, and βr(θ) =

φ̂r
T
φr (θ)/

∥

∥

∥
φr (θ)

∥

∥

∥

2
is a normalization constant that guaranties

that the measuredmode shape φ̂r at the measured DOFs is closest
to the model mode shape βr(θ)φr(θ) predicted by the particular
value of θ .

J1(θ) and J2(θ) are selected to represent the measure of fit
between the measured and the model predicted frequencies and
modes in the form:

J1(θ) =

m
∑

r= 1

ε
2
λr
(θ) and J2(θ) =

m
∑

r= 1

ε
2
φ
r
(θ) (2)

Frequency Response Measure of Fit
A global shape correlation coefficient between experimentally
identified and numerically predicted FRFs may be used (Grafe,
1995, 1999) for any measured frequency point λk as follows:

xs(λk) =

∣

∣

∣

{

HX(λk)
}H {

HA(λk)
}

∣

∣

∣

2

(

{

HX(λk)
}H {

HX(λk)
}

) (

{

HA(λk)
}H {

HA(λk)
}

) (3)

where
{

HX(λk)
}

is the experimentally identified FRFs whereas
as

{

HA(λk)
}

are the numerically computed FRFs at matching
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excitation locations and response directions. As the MAC value,
xs(λk) assumes a value between zero and unity and indicates
perfect correlation with xs(λk) = 1. For xs(λk) = 1, experimental
and numerical data perfectly correlate contrary to the value of
zero pertaining to no correlation at all. If only one measurement
is utilized,

{

HX(λk)
}

and
{

HA(λk)
}

are reduced from column
vectors to scalar and xs = 1 across the full frequency spectrum
for uncorrelated FRFs.

Thus, a supplementary amplitude correlation coefficient
xa(λk), for any measured frequency point λk is implemented
quantifying the discrepancies in amplitude defined as:

xa(λk) =
2
∣

∣

∣

{

HX(λk)
}H {

HA(λk)
}

∣

∣

∣

(

{

HX(λk)
}H {

HX(λk)
}

)

+

(

{

HA(λk)
}H {

HA(λk)
}

)

(4)

defined to lie between zero and unity only if
{

HA(λk)
}

=
{

HX(λk)
}

.
J3(θ) and J4(θ) are selected to represent the measure of fit

corresponding to the identified and predicted FRFs of the system:

J3(θ) =

m
∑

r= 1

[

1− xs(λ̂r , θ)
2
]

and J4(θ) =

m
∑

r= 1

[

1− xa(λ̂r , θ)
2
]

(5)

Objective Function
The overall measure of fit is formulated by a single objective
function as follows:

J(θ;w) = w1J1(θ)+ w2J2(θ)+ w3J3(θ)+ w4J4(θ) (6)

using the weighting factors wi ≥ 0, i = 1,2,3,4, with w1 + w2 +

w3 + w4 = 1. The choice of weights scales each measure of fit
according to the confidence in the experimental and FE predicted

FIGURE 2 | (A) High pressure turbine. (B) Intermediate pressure turbine. (C) Low pressure turbine.

FIGURE 3 | Digitization and final 3D CAD model of a single blade at stage IP 15 of the intermediate pressure turbine.
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data, highly affecting the global minimum and the optimized
solutions for the parameter set θ for given w are denoted by θ̂(w)
(Christodoulou et al., 2008; Ntotsios and Papadimitriou, 2008;
Papadimitriou et al., 2012; Giagopoulos et al., 2013).

LINEAR FE MODEL UPDATING
FRAMEWORK

As the objective function J
(

θ
)

is not an analytical expression,
a stochastic black box search algorithm, namely the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen et al.,
2003; Hansen, 2006, 2011) is implemented in this work as

has been previously successfully applied for tuning linear and
nonlinear FE models (Giagopoulos and Arailopoulos, 2017). The
aim is to iteratively find the candidate solutions of the parameter
set θ ∈ ℜn that produce the minimum J

(

θ
)

, where the function
values are sampled from a multivariate normal distribution in
each iteration (Hansen, 2006, 2011).

CMA-ES avoids entrapment in local minima, reaching the
global optimum of the sampled objective function. The algorithm
is coupled to a commercial FE solver Dynamis (DTECH, 2013)
surpassing the need of model reduction or sub-structuring
techniques and taking advantage of the raw experimental
measurements for increased accuracy. Thus, having the ability to
compare modal modes and frequency response functions node

FIGURE 4 | (A) Rotor shaft and complete 3D CAD assembly of the high pressure turbine. (B) Rotor shaft and complete 3D CAD assembly of the intermediate

pressure turbine. (C) Rotor shaft and complete 3D CAD assembly of the low pressure turbine. (D) Final 3D CAD of the complete steam turbine.
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by node and modal frequencies in a large frequency range overall
fidelity of the updated FE models to the real structures is highly
maintained. Moreover, due to the extremely large scale of the
developed FE models and the numerous iterations needed to
convergence a parallel computing scheme is applied in order to
compensate for the computation time. Details on the formulation
sequence of CMA-ES and the applied framework can be found in
Giagopoulos and Arailopoulos (2017).

The minimum offsprings become parents in the next set of
iterations and statistical values (mean and covariance matrix)
are updated in a sequence of iterations with improved fitness
values. The described framework runs in parallel in order to

sample the prescribed population at once, in order to produce
the total runs of each generation. Next, convergence criteria are
checked. Introduced criteria include a given threshold of the
objective function J(θ) = 0, being practically inapplicable and the
difference of the best values of two consecutive sets of iterations
1J(θ) = 10−3.

REVERSE ENGINEERING STRATEGY

An integrated reverse engineering methodology is presented
in total in this section on the steam turbine system currently

FIGURE 5 | (A) Detailed FE models of the high, intermediate, and low pressure turbines. (B) Detailed FE models of the complete steam turbine.
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operating at a thermal power plant of the Greek Public Power
Corporation. The methodology combines modern techniques
for geometry representation and development of the CAD
and FE models, contemporary methods of modal identification
and estimation of the dynamic characteristics of the physical
structure from acceleration measurements and state-of-the-
art model updating techniques, in order to produce a high
fidelity FE model adequately simulating the steam turbine
system.

The high, intermediate, and low pressure turbines are
presented in Figures 2A–C respectively, under regular
maintenance. The structure is made of steel with Young’s
modulus E = 210GPa, Poisson’s ratio v = 0.3 and density
ρ = 7850kg/m3 (Giagopoulos et al., 2017).

Digitization and CAD Model of the Steam
Turbine
At first, using two types of 3D scanner devices, i.e., a structured
light and a laser scanner, the digital shape of each blade
was reconstructed. The collection of the raw data and the
consecutive processing to the development of the final CAD
model are completed in four basic steps as demonstrated in
Figure 3. First, the geometry of each blade was captured, so as to
collect a raw stereo-lithography (STL) file. Due to various flaws
and imperfections of the initial design such as holes, humps,
coarse and non-continuous surfaces, the second step was to use
compatible software in order to design the final STL file of the
captured geometry, before designing the CAD model (Béchet
et al., 2002; Bianconi, 2002; Rypl and Bittnar, 2006). The next step

FIGURE 6 | Indicative eigenmodes of the high, intermediate and low pressure sections and the complete steam turbine predicted by the nominal FEM.
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FIGURE 7 | Experimental set-up of the intermediate pressure turbine.

FIGURE 8 | Typical elements of the experimental FRF matrix for the intermediate pressure rotor.

was the preparation of the consecutive foil sections that represent
each blade. After aligning the scanned geometry, automated
curves were created by section along the length of the main body
of the blade at varying increments, depending on its length and
complexity as well as on designing needs. These curves were
parallel to each other as well as to base of the blades. Last, step
was to select the most representable curves of each blade and use
them to reconstruct the CAD models.

On top of designing the main body of the blades,
bases, and heads were designed from scratch under
meticulous measurements. Four blades were cover by
heads that were designed separately and placed on top of
the main body using vertical curves, in order to succeed
the finest positioning. Additionally, all bases of the blades
were designed separately taking into consideration their
slight curvature, in order to tangently fit around the
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FIGURE 9 | Comparison of FRFs and time histories of accelerations corresponding to frequency response functions |H3Y16 | and |H7Y16 | of accelerometers A3 and

A7 at local direction Y.

TABLE 1 | Identified and nominal FEM predicted modal frequencies and modal damping ratios of the intermediate pressure turbine.

Mode Identified modal

frequency

Nominal FE predicted modal

frequency

Difference between identified and

FE Predicted modal frequencies

Identified modal

damping ratio

– ωrE [Hz] ωrNFE
[Hz]

ωrNFE
−ωrE

ωrNFE
100% ζrE

(

%
)

1 58.70 63.04 6.88% 0.21

2 101.30 89.52 13.16% 0.19

3 110.60 127.22 13.06% 0.12

4 126.10 131.62 4.19% 0.08

5 134.80 134.85 0.04% 0.13

6 135.01 135.92 0.67% 0.13

7 142.32 144.24 1.33% 0.12

8 147.40 148.64 0.83% 0.16

9 156.77 154.22 1.65% 0.16

10 161.30 160.04 0.79% 0.35

rotor shaft. Finally, the top of each base was designed
flat in order to fit perfectly with the main body of the
blade.

In order to design the rotor shafts of the steam turbine, the
technical drawings were used. The blueprints were hardcopies of
the high, intermediate, and low pressure turbines in manageable
scale used in order to produce the 2D axisymmetric design of the
shafts.

Combining the complete CAD models of the blades
with the three rotor shafts, the final CAD model of
the complete steam turbine was created. The following
Figures 4A–C present the rotor shafts and the complete
3D CAD models of the high, intermediate and low
pressure turbines respectively. Furthermore, the final 3D
CAD model of the complete steam turbine is presented in
Figure 4D.

FE Models of Steam Turbine Rotor
The geometry of the turbine sections is discretized by solid
elements (tetrahedral). Due to the complex geometry of the

structure, the total number of degrees of freedom of the
high, intermediate, and low pressure sections were about
10,000,000, 20,000,000, and 19,500,000 respectively, whereas the
resulting complete rotor model was about 55,000,000 degrees of
freedom, including the connection parts between the sections.
The detailed FE models of the high, intermediate and low
pressure turbines are presented in Figure 5A respectively and
Figure 5B depicts the final finite element model of the complete
steam turbine. FE pre-processor software and FE analysis
software were used in order to develop and analyze the FE
model (DTECH, 2013; BETA CAE Systems, 2018). Indicative
mode shapes of the three sections in a free-free state and
the complete model with typical supports are presented in
Figure 6.

Experimental Modal Analysis
In this section the dynamic characteristics of the complete steam
turbine are identified in order to compute the measure of fit
between numerical FE model and actual structure. In order
to quantify the dynamic characteristics of the complete steam
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FIGURE 10 | Parts of the parameterized FE models of the intermediate

pressure turbines.

TABLE 2 | Optimized parameter values of material properties for rotor shaft and

indicative blades of the intermediate pressure turbine.

Number of

parameter

Part Optimized

value

Lower

bound

Upper

bound

1 P1 E1 · 102 [GPa] 2.181

2 ρ1 · 103
[

kg/m3
]

7.987

3 P3 E2 · 102 [GPa] 1.932

4 ρ2 · 103
[

kg/m3
]

7.400

5 P9 E3 · 102 [GPa] 1.922

6 ρ3 · 103
[

kg/m3
]

8.156

7 P27 E4 · 102 [GPa] 2.123

8 ρ4 · 103
[

kg/m3
]

7.988 1.89 for Ei 2.31 for Ei

9 P30 E5 · 102 [GPa] 2.030 7.065 for ρi 8.635 for ρi

10 ρ5 · 103
[

kg/m3
]

8.145

11 P33 E6 · 102 [GPa] 2.001

12 ρ6 · 103
[

kg/m3
]

7.887

13 P35 E7 · 102 [GPa] 2.225

14 ρ7 · 103
[

kg/m3
]

7.899

15 P43 E8 · 102 [GPa] 2.145

16 ρ8 · 103
[

kg/m3
]

8.456

turbine, an experimental modal analysis of the three turbine
sections was performed. Due to large size of the results, it is
selected to present the results only for the intermediate pressure
rotor.

An industrial size crane was used to mount each turbine
separately, simulating a support-free state for the experimental
procedure. Impulsive loading was imposed at various locations
and directions on the structure in order to estimate the elements
of the FRF matrix—Equation (7) (Ewins, 1984; Mohanty and
Rixen, 2005; Giagopoulos and Natsiavas, 2007, 2015; Spottswood

and Allemang, 2007).
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The frequency range of 0–2048Hz was obtained during
measurements, including the numerical frequency range of
interest, i.e., 0–200Hz including the first ten modal frequencies.
A schematic illustration of the measurement geometry for the
modal analysis of the intermediate pressure rotor, with the
real experimental set up of this test is presented in Figure 7.
For instance, Figure 8 presents the magnitude of representative
elements of the FRF matrix.

The Rational Fraction Polynomial Method (RFPM)
(Richardson and Formenti, 1985; Friswell and Penny, 1990;
Ntotsios and Papadimitriou, 2008) was used in order to estimate
the experimental natural frequencies and the damping ratios of
the intermediate pressure turbine, based on the measured FR
functions.

Indicatively, two typical elements of the experimentally
measured FRF matrix of the intermediate pressure turbines
are compared to the estimated RFPM contours as presented
in Figure 9. The same figure also presents the experimentally
measured and analytically estimated time histories. The FR
functions corresponding to accelerometers A3 and A7 of the
intermediate pressure section at Y local component are presented
in Figure 9. The red line corresponds to the experimentally
measured FRF and time history compared to the dashed blue
line corresponding to the estimated contour filtered with Welch’s
(1967) method. Additionally, all experimentally modal mode
shapes are identified, in order to be used in the formulation of
the measure of fit passed to the optimization algorithm.

Table 1 summarizes the experimental modal analysis results
for the intermediate pressure turbine. The values of the lowest
natural frequencies ωrE, are presented in the second column of
Table 1 whereas the fifth column list the corresponding damping
ratios. The values of the natural frequencies predicted from the
numerical model ωrNFE using nominal material parameters using
lumped mass matrix implemented in solver Dynamis (DTECH,
2013), are listed in the third column whereas a comparison
is presented in the fourth column. The underestimation of
the predicted natural frequencies of the nominal FE model, is
attributed to the way Dynamis handles mass matrix. In spite
of the fairly insignificant discrepancies between the nominal
FE model and the experimental data, a subsequent FE model
updating process is necessary to diminish these errors.

The accuracy of the experimental measurements highly
depends on the quality of the experimental devices and the
abilities of the users. Inaccurate measurement data could
be produce by a defective apparatus or user mishandling.
The reliability of the collected data during the experimental
procedures was checked, from the small variation of the data.
Such an examination is imperative as the experimental results
highly affect the accuracy of the overall technique.
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FIGURE 11 | Objective function values diagram of intermediate pressure turbine.

TABLE 3 | Identified and optimized FE predicted modal frequencies of the

intermediate pressure turbine.

Mode Identified

modal

frequency

Optimized FE

predicted modal

frequency

Difference between identified

and FE predicted modal

frequencies

– ωrE [Hz] ωrOFE
[Hz]

ωrOFE
−ωrE

ωrOFE
100%

1 58.70 59.45 1.26%

2 101.30 99.62 1.69%

3 110.60 112.22 1.44%

4 126.10 128.62 1.96%

5 134.80 134.85 0.04%

6 135.01 135.92 0.67%

7 142.32 144.24 1.33%

8 147.40 148.64 0.83%

9 156.77 154.22 1.65%

10 161.30 160.04 0.79%

FINITE ELEMENT MODEL UPDATING

Parameterization of FE Models
In this section, the parameterization of the finite element model
of the intermediate section is introduced in order to apply the
updating methodology. This model consists of about 23 million
degrees of freedom. The parameterized model consisting of 44
parts which is shown in Figure 10. At each of these parts are
used as design variables the Young’s modulus and the density.
Thus, the final number of the design parameters are eighty-
eight (88) variables. The first parts describe the rotor shafts
whereas each stage is modeled with two or three parts. Two
parts are used to model the blades and their circumferential
ring at small diameter stages, whereas three parts are used to
model eight large diameter stages of the intermediate pressure
assigning two parts for the blades and one for the circumferential
ring. Although both the rotor shaft and the turbine blades

have been built from a single material, steel, the mechanical
treatment that all parts undertake in order to take their final
form and shape as well as their assembly may change the
overall stiffness of the structure related to an FE model where
assumption are made beforehand. Specifically, molding of the
steel during industrial manufacturing of the turbine parts may
result in slight variation of the modulus of elasticity and density
of the actual used material. Additionally, remaining stresses may
develop that increase stiffness. Furthermore, the tight assembly
of the blades on the rotor shaft and between each other, result
in additional remaining stresses that could not be modeled in
the FEM and could only be handled by tuning the material
propertied. In this direction the parameter space for each design
variable, was selected in the range of ± 10% of the nominal
values, introducting the upper and lower constraints of material
properties, in order to maintain realistic values and keep their
physical meaning.

The finite element model is updated using the ten identified
modal frequencies and mode shapes shown in Table 1.
Components at all 17 sensor locations are used in identification
of the mode shapes of the structure. Moreover, the total weight
of the FE model is defined as a global behavioral design
constraint, apart from the box constraints of the design variables
in the optimization process. This global behavioral constraint
was implemented in order to reject and resample the material
parameters chosen from the design space of the boxed (lower
and upper bound) constraints, that produce a total weight of the
FE model that varies significantly from the actual weight of the
structure.

Model Update Results and Verification
The CMA-ES framework introduced in previous work
(Giagopoulos and Arailopoulos, 2017) is applied to update
the developed FE models. During FE model analyses, no model
reduction or sub-structuring methodologies were applied in
order to increase accuracy with regard to the real structures.
Furthermore, the large number of degrees of freedom of each FE
model in conjunction with the numerous amount of sampling
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FIGURE 12 | Schematic illustration of simplified FE model of the complete steam turbine.

TABLE 4 | Comparison between modal frequencies of the simplified FE model at

idle state and the full-scale FE model.

Mode Frequencies [Hz] Deviation

– Simplified FE model Full-scale FE model

1 1.49 1.21 23.1%

2 1.93 1.72 12.0%

3 6.64 6.44 3.10

4 16.05 16.02 0.2%

5 38.13 36.87 3.4%

6 60.49 58.08 4.1%

7 94.66 92.77 2.0%

needed by CMA-ES for convergence, required prohibitive time,
at high computational cost. Thus, a parallelized scheme of
the applied algorithm, coupling FE solver Dynamis (DTECH,
2013) to CMA-ES was implemented, as has been previously
demonstrated in Giagopoulos and Arailopoulos (2017), in order
to counterbalance computational cost effectiveness and render
possible and applicable such an optimization methodology at an
extremely large scale FE model. Indicatively, the optimization
process was running for ∼15 days for the intermediate pressure
turbine. The computer that was used, hosts two (2) Intel R©

Xeon R© Processors E5-2630 v3 (20M Cache, 2.40 GHz) with
8-cores and 16-threads, resulting in a total number of thirty-two
(32) logical (virtual) cores and 64 GB of RAM, on Linux Ubuntu
16.04 Operating System.

Table 2 presents the design vector of the optimized material
properties of indicative parts of the intermediate pressure
turbine. Part P1 corresponds to the rotor shaft, and the optimized
parameters lie close to the nominal parameter values of steel,
as it is the only part of the turbine that is almost intact and
unaffected by its long time operation. Parts P3, P9, P27, P30, P33,
P35, and P43 correspond to the optimized material properties
that showed maximum deviation from the nominal values. All
parts are related to blades. Blades are the most vulnerable parts
of the turbine that corrode during operation and need regular
maintenance. Additionally, all blades are tightly fixed with steel
rods producing remaining stresses that increase stiffness.

Convergence has been achived with respect to the objective
function using the convergence critterion as defind in section

Linear FEModel Updating Framework being the difference of the
best values of two consecutive sets of iterations 1J(θ) = 10−3. In
order to equally consider the contribution of the four residuals,
equal weighting factors were chosen. Different weighting factors
would account for increased reliability of the formulation of one
of the four residuals, arisen from experience or experimental
confidence.

Figure 11 presents the history of convergence, where the
objective function value is presented against number of iterations
where we can see the fast convergence rate and Table 3 presents
the updated modal frequencies along a comparison between the
identified (ωrE) and optimized FE predicted modal frequencies
(ωr OFE ). A slight difference between optimal and experimental
modal frequencies is inevitable due to various uncontrolled
uncertainties.

ROTORDYNAMIC ANALYSIS OF THE
SIMPLIFIED EQUIVALENT MODEL OF THE
COMPLETE STEAM TURBINE

The analyses presented refer to the system in free oscillation,
having omitted the rotation speed of the rotor and having no
knowledge of the effect of gyroscopic and shear phenomena
due to rotation. The large scale of the developed finite
elementmodel renders the rotordynamic analysis from extremely
computationally expensive to impossible. Thus, a simplified
model of the turbine, which takes into account the gyroscopic
phenomena occurring during the rotation of the turbine, was
introduced in Matlab (Mathworks, 2016) using the freeware
scripts of rotor software (Friswell et al., 2010b) developed for
analyzing the dynamics of rotating machines (Friswell et al.,
2010a). The simplified model was tested for the accuracy of its
results with the developed complete finite element model by
modal analysis in idle position. Based on the full-scale steam
turbine, the simplified FEmodel consists of 73 Timoshenko beam
elements simulating the shaft and 37 disk elements simulating
the stages of the blade elements of the turbine. The total
number of nodes was 74 and at 5 nodes isotropic bearing
elements were placed in all directions that refer to the bearing
point of the rotor. Figure 12 illustrates the simplified model
of the steam turbine, where cyan color is the shaft elements,
green dots refer to the nodes, yellow color represents the
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FIGURE 13 | 2nd, 4, and 5th eigenmodes of the simplified FE model at idle state at 1.93, 16.05, and 38.13Hz and equivalent eigenmodes of the full-scale FE model

at 1.72, 16.02, and 36.87 Hz.

blades of each stage and red triangles show the bearing of the
rotor.

The updated material parameters of the full model of the

turbine were used, for the axis properties. The only difference is in

the density of the disks. As each stage consists of a large number

of blades that obviously have a gap between them, they cannot be

modeled as solid disc. Thus, the density of the disk was adjusted

according to the actual volume and the actual mass of the stage

from the full-scale FEmodel. Firstly, frequencies of the simplified
model at zero rotational speed (idle) were compared to those

of the complete FE model as presented in Table 4. Specifically,

the second and third columns present the frequencies of the
simplified and full-scale FE models, whereas the last column
presents the deviation between them.

Indicatively the 2nd, 4, and 5th modes of the full-scale and
the simplified for zero rotation speed, FE models are presented
in Figure 13. We notice that the modes are very similar to both
models. Coloring the results of the simplified and full-scalemodel
based on displacements, helps us understand the movement of
the body at each mode. Thus, the coloration of the simplified
model in red line correspond to the shaft and the blue lines to
the displacements of the internal nodes, whereas the coloration
of the full-scale FE model is depicted on the colored legend.

Moreover, at 50Hz, which is the electric current frequency,
the turbine will rotate at 3,000 rpm. Table 5 summarizes the 30
first rotational frequencies of the simplified model at 3,000 rpm
rotational speed. Indicative modes are presented in Figure 14.
The simplified FE model could be further updated in regard to
the bearings for increased accuracy and fidelity to the real steam

TABLE 5 | Rotational eigenfrequencies of the simplified model at 3,000 rpm

rotational speed.

Mode Rotational

frequencies

Mode Rotational

frequencies

Mode Rotational

frequencies

1 1.48 11 58.82 21 194.93

2 1.49 12 62.16 22 228.99

3 1.83 13 92.05 23 236.48

4 2.03 14 97.27 24 261.54

5 6.43 15 108.91 25 268.63

6 6.86 15 116.48 26 298.63

7 15.13 17 160.48 27 310.81

8 17.02 18 160.66 28 352.23

9 37.34 19 165.40 29 360.95

10 44.51 20 184.32 30 361.21

turbine structure at working state. Specifically, experimental
vibration measurements could be collected at all bearing points
under real working conditions, in order to update the stiffness
and damping parameters at all supporting directions during
rotation of the steam turbine at operational spin speed. The thick
black line represents the rotor axis while the vertical circular lines
represent the orbits of the nodes in a period of rotation.

Finally, Figure 15 presents the Campell diagram (Campbell,
1924; Meher-Homji and Prisell, 2005) of turbine’s response
spectrum as a function of spin speed, at a range of 0–4,500 rpm
which represents the variation of the rotational frequencies as the
rotation speed changes.
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FIGURE 14 | Indicative rotational eigenmodes 1, 3, 5, 7, 9, and 13 corresponding to 1.48, 1.83, 6.43, 15.13, 37.34, and 92.05Hz of the simplified FE model at 3,000

rpm rotational speed.

FIGURE 15 | Cambell diagram at 0–4.500 rpm spin speed range.

CONCLUSIONS

An integrated reverse engineering methodology is presented

in this work on a large-scale steam turbine rotor, taking into

account issues related to the development of the CAD and
FE model, experimental modal analysis procedures and the
application of robust and effective computational finite element
model updating techniques. Numerical and experimental
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methodologies were implemented in order to identify the model
parameters and develop a high fidelity finite element model
of the examined structure. An extensible framework of CMA
Evolution Strategy for complex and computationally demanding
physical models is implemented in order to finely tune material
parameters, such as modulus of elasticity and density, in order
to best match experimental and numerical data. Moreover,
a simplified FE model based on the updated full large-scale
FE model of the steam turbine is introduced, in order to get
deep insight of the rotordynamic behavior and gyroscopic
effects of the examined rotor. Accumulated knowledge of the
dynamic behavior of the steam turbine system, could be later
implemented in order to evaluate stability or instability states,
fatigue growth in the turbine blades, changes in the damping of

the bearing system and perform necessary scheduled optimal
and cost-effective maintenance strategies. Additionally, upon a
series of scheduled experimental data collection, a permanent
output-only vibration SHM system could be installed and even a
proper dynamic balancing could be investigated and designed.
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A finite element approximation of a theory recently proposed for the geometrically

nonlinear analysis of laminated curved beams is developed. The application of the given

finite element model to the computation of stability points and post-buckling behavior of

beams with arbitrary curvature is also carried out, on taking into account the influences

of shear deformation and warping effects on the in-plane and out-plane responses of

the beam. The stability analysis is performed through a path-following procedure and a

bordering algorithm. Several numerical results are given and comparisons with classical

beam theories and other theories available in the relevant literature are established. The

given results highlight that the proposed finite element model is well suited to study

the stability of structures that incorporate laminated composite beams, such as, e.g.,

light-weight roof structures and arch bridges.

Keywords: composite laminates, curved beams, fiber-reinforced composites, buckling-analysis, finite element

method

INTRODUCTION

Laminated composite (fiber-reinforced) structures are increasingly used in a wide range of
engineering applications (naval, aeronautical, automation, mechanical, civil, medical engineering,
etc.), due to the outstanding proprieties that such structures may exhibit when a proper design
of the material and the lamination scheme are employed: light weight, high stiffness-to-weight
and tensile strength-to-weight ratios, high damping, excellent corrosion, thermal and high impact
resistance (Fraternali et al., 2011, 2012; Bencardino et al., 2012). Nowadays, laminated composite
structures play a crucial role in the production of various innovative structures or products, which
include: light-weight roof structures, arch bridges, impact energy mitigation and vibration isolation
devices, just to name a few examples. In order to capture the puzzling mechanical response of
such structures, various theoretical and numerical approaches have been proposed in the literature,
including zig-zag displacement-based theories and stress-based methods, with special attention
on the modeling of anisotropy, warping, fracture and damage (Feo and Fraternali, 2000; Roberts
and Al-Ubaidi, 2001; Fraternali et al., 2002, 2010, 2011, 2012; Fraternali, 2007; Schmidt et al.,
2009; Feo and Mancusi, 2010; Bencardino et al., 2012; Markkula et al., 2013; Viera et al., 2013;
Özütok and Madenci, 2017). Shear deformation and warping effects may be rather important in
composite beams. At this regard (Özütok andMadenci, 2017) by Özütok andMadenci analyses the
effects of a non-linear distribution of the shear stress through the beam thickness within a higher-
order shear deformation theory; Roberts and Al-Ubaidi develop in Roberts and Al-Ubaidi (2001)
an approximate theory for assessing the influence of shear deformation on restrained torsional

78
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warping of pultruded bars; while Viera et al. develop a thin-walled
beam model able to simulate warping and higher order effects
in Viera et al. (2013). For what concerns stability phenomena,
which are of peculiar interest in the case of composite beams
due to the characteristic slenderness of such structures, it is
worth mentioning the non-linear elastic approaches proposed in
Ascione et al. (2011, 2013); Fraternali et al. (2013); Mascolo and
Pasquino (2016); Özütok and Madenci (2017), and Mascolo et al.
(in press). The recent study illustrated in Fraternali et al. (2013)
presents a geometrically nonlinear theory of laminated curved
beams, which assumes that cross-section rotations and shear
strains are moderately large, while axial strains are infinitesimal.
Due to its minor complexity with respect to the finite elasticity
theory, the model presented in Fraternali et al. (2013) is
particularly convenient for computing the first stability point of a
composite laminated beam and studying its behavior near such a
point.

In the present paper, we develop a comprehensive finite-
element approximation of the mechanical model given in
Fraternali et al. (2013), which is founded upon the use of
Lagrangian isoparametric elements (section Finite Element
Model). The adopted model proves to be a robust and versatile
tool that allows to model the geometrically non-linear response
and the buckling behavior of laminated composite beams with
arbitrary curvature. It takes into account both shear deformations
and warping effects, which are essential to accurately predict
in-plane and out-plane buckling loads. The proposed stability
analysis employs the path-following procedure proposed by
Bathoz and Dhatt (1979) and the algorithm for computing
stability points proposed by Simo and Wriggers (1990) (section
Finite Element Analysis of the Stability of Composite Curved
Beams). The accuracy of the proposed finite-element model is
assessed by presenting different numerical results relative to
the stability of isotropic and composite beams and establishing
comparisons with the corresponding results of classical beam
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+
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theories and other theories available in the relevant literature
(section Numerical Results). We end with concluding
remarks and directions for future work in section Concluding
Remarks.

FINITE ELEMENT MODEL

Let us denote by Ch a finite-element discretization of axis curve
of a laminated beam, and let us assume that the elements
C1, . . . , Cn belong to the Lagrange family (Reddy, 1992) (see
Figure 1)

Ch =
⋃ne

e=1
Ce. (1)

On adopting an isoparametric finite-element
approximation (Reddy, 1992) we use the same shape
functions to approximate both the geometry and the
(generalized) displacement field over the generic element
Ce

Zh
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NIZ2I , Z
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n
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NIZ3I , û
h
e =

n
∑

I=1

NI ûI . (2)

In Equation (2) NI is the shape function corresponding to
the node I and consists of a complete polynomial of order
n − 1; Z2I and Z3I are the coordinates of I with respect to
the global frame {0,Z1,Z2,Z3} (Figure 1); ûI is the generalized
displacement vector relative to the same node.

In particular, for a four-node Lagrangian element, we
represent in Figure 2 the transformation (2)1,2 which maps the
master element onto a curved (cubic) element.

The Jacobian of the transformation from the local coordinate
ξ (Figure 2) to the global coordinate X3 (Figure 1) is given by
Nomizu and Kobayashi (1963)
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NI, ξ being the derivative of NI with respect to ξ . Denoting by (·)′

the derivative with respect to X3, we have:

NI
′ =

dNI

dX3
= J−1N1, ξ . (4)

By making use of Equation (2)1,2, we obtain the following
approximation of the curvature radius R (Nomizu and
Kobayashi, 1963)

Coming back to Equation (2)3, we now observe that it can be
written in the following compact form

ûhe = NUe (6)

where Ue is the M-dimensional vector collecting nodal,
generalized, displacements of

Ce

(

Ue =

[

ûT1 , û
T
2 , . . . , ûTn

]T
)

, (7)

while N is the following matrix

N[m×M] = [N1, N2, . . ., Nn] , (8)

whose blocks are diagonal submatrices

NI[m×m] = diag (NI NI . . . NI) . (9)
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FIGURE 1 | Finite element discretization of the axis of a laminate curved beam (nl : numbers of layers).

FIGURE 2 | Standard (A) and distorted (B) four-node Lagrangian element.

Equation (6) leads us to obtain the following approximation of
the generalized strains

Êhe (Ue)=Ê(1)he (Ue)+
1

2
Ê(2)he (Ue, Ue) (10)

where

Ê(1)he (Ue)=BoUe (11)

Ê(2)he (Ue, δUe)=BL (Ue) δUe

B0 and BL (Ue) being the following σ ×M matrices

B0 = [B01, B02, . . . , B0n ] ,

BL (Ue) = A (Ue)G. (12)

The σ ×m submatrices B0I in Equation (12)1 are given by
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The matrices A and G, which appear in Equation (12)2, are
instead given by
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A (Ue)[9×9] =
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FINITE ELEMENT ANALYSIS OF THE
STABILITY OF COMPOSITE CURVED
BEAMS

Path-Following Procedure
Let us consider the variational formulation of the equilibrium
equations. The use of Equations (6, 10, 11) allows us to set such
equations into the following discrete form

δ5
h = δUTR(U, λ)

=
∑ne

e=1

{

δUT
e

∫ 1
−1

[

BT
0+BT

L (Ue)
]

D̂
[

B0+
1
2BL (Ue)

]

UeJdξ
}

−λ

ne
∑

e=1

{

δUT
e

∫ 1
−1 N

T
[

q̂
(1)
e +q̂

(2)
e (Ue)

]

Jdξ
}

−λ

nn
∑

I=1

{

δûTI

[

Q̂
(1)
I +Q̂

(2)
I

(

ûI
)

]}

= 0 (18)

where 5
h is the discretized functional of the total potential

energy 5; δ5
h is the first variation of 5

h with increment δU ;
R(U , λ) (residuai vector) is the Gateaux derivative of 5

h with

respect to U
(

R = DU5
h
)

.

On accounting for a possibility of non-linear elastic response
of the material, we assume that the elasticity matrix D̂, whose
elements are the resultants and the resultant moments of the
local elastic moduli (Fraternali et al., 2013), depends on the
deformation of the beam (D̂= D̂ (U)).

Equation (18) can also be written in the following compact
form

δUTR (U , λ)=δUT
{

K (U)U−λ

[

Q(1)+Q(2)
(U)

]}

=0, (19)

where K(U) is the N × N global (secant) stiffness matrix, which
derives from the assembly of the element stiffness matrices
Ke (e = 1, 2, . . . , ne). Such matrices are defined by the equations

Ke (Ue) (Ue)=

∫ 1

−1

[

BT
0+BT

L (Ue)

]

Ŝ (Ue) Jdξ , (20)

where Ŝ is the generalized stress vector

Ŝ (Ue)=D̂

[

B0+
1

2
BL (Ue)

]

Ue, (21)

while Q(1) and Q(2)(U) are the global force vectors, which derive
from the assembly of the element vectors

Q(1)
e =

∫ 1

−1
NT q̂(1)e Jdξ , Q(2)

e (Ue)=

∫ 1

−1
NT q̂(2)e (Ue)Jdξ , (22)

and the nodal force vectors Q̂
(1)
I and

Q̂
(2)
I

(

ûI
)

(I = 1, 2, . . . , nn).
Due to the arbitrariness of δU , Equation (19) is equivalent to the
following nonlinear system of N equations

R (U , λ) = K (U)U − λ

[

Q(1) + Q(2)
(U)

]

= 0, (23)

which can be solved by employing one of the algorithms known
in literature as path-following methods (for an overview of such
methods (see e.g., Riks, 1972). The basic idea of path-following
methods is to append a constraint Equation f (U , λ) = 0 to
(23). Here, following Bathoz and Dhatt (1979), we adopt a
displacement control and assume

f (U) = eTpU − u = 0, (24)

where ep is the vector of R
N which has only the pth component

different from zero and equal to 1, while µ is a prescribed value
of the pth component of U . Therefore, we are led to solve the
extended system

R
∗

(U , λ) =

{

R (U , λ)

eTpU − µ

}

= 0, (25)

The linearization of Equation (25) by the Newton-Raphson
method gives the system of incremental equilibrium equations

R∗
(U + 1U , λ + 1λ) = R

∗

(U , λ) +

[

DUR DλR

eTp 0

]{

1U

1λ

}

= 0,

(26)
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The matrix DUR, which is usually referred to as tangent stiffness
matrix and denoted by KT , is given in theAppendix. Concerning
the vector DλR, from Equation (23) we deduce

DλR = −

[

Q(1) + Q(2)
(U)

]

. (27)

The non-symmetric system (26), that we rewrite in the form

[

KT −

(

Q(1) + Q(2)
)

eTp 0

]

{

1U

1λ

}

= −

{

R (U , λ)

eTpU − µ

}

, (28)

can be solved by a procedure known in literature as bordering
algorithm (see e.g., Keller, 1977). Such algorithm and the overall
procedure for the solution of the extended system (25) are
described in Table 1.
In particular, if the first predictor U satisfies the constraint (24),
Equation (31) reduces to

1λ =
eTp 1UR

eTp 1UQ

(34)

We point out that, since we proceed by displacement control,
we apply the above iterative procedure in incremental steps.
Within the generic step, say the ith one, we increment by δ

the displacement component Up which exhibited the largest
variation in the previous step. We hence set in the extended
system (25)

µ = eTp U i−1 + δ (35)

and begin the new iteration loop by assuming the predictor
Ũ = U i−1 + δep, λ̃=λ

i−1, which satisfies Equation (24).

Computation of Stability Points
In the current section we get a finite-element approximation of
the problem of computing stability points based on the Trefftz
criterion (Trefftz, 1930).

TABLE 1 | Bordering algorithm.

Algorithm

Assure a predictor Ũ , λ̃ for U, λ and evaluate

R̃ = R
(

Ũ, λ̃
)

, K̃T = KT

(

Ũ, λ̃
)

, Q̃(2) = Q(2)
(

Ũ
)

. (29)

Repeat (setting Ũ= U, λ̃ = λ)

From (28)1 compute the partial solutions

1UQ = K̃−1
T

(

Q(1) + Q(2)
)

,1UR=−K̃−1
T

R̃. (30)

Solve (28)2 for 1λ

1λ = −
eTp 1UR+

(

eTp Ũ−µ

)

eTp 1UQ
(31)

Compute total displacement increment by

1U =1λ1UQ+1UR, (32)

update: U=Ũ+ 1U, λ=λ̃ + 1λ

until
∥

∥

∥
R*

(U,λ)

∥

∥

∥

∥

∥ λ
(

Q(1)+ Q(2)(U)
)
∥

∥

≤ tol (33)

Within the previous settings, we obtain the following discrete
equation

D2
U

∏h

e
(U , λ)U1δU = δUTKT (U , λ)U1 = 0 (36)

which must be satisfied by every variation δU .
A point U , λ such that Equation (36) holds for some U1 is

usually called stability point, while U1 is called buckling mode
(or eigenvector) associated with U , λ.

Due to the arbitrariness of δU , Equation (36) is equivalent to
the system of N Equations

KT (U , λ)U1= 0 (37)

In the following we will denote U1 by V . In order to exclude the
trivial case V=0, it is necessary to append a constraint equation
l (V)= 0 to system (37). Possible choices of such an equation are

‖V‖−1= 0 (38)

eTpV−V0 = 0 (39)

V0 being a fixed (non-zero) value of the pth component of V .
In this work we make use of Equation (39) and, after having
reduced KT to an upper triangular matrix (by Gauss elimination
technique), we identify the index p with the equation number
where the lowest diagonal term of the reduced stiffness matrix
appears. In this way we prevent the pth component of V

becoming exceedingly large. Concerning V0, we set

V0=
eTpV0

‖V0‖
(40)

V0 being the initial approximation to V .
Stability points can be classified in limit (or turning) and
bifurcation points (Budiansky, 1974). Following Spence and
Jepson (Spence and Jepson, 1985) we can distinguish between the
two cases by using the following criteria

Bifurcation point: VT
(

Q(1) + Q(2)
(U)

)

= 0 (41)

Limit point: VT
(

Q(1) + Q(2)
(U)

)

6= 0 (42)

An efficient procedure for the computation of stability points
has been proposed by Simo and Wriggers (1990). It consists of
solving the extended system

R∗∗
(U ,V , λ,µ) =















R (U , λ)

KT (U , λ)V

eTpV − V0

eTpU − µ















= 0 (43)

which derives from the addition of Equations (37, 39) to the
system of non-linear equilibrium Equations (25).

Since the tangent stiffness matrix becomes progressively ill-
conditioned as the solution approaches the stability point, where
KT is singular, from a numerical point of view it is convenient to
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transform the extended system (43) into the following equivalent
form Simo and Wriggers (1990)

R∗∗
η

(U ,V , λ,µ) =























R (U , λ) + η

(

eTpU − µ

)

ep

KT (U , λ)V+η

(

eTpV − V0

)

ep

eTpV − V0

eTpU − µ























= 0,(44)

η being an arbitrary positive number. The linearization of
Equation (44) by the Newton-Raphson method leads us to obtain
the set of incremental equations









KTη
0 −Q −ηep

DU (KTV) KTη
Dλ (KTV) 0

0T eTp 0 0

eTp 0T 0 −1























1U

1V

1λ

1µ















=



















R (U , λ) + η

(

eTpU − µ

)

ep

KTη
(U , λ)V−ηV0ep
eTpV − V0

eTpU − µ



















(45)

where Q=Q(1) + Q(2)
(U), while

KTη (U , λ) = KT (U , λ) + ηepe
T
p (p not summed) (46)

is a rank-one updated stiffness matrix. The solution of the
non-symmetric system (45) can be obtained by a bordering
algorithm similar to that described in the previous section Path-
Following Procedure.Table 2 shows this algorithm and the global
procedure for the solution of the extended system (44).

We furnish the expressions of the vectors hj (j = 1, . . . , 4),
which appear in Equations (50), in the Appendix.

Overall Algorithm for Stability Analysis
We compute the pre-buckling and post-buckling equilibrium
paths of a laminated beam by combining the procedures
described in Sections Path-Following Procedure and
Computation of Stability Points.

More precisely, denoted the initial stiffness matrix by K0 (see
theAppendix) and an arbitrary numeric value by λ0, we consider
the couple λ0, U0=λ0K

−1
0 Q(1) as the initial predictor of the first

equilibrium state.
We hence correct this predictor as described in section

Path-Following Procedure and keep computing equilibrium
states along the primary path. We check for the sign of
the tangent stiffness matrix determinant in correspondence of
each state, which is a simple operation since the solution of
the extended system (25) requires the factorization (i.e., the
triangular decomposition) of KT .

If the sign of detKT changes between two successive states, say
i and i + 1, a stability point has passed. We hence switch from
the path-following procedure to the procedure for computing
stability points.

In particular we assume Ũ=Ui+1, Ṽ=V0 = K−1
0 ep, λ̃ = λ

i+1,

µ̃ = eTp U
i+1

(for the meaning of the index p see the beginning of
section Computation of Stability Points).

TABLE 2 | Bordering algorithm.

Algorithm

Assume a predictor Ũ, Ṽ, λ̃, µ̃ and evaluate

R̃= R
(

Ũ, λ̃
)

, K̃Tη
=KTη

(

Ũ, λ̃
)

, Q̃(2)=Q(2)
(

Ũ
)

. (47)

Repeat (setting Ũ= U, Ṽ= V, λ̃ = λ, µ̃ = µ)

From (45)1 compute the partial solutions

1U1 = K̃−1
Tη

(

Q(1) + Q̃(2)
)

1U2 = −K̃
−1
Tη

R̃

1U3 = −K̃
−1
Tη

ep (48)

From (45)2 compute the partial solutions

q1 = K̃−1
Tη

h1

q2 = K̃−1
Tη

h2

q3 = K̃−1
Tη

h3

q4 = K̃−1
Tη

h4

(49)

where

h1 = −DU
(

KTV
)

1U1

h2=−DU
(

KTV
)

1U2

h3 = −DU
(

KTV
)

1U3

h4 = −Dλ

(

KTV
)

(50)

Compute 1λ and 1µ.

The increments 1λ and 1u can be computed from Equations (453 to

45)4, which can be written as




eTp
(

q1 + q4
)

η eTp q3

eTp 1U1 η eTp 1U3 − 1











1λ

1u







=







g1

g2







(51)

where

g1 = V0 − eTp

[

q2 + η V0 1U3 + η

(

µ − eTp Ũ
)

q3

]

g2 = µ − eTp

[

Ũ+ 1U2 + η

(

µ − eTp Ũ
)

1U3

]

(52)

Compute 1U and 1V from the equations

1U = 1λ1U1 + 1U2 + η

(

µ 1µ − eTp Ũ
)

1U3

1V = −Ṽ + 1λ
(

q1 + q4
)

+ q2 + η

[ (

µ + 1µ − eTp Ũ
)

q3 + V0 1V3

]

(53)

and update: U = Ũ+ 1U, V = Ṽ + 1V, λ = λ̃ + 1λ, µ = µ̃ + 1u.

until

∥

∥

∥
Rη

**
(U,V, λ,µ)

∥

∥

∥

∥

∥ λ
(

Q(1)+ Q(2)(U)
)∥

∥

≤ tol (54)

Once the stability point Uc, λc has been computed, we check
if it is a limit or a bifurcation point. In the case of a limit point
we come back to the path-following procedure to complete the
primary path. In the case of a bifurcation point, we switch to
the secondary (or bifurcated) path by adding to Uc a vector
proportional to the eigenvector V

U =Uc+ζ
V

‖V‖
(55)

ζ being a scaling factor to be determined in such a way that it
results R (U ,λc) ≤ tol.

We then follow the secondary path using the path-following
procedure and arrest the calculations when the cross-section
rotations or the shear strains are more than moderately large or
the axial strains are more than infinitesimal (18).
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NUMERICAL RESULTS

We present in this section several numerical results relative to
the evaluation of the stability points and to the post-buckling
behavior of straight and curved beams.

In all the examples we supposed the beam cross-section to
be rectangular with lengths H1 and H2 along the directions
X1 and X2, respectively. We denoted the cross-section area by
A = H1H2, the moments of inertia by I1 and I2, the polar
moment of inertia by IG and the De Saint Venant torsional
rigidity by Jt

I1 =
H1H

3
2

12
, I2 =

H3
1H2

12
, IG = I1 + I2, Jt =

H3
1H2

3
. (56)

Concerning the expression of the warping function w, we
examined the following three cases:

No Warping (NW): w = 0
Warping Function (W1): w = w11X1X2

Warping Function (W3): w = w20X
2
1+w11X1X2+w02X

2
2+

w30X
3
1 + w21X

2
1X2 + w12X1X

3
2 + w03X

3
2 .

We used cubic Lagrangian finite elements and a four-point
Gauss quadrature formula to compute the tangent stiffness
matrix and its derivatives. By this choice we avoided the
numerical inconvenient known in literature as shear and
membrane (or inplane) locking (see e.g., Prathap and Bhashyam,
1982; Reddy and Averill, 1990).

We always assumed that the external loads retain their
directions during the deformation of the beam (dead loading).

BIFURCATION POINTS OF ISOTROPIC,
STRAIGHT AND CURVED BEAMS

In order to assess the accuracy of our numerical model, we
firstly present some results concerned with bifurcation points
of isotropic straight and curved beams. They can be compared
with those available in the relevant literature and corresponding
to classical beam theories (see e.g., Timoshenko and Gere, 1961;
Brush and Almroth, 1975). We assumed a ratio E/G = 0.385
between Young’s and shear moduli.

The first example deals with a circular ring submitted to a
radial dead load of intensity q, which is uniformly distributed
along the centerline. We discretized one half of the ring by 20
finite elements imposing the following boundary conditions (no
warping was considered)

v1 = v2 = v3 = φ1 = φ2 = φ3 = 0 for X3 = 0,

v1 = v3 = φ1 = φ2 = φ3 = 0, for X3 = πR, (57)

where R is the initial radius of the centerline. In particular, the
ratios H1/ H2 = 2, R/ H2 = 20 were considered.

According to Donnel’ s theory (see e.g., Brush and Almroth,
1975), the first bifurcation point occurs at a load level qbif =

4 E I1/R
3 and the buckling mode corresponds to an ovalization

of the ring.
It has to be remarked that the first bifurcation point occurs at

a sensibly different load level qbif = 3 E I1/R
3 if the external load

TABLE 3 | Convergence behavior or the first bifurcation point or a circular ring

submitted to a radial dead load q uniformly distributed along the centerline

(H1/ H2 = 2, R/ H2 = 20, 20 element mesh).

Iteration η= 0 η=
(

Dop−Dp

)

× 10 η =

(

Dop−Dp

)

×1000

λ ε λ ε λ ε

1 4.3056 0.1822 4.3056 0.6018 ×10 4.3056 0.6069×103

2 4.2871 0.1645 ×10−2 4.2871 0.1643×10−2 4.2871 0.1645×10−2

3 3.9886 0.1022 ×10−3 3.9891 0.1154 ×10−3 3.9916 0.1327×10−3

4 3.9883 0.4035 ×10−5 3.9888 0.4821 ×10−6 3.9887 0.1010×10−5

5 3.9892 0.3295 ×10−5 3.9888 0.1920 ×10−8 3.9888 0.4257×10−6

6 3.9887 0.2094×10−3 3.9888 0.1920×10−8

7 3.9889 0.4045 ×10−3

λ =
qbifR

3

E I1

dimensionless residual ε =

∥

∥

∥
R**

η

∥

∥

∥

‖λ Q‖

remains orthogonal to the axis during the deformation of the ring
(see e.g., Timoshenko and Gere, 1961; Brush and Almroth, 1975).

Table 3 shows the numerical convergence of the solutions of
the extended system (44) for increasing values of the parameter η.

Denoting by Dp the least diagonal term of the factorized
tangent stiffness matrix and by Dop the corresponding term
in the factorized initial stiffness matrix K0, in our numerical
experiments we set η = 0, η =

(

Dop − Dp

)

× 10 and η =
(

Dop − Dp

)

× 1000.
As already observed by Simo and Wriggers (1990), for η =

0 the results exhibit oscillations near the bifurcation point,
while for η > 0 they converge in a stable way to the value
3.9888 EI1/R

3.
Table 3 also shows that in the latter case the solution is rather

insensitive to the value of η.
The small difference existing between our and Donnel’s

bifurcation load can be justified observing that Donnel’s theory
does not account for shear deformation and for the quadratic
terms in X1 and X2 of the axial strain E33, which are
instead present in our model. In all the subsequent numerical
applications we η =

(

Dop − Dp

)

× 10.
The second example we considered deals with the classical

case of a simply supported straight beam loaded by a compressive
force at one end (X3 = L).Table 4 compares the bifurcation loads
computed by using the present theory with those corresponding
to Euler’s theory (PEul = π

2 EI1/L
2) and Timoshenko’s theory,

for several the values of the ratio L/H2, assuming H1/H2 = 2.
Upon putting ρ = χ PEul/GA (χ = 1.2 shear correction factor),
we considered both the exact values deriving from Timoshenko’s
Theory

Pbif

PEul
=

− (4+ 3ρ) +
√

(4+ 3ρ)
2 + 16ρ

2ρ
(58)

and the approximate ones (see e.g., Timoshenko and Gere, 1961)

Pbif

PEul
=

1

1+ ρ
. (59)
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TABLE 4 | First bifurcation load of a simply supported, axially loaded straight

beam for several ratios L/ H2 (H1/ H2 = 2, 20 element mesh).

λbif=Pbif/PEul

L/ H2 ETTa ATTb PTNWNŴ
c PTW3NŴ

d PTNWŴ
e PTW3Ŵf

5 0.90892 0.90700 0.92127 0.90741 0.89622 0.88437

10 0.97516 0.97501 0.97909 0.97500 0.97143 0.96756

20 0.99364 0.99363 0.99465 0.99358 0.99261 0.99164

40 0.99840 0.99840 0.99868 0.99840 0.99817 0.99790

100 0.99974 0.99974 0.99981 0.99976 0.99971 0.99966

aExact Timoshenko’s Theory.
bApproximate Timoshenko’s Theory.
cPres.Th.-No warping-No Γ terms.
dPres.Th.-W3 warping-No Γ terms.
ePres.Th.-No warping-Γ terms incl.
fPres.Th.-W3 warping-Γ terms incl.

Concerning the comparisons between our and classical theories,
we stressed the influences of warping and quadratic terms in X1,
X2 of the axial strain E33 (Ŵ terms). It has to be remarked that our
theory turns into a first-order shear deformation theory with no
shear correction factor (χ = 1) in absence of warping and Ŵ

terms.
Table 4 shows that our results corresponding to a cubic

warping function and absence of Ŵ terms closely approximate
those by Timoshenko. Furthermore, the influence of Ŵ terms is
found to be appreciable (up to 2.7%) for thick beams. We took
into account Ŵ deformation terms in all the successive numerical
applications.

We complete this first group of numerical results by showing
some further examples concernedwith lateral buckling of straight
bars and semicircular arches.

We firstly considered a narrow simply supported beam
transversally loaded at the middle point and a narrow cantilever
transversally loaded at the free end (H1/H2 = 0.1, L/H2 = 10).
The kinematical boundary conditions of the first case are

v1 = v2 = v3 = φ3 = 0 for X3 = 0,

v1 = v2 = φ3 = 0 for X3 = L, (60)

Three positions of the load were considered: load at the centroid,
load at the extrados (X1 = 0, X2 = −H2/2 ) and load at the
intrados (X1 = 0, X2 = H2/2 ). The last two cases obviously give
rise to a deformation-dependent loading (Q(2)

(U) 6= 0 ).
Table 5 shows a comparison between the first bifurcation

points computed within the present theory and those
corresponding to the classical Prandtl’s theory (See e.g.,
Timoshenko and Gere, 1961).

In the context of the present theory, we adopted a bilinear
warping function (W1) and assumed both a linear and a
(geometrically) nonlinear pre-buckling behavior (the first was
treated by discarding the part KL of the tangent stiffness matrix,
see the Appendix).

We also generalized Prandtl’s theory in order to include a
nonlinear pre-buckling behavior. This was obtained by using our

TABLE 5 | First lateral bifurcation point of a simply supported beam loaded by a

transverse force Q at the middle point and of a cantilever loaded by a transverse

force Q at the free end (H1/H2 = 0.1, L/H2 = 10, 20 element mesh).

CT-LPB PT-LPB CT-NLPB PT-NLPB

LOAD AT THE CENTROID

simple supported vm/L× 100 0.4380 0.4483 0.4401 0.4520

λbif 16.940 16.902 17.020 17.040

cantilever vf /L× 100 1.6600 1.7240 1.7026 1.7776

λbif 4.0130 4.1840 4.1159 4.2695

LOAD AT THE EXTRADOS

simple supported vm/L× 100 0.4053 0.4152 0.4071 0.4183

λbif 15.752 15.654 15.745 15.772

cantilever vf /L× 100 1.5912 1.6647 1.6337 1.6993

λbif 3.8513 3.9910 3.9422 4.0737

LOAD AT THE INTRADOS

simple supported vm/L× 100 0.4656 0.4832 0.4743 0.4874

λbif 18.127 18.215 18.346 18.376

cantilever vf /L× 100 1.7199 1.8099 1.7621 1.8459

λbif 4.1747 4.3559 4.2683 4.4428

CT, Classical Theory.

PT, Present Theory.

vm, middle point in-plane displacement.

vf , free end in-plane displacement.

λbif =
Qbif L

2
√
EI2GJt

.

LPB, Linear Pre-Buckling; NLPB, Nonlinear Pre-Buckling.

TABLE 6 | First lateral bifurcation load of a hinged and a clamped semicircular

arch loaded by a radial dead load q uniformly distributed along the centerline

(H1/H2= 0.1, R/H2= 10, 20 element mesh).

λbif=
qbifR

3

EI2

Classical theory Present theory

hinged arch 1.9358 1.9361

clamped arch 13.514 13.774

model, neglecting shear deformation, warping and Γ terms and
making the torsional stiffness equal to GJt .

It has to be remarked that the present theory assumes a
torsional rigidity equal to GIG (as in the De Saint Venant theory
of torsion without warping) and takes into account warping
effects by introducing in the displacement field a polynomial
warping function.

It is evident that our numerical results agree better with those
by Prandtl when the warping is unconstrained, as in the case
of the simply supported beam. On the contrary, in the second
example (cantilever), our and Prandtl’s results somewhat differ
due to the presence of the restraint which doesn’t allow the
warping of the built-in end.

Further on we remark that the assumption of a linear pre-
buckling behavior, as in the original Prandtl’s theory, is less
accurate for the cantilever than for the simply supported beam.
Indeed, in the first case the in-plane displacements are sensibly
higher than in the second case and produce moderate rotations.
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Finally, Table 6 shows the bifurcation loads of hinged and
clamped narrow semicircular arches (v1 = v2 = v3 = φ3 = 0
for X3 = 0, πR in the first case). The load consists of a uniform
radial dead load along the centerline.

The results of the present theory are compared with those
given in Timoshenko and Gere (1961), which are relative to the
classical beam theory. In particular, the first ones correspond to
the choice of a bilinear warping function (W1).

CONCLUDING REMARKS

This work has developed a finite element model of the moderate
rotation theory (MRT) of laminated composite beams proposed
in Fraternali et al. (2013), and its application to the computation
of nonlinear equilibrium paths and stability points of a variety
of numerical examples. The proposed model describes laminated
composite beams with arbitrary curvature of the beam axis,
and takes into account shear deformation, warping effects, in-
plane and out-of-plane instability. For the straight and curved
beams examples analyzed in the present study, we conclude the
following:

(i) the moderate rotation theory (MRT) and the classical beams
theories correlate very well in almost all isotropic cases;

(ii) the influence of warping effects on the bifurcation load
is generally pretty high for beams made up of composite
materials.

Future work will apply the model presented in this
work to a wide collection of technically relevant case-
studies, with special emphasis on the study of the stability
of light-weight roof structures and arch bridges, which
make use of laminated composite beams (Fraternali et al.,
2013).
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NOTATION

We report below the list of the main notations used in the text. Throughout this paper we use boldface character to denote numerical
vectors and matrices; we also use the superscript T to denote the transpose of a vector or a matrix.

C axis curve of a laminated beam

L length of C

X3 ∈ [0, L] line coordinate along C

R
(

X3
)

curvature radius of C at the generic point

6
(

X3
)

generic cross-section of the beam

X1, X2 orthogonal coordinates on 6 with origin at the centroid

H1, H2 dimensions along X1, X2 of a rectangular cross-section

v
(

X3
)

=
{

v1, v2, v3
}T

displacement vector of the generic point of C

φ
(

X3
)

=
{

φ 1, φ 2, φ 3
}T

vector associated with the skew part of Σ-moderate rotation tensor

w
(

X3
)

=
{

w1, w2, w3
}T

vector collecting warping function coefficients

mw number of warping coefficients

û
(

X3
)

=

{

vT , φT , wT
}T

generalized displacement vector

m = 6+mw number of generalized displacements

Ê
(

û
)

vector collecting generalized strains

Ê(1)
(

û
)

, 1
2 Ê

(2)
(

û, û
)

linear and quadratic parts of Ê

Ŝ vector collecting generalized stresses

σ = 9+ 2 mw number of generalized stresses and deformations

D̂ σ × σ elasticity matrix

λ load multiplier

q̂(1), q̂(2)
(u) vectors of first-order and second-order generalized forces per unit of length of C

Q̂
(1)

l
, Q̂

(2)

l

(

Ul
)

vectors of first-order and second-order generalized forces applied at the cross- section 6I

ne number of elements of the finite element mesh

Ce generic finite element

n number of nodes of Ce

nn = ne × (n− 1) + 1 total number of nodes of the finite element mesh

M = m× n number of degrees of freedom per element

Ue M-dimensional nodal displacement vector of Ce

Ke (Ue) M×M secant stiffness matrix of Ce

Q̂
(1)

e , Q̂
(2)

e (Ue) first-order and second-order nodal force vectors of Ce

N total number of equations

U N-dimensional global displacement vector

K (U) N× N global secant stiffness matrix

Q̂(1), Q̂(2)
(U) first-order and second-order global force vectors

R (U, λ) residual vector

KT (U, λ) tangent stiffness matrix

R
N field of real numbers

‖·‖ norm operator in R
N

tol fixed tolerance

Given a scalar function f (U , λ) :R
N×R → R, we denote by DU f the vector which represents the Gateaux derivative of f with

respect to U
VTDUF = limγ→0

1
γ

[

f (U + γ V , λ) − f (U , λ)
]

, ∀ V ∈ R
N ,

and by Dλf the partial derivative of f with respect to λ.
Similarly, given a vector function R (U , λ) :R

N×R →R
N , we denote by DUR the N × N matrix which represents the Gateaux

derivative of R with respect to U
DUR V = limγ→0

1
γ
[R (U + γ V , λ) − R (U , λ)] , ∀ V ∈ R

N ,

and by DλR the partial derivative of R with respect to λ.
Finally, in the case of a scalar function f (U , λ), we denote by D2

U f the bilinear operator

D2
U f V1 V2 = VT

2 DU

(

DU f
)

V1,∀ V1, V2 ∈ R
N
.
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Free Vibration Analysis of Variable
Cross-Section Single-Layered
Graphene Nano-Ribbons (SLGNRs)
Using Differential Quadrature Method
Subrat Kumar Jena* and Snehashish Chakraverty*

Department of Mathematics, National Institute of Technology Rourkela, Rourkela, India

In this article, free vibration of the variable cross-section (non-uniform) single-layered

graphene nano-ribbons (SLGNRs) is investigated by using the Differential Quadrature

Method (DQM). Here width of the cross-section is assumed to vary exponentially along

the length of the nano-ribbon. Euler–Bernoulli beam theory is considered in conjunction

with the nonlocal elasticity theory of Eringen. Step by step procedure is included and

MATLAB code has been developed to obtain the numerical results for different scaling

parameters as well as for four types of boundary conditions. Convergence study is carried

out to illustrate the efficiency of the method and obtained results are validated with known

results in special cases showing good agreement. Further, numerical as well as graphical

results are depicted to show the effects of the nonuniform parameter, nonlocal parameter,

aspect ratio and edge conditions on the frequency parameters.

Keywords: SLGNR, euler-bernoulli beam theory, DQM, vibration, variable cross-section

INTRODUCTION

Application of nanomaterials has expanded in the area of physics, chemistry, engineering, and
nanotechnology because of their special properties like mechanical, electrical and electronic (Dai
et al., 1996). As a result of these properties, nanomaterials play very significant roles in various
nano-mechanical systems and nanomaterials. These materials include nanowires, nanoparticles,
nanoribbons, nanotubes etc. Various applications concerning CNT reinforced structure like
reinforced beam, plate etc. can be found in the literatures (Tornabene et al., 2016, 2017; Banic et al.,
2017; Fantuzzi et al., 2017). One may also get detail information about nanobeams and nanoplates
in the book (Chakraverty and Behera, 2016). Among these nanostructures, single-layered graphene
nano-ribbons viz. nanobeams attract more attention due to their great potential in engineering
applications. Graphene nanoribbons (Geim and Novoselov, 2007; Geim, 2009; Novoselov et al.,
2012) are graphene nanostrip with width less than 50 nm. For the first time, Mitsutaka Fujita
and coauthors introduced Graphene ribbons as a theoretical model to examine the edge and
nanoscale size effect in graphene (Fujita et al., 1996; Nakada et al., 1996; Wakabayashi et al., 1999).
Reddy et al. (2006) investigated equilibrium configuration and continuum elastic properties of
finite sized graphene. GNRs possess additional advantages over graphene sheets. These advantages
include high aspect ratio, ultra-thin width, and opening band gap. So, one must have appropriate
knowledge about the mechanical behaviors for accurate prediction of vibration characteristics.
So far, many researchers have developed various nonclassical continuum theories such as couple
stress theory, strain gradient theory, micropolar theory, and nonlocal elasticity theory. Out of these
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nonclassical continuum theories, nonlocal elasticity theory
developed by Eringen (1972), has been extensively used in the
vibration.

Non-uniformity of nanomaterials is very useful in designing
of many nanoelectromechanical systems (NEMS) devices such
as oscillators, clocks, and sensor devices. In order to make
a NEMS device more efficient, nanobeams with non-uniform
cross-sections should be used. To be able to use non-uniform
nanobeams, mechanical behaviors in both static and dynamic
conditions should be known. So, vibration analysis is important
for many NEMS devices. Aydogdu et al. (2018) investigated
vibration of axially functionally graded nanorods and beams
with a variable nonlocal parameter and these variations are
assumed in the material properties viz. elasticity modulus,
density, and nonlocal parameter. Ece et al. (2007) investigated
the vibration of an isotropic beam with an exponentially varying
width along the length of the beam. Mirzabeigy (2014) studied
free vibration analysis of variable cross-section beams resting
on elastic foundation and under axial force by using a semi-
analytical approach. Transverse vibration of beam of linearly
variable depth with edge crack was Modeled of Chaudhari and
Maiti (1999). Attarnejad and Shahba (2011) used dynamic basic
displacement functions for free vibration analysis of centrifugally
stiffened tapered beams. A nonlocal version of Euler-Bernoulli
beam in conjunction with Eringen’s nonlocal elasticity was
studied by Peddieson et al. (2003).Wang et al. (2007) investigated
analytical solutions for vibration of nonlocal Euler-Bernoulli
and Timoshenko nanobeams. Application of nonlocal theories
for bending, buckling and vibration of beams can be seen
in Reddy (2007) and Aydogdu (2009) and vibration analysis
of Euler-Bernoulli nanobeams by using finite element method
can be found in Eltaher et al. (2013). Hosseini Hashemi and
Bakhshi Khaniki (2016) investigated an analytical solution for
free vibration of a variable cross-section nonlocal nanobeam. The
free transverse vibration of cracked Euler- Bernoulli nanobeams
based on nonlocal elasticity model was studied by Loya et al.
(2009). Beni et al. (2014) studied the transverse vibration of
cracked nano-beam based on modified couple stress theory.
Further, Bagdatli (2015) presented the non-linear vibration of
nanobeams. Now, literature related to development of various
approaches of Differential Quadrature (DQ) method have also
been briefly mentioned herein.

For the first time, Bellman and Casti (1971) introduced
the Differential Quadrature (DQ) method in the year 1971.
Therefore, this powerful technique is being used for solving linear
and nonlinear differential equations arising in various dynamic
problems. Later, Bert et al. (1988) used this method for solving
the dynamical problem arising in the field of structural dynamics.
Since then, this method is applied by various researchers for
solving different types of structural problems such as linear or
nonlinear. Different authors introduced various procedures to
use edge conditions in the DQ method. In this regard, for the
first time, Bert et al. (Jang et al., 1989) proposed δ technique to
use edge conditions. In this case (Shu, 2000), one may observe
that one edge condition is used at the boundary point whereas
other edge condition is at a distance δ from the boundary point.
This δ technique may be suitable for the C-C edge but this is

not useful for S-S and S-C edge conditions. In order to eradicate
the shortcomings of the above approach, Bert further presented a
new technique in applying edge conditions which may be found
in Bert et al. (1993, 1994), Wang and Bert (1993), Wang et al.
(1993), Bert and Malik (1996). In this technique, one just needs
to implement one boundary condition numerically while the
other edge condition can be obtained from the DQ weighting
coefficient matrices. Similarly, Tornabene et al. surveyed several
methods under the heading of strong formulation finite element
method (SFEM) which can be found in Tornabene et al. (2015).

To the best of the present authors’ knowledge, this article
provides first time the frequency parameters of the variable cross-
section (non-uniform) single-layered graphene nano-ribbons
(SLGNRs) by using Differential Quadrature Method (DQM). In
this article, Euler-Bernoulli beam theory in conjunction with
nonlocal elasticity theory has been considered to illustrate the
effects of the nonuniform parameter, nonlocal parameter, aspect
ratio and edge condition on the frequency parameter.

REVIEW OF NONLOCAL ELASTIC THEORY

Nonlocal stress tensor σ at a given point x in conjunction
to nonlocal elasticity theory can be expressed as Murmu and
Adhikari (2010)

σ (x) =
w
V
K

(∣

∣x′ − x
∣

∣ ,α
)

τ dV (x′) (1)

where τ is the classical stress tensor,K
(∣

∣x′ − x
∣

∣ , α
)

the nonlocal
modulus, and

∣

∣x′ − x
∣

∣ the Euclidean distance. One may note that
the volume integral is considered over the region V . Here α is the
material constant and it depends on both external and internal
characteristic lengths.

From Hooke’s law, one may have

τ (x) = C (x) : ε (x) (2)

where C is the fourth order elasticity tensor, ε is the classical
strain tensor and: denotes double dot product.

It may be noted that Equation (1) is the integral constitutive
relation and it is very complicated to solve. Hence we need an
equivalent form of this equation which may be expressed as
Murmu and Adhikari (2010)

(

1− α
2L2∇2

)

σ = τ , α =
e0a

L
(3)

where∇2 is the Laplace operator, e0 is a material constant, a is an
internal characteristic length and L is the external characteristic
length of the nanostructure. Here e0a is the nonlocal parameter
which shows scale effect on the nanostructures.

MATHEMATICAL FORMULATION OF THE
PROPOSED MODEL

In this study, the Euler–Bernoulli beam theory along with the
nonlocal elasticity theory of Eringen (1972) has been considered
for the investigation. In this regard, one must have adequate
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knowledge about energies. Strain energyU for local elasticitymay
express as

U =
1

2

Lw

0

w

A

σxxεxx dA dx , (4)

where σxx is the normal stress, L is the length and A is the
cross-section area. The strain-displacement relation is given as

εxx = −z
∂
2w

∂x2
, (5)

where εxx is the normal strain and w is the deflection function.
Substituting Equation (5) in Equation (4), one may obtain

U = −
1

2

Lw

0

M
∂
2w

∂x2
dx , (6)

where M =
r
A

zσxxdA, is the bending moment. In this study,

the free harmonic motion is considered viz. we take w =

w0(x) sin ωt, whereω is the natural frequency of vibration. Using
free harmonic motion in Equation (6), we may obtain the strain
energy U as

U = −
1

2

Lw

0

M
d2w0

dx2
dx . (7)

The kinetic energy T is given as

T =
1

2

Lw

0

ρAω
2w2

0 dx , (8)

where ρ is the mass density and A is the area.
Using Hamilton’s principle and setting the co-efficient of δw0

to zero, one may obtain the governing equation as

d2M

dx2
= −ρAω

2w0. (9)

Based on Eringen’s nonlocal elasticity theory, the nonlocal
constitutive relation for EBT may be expressed as

M − µ
d2M

dx2
= −EI

d2w0

dx2
(10)

where µ is the nonlocal parameter which can be expressed as
µ = (e0a)

2 with e0 and a denoting material constant and internal
characteristic length respectively, I is the second moment of area
and E is Young’s modulus. By using Equation (9) and Equation
(10),M may be expressed as

M = −EI
d2w0

dx2
+ µ

(

−ρAω
2w0

)

(11)

Structural members with variable cross section play very
significant role in civil, mechanical, and aeronautical engineering.

Since we have considered the width of the cross-section is varied
exponentially along the length of the nanoribbon, so we will have
(Hosseini Hashemi and Bakhshi Khaniki, 2016)

A(x) = A0e
nx and I(x) = I0e

nx (12)

where, n is the non-uniform parameter, I0 and A0 are the second
moment of area and cross-section of nanoribbon respectively.
Using Equation (11) along with Equation (12) in Equation (9),
one may obtain the governing equation in terms of displacement
as

EI0
d4w0

dx4
+ 2nEI0

d3w0

dx3
+ EI0

(

n2 +
ρA0µω

2

EI0

)

d2w0

dx2

+ 2ρA0µω
2n

dw0

dx
+ ρA0ω

2w0(µn
2 − 1) = 0 (13)

Let us introduce the following non-dimensional terms
X = x

L = Dimensionless co-ordinate
W =

w0
L = Dimensionless transverse displacement

λ
2 =

ρA0ω
2L4

EI0
= Frequency parameter

α =
e0a
L = Dimensionless non-local parameter

η = nL= Dimensionless non-uniform parameter.
Using the above non-dimensional terms in Equation (13), we

obtain the nondimensionalized form of the governing differential
equation as Hosseini Hashemi and Bakhshi Khaniki (2016)

d4W

dX4
+ 2η

d3W

dX3
+ η

2 d
2W

dX2

= λ
2

{

(1− α
2
η
2)W − α

2 d
2W

dX2
− 2α2

η
dW

dX

}

(14)

Next, we introduce an overview of the differential quadrature
method.

DIFFERENTIAL QUADRATURE METHOD

In this investigation, Quan and Chang (1989) approach is taken
into consideration along with Chebyshev-Gauss-Lobatto grid
points which are expressed as

Xi =
1

2

[

1− cos

(

i− 1

N − 1
.π

)]

. (15)

One may express the derivatives of displacement function W(X)
at a given discrete point i as Behera and Chakraverty (2015)

W′
i =

N
∑

j= 1

AijWj

W′′
i =

N
∑

j= 1

BijWj (16)

W′′′
i =

N
∑

j= 1

CijWj

Wi
IV =

N
∑

j= 1

DijWj
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where i = 1, 2, . . . , N and N is the number of discrete grid
points.

Here Aij,Bij,Cij, and Dij are the weighting coefficients of the
first, second, third and fourth derivatives respectively.

Determination of Weighting Coefficients
Computation of weighting coefficient matrix A = (Aij) plays
significant role in DQ method. As per Quan and Chang ’s
approach, the matrixA = (Aij) can be computed by the following
procedure.

For i 6= j

Aij =
1

Xj − Xi

N
∏

k6=i
k6=j
k=1

Xi − Xk

Xj − Xk
i = 1, 2, . . . ,N j = 1, 2, . . . ,N

(17)

for i = j

Aii =

N
∑

k6=i
k=1

1

Xi − Xk
i = 1, 2, . . . ,N. (18)

After weighting coefficients of first-order derivatives are
computed, one may easily get the weighting coefficients of
higher order derivatives by simple matrix multiplication which
is given as

B = Bij =

N
∑

k= 1

AikAkj (19)

C = Cij =

N
∑

k= 1

AikBkj (20)

D = Dij =

N
∑

k= 1

AikCkj =

N
∑

k= 1

BikBkj. (21)

Application of Boundary Conditions
Four classical boundary conditions such as SS,CS,CC, andCF are
taken into consideration in the present study where the letters
S,C, and F denote simply supported, clamped and free edge
conditions respectively.

Let us now denote

A =











A11 A12 · · · A1,N−1 A1,N

A21 A22 · · · A2,N−1 A2,N

...
...

...
...

AN1 AN2 · · · AN,N−1 AN,N











Ā =











0 A12 · · · A1,N−1 0
0 A22 · · · A2,N−1 0
...

...
...

...
0 AN2 · · · AN,N−1 0











Ā1 =









0 A1,2 · · · A1,N

0 A2,2 · · · A2,N

· · · · · · · · · · · ·

0 AN,2 · · · AN,N









Ā2 =









A1,1 A1,2 · · · A1,N−1 0
A2,1 A2,2 · · · A2,N−1 0
· · · · · · · · · · · · · · ·

AN,1 AN,2 · · · AN−1,N−1 0









.

The weighting coefficients of higher order derivatives for
different edge conditions are given below.

Simply Supported-Simply Supported

{W′} = [Ā]{W}.

{W′′} = [A] [Ā]{W} = [B̄]{W} with B̄ = [A] [Ā].

{W′′′} = [Ā] {W′′′} = [Ā] [B̄] {W} = [C̄] {W}.

{WIV} = [A] {W′′′} = [A] [C̄] {W} = [B̄] [B̄] {W} = [D̄] {W}

where [D̄] = [B̄] [B̄] or [D̄] = [A] [C̄].

Clamped-Simply Supported

{W′} = [Ā] {W}

{W′′} = [Ā1] {W
′} = [ Ā1] [Ā] {W} = [B̄] {W} with [B̄] = [Ā1] [Ā].

{W′′′} = [Ā2] {W
′′} = [Ā2] [B̄] {W} = [C̄] {W} with [C̄] = [Ā2] [B̄].

{WIV } = [A] {W′′′} = [A] [C̄] {W} = [D̄] {W} with [D̄] = [A] [C̄].

Clamped-Clamped

{W′} = [Ā] {W}

{W′′} = [Ā] {W′} = [ Ā] [Ā] {W} = [B̄] {W} with [B̄] = [Ā] [Ā].

{W′′′} = [A] {W′′} = [A] [B̄] {W} = [C̄] {W} with [C̄] = [A] [B̄].

{WIV } = [A] {W′′′} = [A] [C̄] {W} = [D̄] {W} with [D̄] = [A] [C̄].

TABLE 1 | Comparisons of first fundamental frequency parameter (λ ) for SS

Nano beam.

µ Present Reddy, 2007 Aydogdu, 2009 Eltaher et al., 2013

0 9.8696 9.8696 9.8696 9.8696

1 9.4159 9.4159 9.4124 9.4159

2 9.0195 9.0195 9.0133 9.0195

3 8.6693 8.6693 8.6611 8.6693

4 8.3569 8.3569 8.3472 8.3569

TABLE 2 | Comparisons of first fundamental frequency parameter (λ ) for SS

Nanobeam.

µ Aydogdu, 2009 Eltaher et al., 2013 Present

0 9.8696 9.8798 9.8696

1 9.7498 9.4238 9.7500

2 9.6343 9.0257 9.63473

3 9.5228 8.6741 9.5234

4 9.4150 8.3606 9.4158
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TABLE 3 | Comparisons of frequency parameter
(√

λ

)

for SS case.

α = e0a/L
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Mode
Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

0 3.1416 3.1416 6.2832 6.2832 9.4248 9.4248 1.566 1.566 15.708 15.708

0.1 3.0685 3.0685 5.7817 5.7817 8.0400 8.0400 9.9161 9.9161 11.5111 11.5111

0.3 2.6800 2.6800 4.3013 4.3013 5.4422 5.4422 6.3630 6.3630 7.1568 7.1568

TABLE 4 | Comparisons of frequency parameter
(√

λ

)

for CS case.

α = e0a/L
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Mode
Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

0 3.9266 3.9266 7.0686 7.0686 10.2102 10.2102 13.3518 13.3518 16.4934 16.4934

0.1 3.8209 3.8209 6.4649 6.4649 8.6517 8.6517 10.469 10.469 12.018 12.018

0.3 3.2828 3.2828 4.7668 4.7668 5.8371 5.8371 6.7143 6.7143 7.4773 7.4773

TABLE 5 | Comparisons of frequency parameter
(√

λ

)

for CC case.

α = e0a/L
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Mode
Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

0 4.7300 4.7300 7.8532 7.8532 10.9956 10.9956 14.1372 14.1372 17.2787 17.2787

0.1 4.5945 4.5945 7.1402 7.1402 9.2583 9.2583 11.016 11.016 12.520 12.520

0.3 3.9184 3.9184 5.1963 5.1963 6.2317 6.2317 7.0482 7.0482 7.7955 7.7955

Clamped-Free

{W′} = [Ā1] {W}

{W′′} = [Ā1] {W
′} = [Ā1] [Ā1] {W} = [B̄] {W} with [B̄] = [Ā1] [Ā1].

{W′′′} = [Ā2] {W
′′} = [Ā2] [B̄] {W} = [C̄] {W} with [C̄] = [Ā2] [B̄].

{WIV } = [Ā2] {W
′′′} = [Ā2] [C̄] {W} = [D̄] {W} with [D̄] = [Ā2] [C̄].

Substituting the expression of Equation (16) into Equaion (14),
one may obtain generalized eigenvalue problem as

[S] {W} = λ
2 [T] {W} (22)

where S is the stiffness matrix and T is the mass matrix.

NUMERICAL RESULTS AND DISCUSSIONS

Equaion (22) is solved by using a MATLAB program which is
developed by the authors and frequency parameters

√
λ have

been obtained. DQ method has been implemented along with
the boundary conditions in the coefficient matrix. Following
parameters (Reddy et al., 2006) are taken for the computational

purpose.

E = 1.012TPa, L = 10, Poisson’s ratio (ν) = 0.245,

and unless mentioned
L

h
= 10.

Validation
For validation of present method, we consider a nanobeam
with uniform cross-section viz. results of fundamental
frequency parameter (λ) are then compared with (Reddy,
2007; Aydogdu, 2009; Eltaher et al., 2013) for different
nonlocal parameters (µ) which are presented in Tables 1, 2. In
Table 1, aspect ratio (L/h) is taken as 10. Similarly, in Table 2,
fundamental frequency parameter (λ ) for SS nanobeam is
compared with (Aydogdu, 2009; Eltaher et al., 2013) with
an aspect ratio (L/h) as 20. Again results are compared
with (Wang et al., 2007) for different α =

e0a
L which are

presented in Tables 3–6. From these Tables 1–6, one may
observe close agreement of results with those available in the
literature.

Convergence
A minimum number of grid points have been obtained by
studying convergence to obtain the final results. In order
to show how the solution is affected by the grid points,
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TABLE 6 | Comparisons of frequency parameter
(√

λ

)

for CF case.

α = e0a/L
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Mode
Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

0 1.8751 1.8751 4.6941 4.6941 7.8548 7.8548 10.9955 10.9955 14.1372 14.1372

0.1 1.8792 1.8792 4.5475 4.5475 7.1459 7.1459 9.2569 9.2569 11.016 11.016

0.3 1.9154 1.9154 3.7665 3.7665 5.2988 5.2988 6.1385 6.1385 7.1450 7.1450

FIGURE 1 | Variation of frequency parameters with number of terms for SS, CS, CC, and CF conditions. (A) Convergence of SS Nanobeam. (B) Convergence of CS

Nanobeam. (C) Convergence of CC Nanobeam. (D) Convergence of CF Nanobeam.

TABLE 7 | Convergence for SS case.

N
√

λ1
√

λ2
√

λ3
√

λ4

4 3.1757 5.2692 – –

6 3.0647 5.7140 9.1157 9.9598

8 3.0650 5.7839 8.0678 9.5855

10 3.0650 5.7839 8.0429 9.9002

12 3.0650 5.7839 8.0421 9.9171

14 3.0650 5.7839 8.0421 9.9177

16 3.0650 5.7839 8.0421 9.9177

18 3.0650 5.7839 8.0421 9.9177

20 3.0650 5.7839 8.0421 9.9177

variations of the frequency parameters (
√

λ) with number of
grid points (N) are shown in Figure 1 and in Tables 7–10
for SS, CS, CC, and CF cases respectively. Here, we have
considered L = 10, η = 0.5 and µ = 1. From this

TABLE 8 | Convergence for CS case.

N
√

λ1
√

λ2
√

λ3
√

λ4

4 3.5411 4.7682 – –

6 3.7592 6.3183 9.2660 9.4740

8 3.7550 6.4284 8.6839 10.0281

10 3.7552 6.4359 8.6309 10.3517

12 3.7552 6.4357 8.6336 10.4583

14 3.7552 6.4357 8.6333 10.4556

16 3.7552 6.4357 8.6333 10.4559

18 3.7552 6.4357 8.6333 10.4559

20 3.7552 6.4357 8.6333 10.4559

figure, one may note that with an increase in number of
grid points, the convergence is achieving fast. One may also
observe that 12 grid points are sufficient to get the converged
results.
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TABLE 9 | Convergence for CC case.

N
√

λ1
√

λ2
√

λ3
√

λ4

4 1.2706 4.2537 – –

6 4.6198 7.0750 10.3179 –

8 4.5975 7.4555 9.4853 12.6027

10 4.5987 7.1200 9.2525 12.1127

12 4.5986 7.1451 9.2616 10.9317

14 4.5986 7.1435 9.2606 11.0373

16 4.5986 7.1436 9.2607 11.0154

18 4.5986 7.1436 9.2607 11.0175

20 4.5986 7.1436 9.2607 11.0175

TABLE 10 | Convergence for CF case.

N
√

λ1
√

λ2
√

λ3
√

λ4

4 1.9018 3.8806 4.4163 –

6 1.9171 4.5549 6.7626 –

8 1.9171 4.5274 7.1286 9.3090

10 1.9171 4.5284 7.1447 9.2490

12 1.9171 4.5284 7.1447 9.2605

14 1.9171 4.5284 7.1447 9.2597

16 1.9171 4.5284 7.1447 9.2597

18 1.9171 4.5284 7.1447 9.2597

20 1.9171 4.5284 7.1447 9.2597

TABLE 11 | Frequency parameter
(√

λ

)

for SS case for different nonlocal

parameter.

µ
√

λ1
√

λ2
√

λ3
√

λ4

0 3.1377 6.2850 9.4266 12.5680

1 3.0650 5.7839 8.0421 9.9177

2 3.000 5.4348 7.3031 8.8012

3 2.9414 5.1707 6.8133 8.1204

4 2.8881 4.9604 6.4534 7.6414

5 2.8393 4.7869 6.1720 7.2770

Effect of Nonlocal Parameter
In this subsection, the first four frequency parameters

(√
λ

)

of

nanobeam are obtained for different nonlocal parameters. We
have taken the values of nonlocal parameter as 0, 1, 2, 3, 4,
5nm2. In this study, classical boundary conditions such as SS, CS,
CC, and CF are considered for investigation. Both tabular and
graphical results are depicted by taking other parameters such as
non-uniform parameter (η) as 0.5 and L = 10 nm. First four
frequency parameters of SS, CS, CC, and CF edges for different
nonlocal parameters are presented in Tables 11–14. From these
tables, one may observe that frequency parameters decrease
with increase in nonlocal parameter except first fundamental
frequency parameter of CF nanobeams. One may also notice that
frequency parameters increase with increase in mode number.
Here one important point is to note that CC nanobeams are
having highest frequency parameters than other set of boundary
conditions. Figure 2 shows variation of frequency parameters

TABLE 12 | Frequency parameters
(√

λ

)

for CS case for different nonlocal

parameters.

µ
√

λ1
√

λ2
√

λ3
√

λ4

0 3.8593 7.0356 10.1877 13.3348

1 3.7552 6.4357 8.6333 10.4559

2 3.6634 6.0279 7.8240 9.2697

3 3.5817 5.7240 7.2934 8.5513

4 3.5082 5.4846 6.9057 8.0473

5 3.4416 5.2885 6.6037 7.6645

TABLE 13 | Frequency parameters
(√

λ

)

for CC case for different nonlocal

parameters.

µ
√

λ1
√

λ2
√

λ3
√

λ4

0 4.7336 7.8561 10.9979 14.1390

1 4.5986 7.1436 9.2607 11.0174

2 4.4805 6.6661 8.3759 9.75553

3 4.3758 6.3135 7.8022 8.9952

4 4.2821 6.0375 7.3857 8.4628

5 4.1975 5.8125 7.0627 8.0587

TABLE 14 | Frequency parameters
(√

λ

)

for CF case for different nonlocal

parameters.

µ
√

λ1
√

λ2
√

λ3
√

λ4

0 1.9074 4.6532 7.8249 10.9722

1 1.9171 4.5284 7.1447 9.2597

2 1.9272 4.4103 6.6866 8.3720

3 1.9377 4.2975 6.3535 7.7845

4 1.9487 4.1895 6.1007 7.3456

5 1.9602 4.0855 5.9037 6.9929

(√
λ

)

with nonlocal parameters for different edge conditions

such as SS, CS, CC, and CF.

Effect of Non-uniform Parameter
Effect of the non-uniform parameter η on first four frequency
parameters is analyzed by taking non-uniform parameter η

as 0, 0.2, 0.4, 0.6, 0.8, and 1. Tables 15–18 depict frequency
parameters of SS, CS, CC, and CF edges for different non-
uniform parameters and Figure 3 illustrates the variation of
frequency parameters with non-uniform parameter η for classical
boundary conditions SS, CS, CC, and CF. Here, computation
is done with nonlocal parameter µ =1nm2 and L = 10. It is
evident from the Figure 3 and Tables 15–18 that the frequency
parameters decrease with increase in the non-uniform parameter
for the fundamental frequency of SS condition while other modes
are increasing. With the increase in non-uniform parameter,
frequency parameters decrease for all mode of CS edge whereas
this is exactly opposite in case of CC nanoribbons. For the CF
case, fundamental frequency increases, second mode decreases,
and other modes show random behavior with increase in the
non-uniform parameter.
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FIGURE 2 | Variation of frequency parameter with nonlocal parameter. (A) Variation of Nonlocal parameter for SS Nanobeam. (B) Variation of Nonlocal parameter for

CS Nanobeam. (C) Variation of Nonlocal parameter for CC Nanobeam. (D) Variation of Nonlocal parameter for CF Nanobeam.

TABLE 15 | Frequency parameter
(√

λ

)

for SS case for different non-uniform

parameters.

η
√

λ1
√

λ2
√

λ3
√

λ4

0 3.0685 5.7816 8.0399 9.9161

0.2 3.0679 5.7820 8.0403 9.9163

0.4 3.0662 5.7831 8.0413 9.9171

0.6 3.0634 5.7850 8.0430 9.9184

0.8 3.0595 5.7876 8.0454 9.9202

1 3.0545 5.7909 8.0485 9.9225

TABLE 16 | Frequency parameters
(√

λ

)

for CS case for different non-uniform

parameters.

η
√

λ1
√

λ2
√

λ3
√

λ4

0 3.8208 6.4648 8.6516 10.4687

0.2 3.7944 6.4525 8.6438 10.4632

0.4 3.7682 6.4411 8.6366 10.4582

0.6 3.7421 6.4306 8.6302 10.4537

0.8 3.7161 6.4210 8.6245 10.4498

1 3.6900 6.4124 8.6196 10.4464

Effect of Length-to-Height Ratio
In this subsection, the effect of length-to-height ratio (L/h) on
the first four frequency parameters has been analyzed for the
classical boundary conditions such as SS, CS, CC, and CF. First
four frequency parameters of nanobeam are given in Tables 19–
22 for different L/h (10, 20, 30, 40, 50). Here, computation is done

TABLE 17 | Frequency parameters
(√

λ

)

for CC case for different non-uniform

parameters.

η
√

λ1
√

λ2
√

λ3
√

λ4

0 4.5944 7.1402 9.2583 11.0157

0.2 4.5951 7.1407 9.2587 11.0160

0.4 4.5971 7.1424 9.2598 11.0168

0.6 4.6005 7.1450 9.2617 11.0181

0.8 4.6053 7.1488 9.2644 11.0199

1 4.6114 7.1537 9.2678 11.0223

TABLE 18 | Frequency parameters
(√

λ

)

for CF case for different non-uniform

parameters.

η
√

λ1
√

λ2
√

λ3
√

λ4

0 1.8791 4.5474 7.1458 9.2568

0.2 1.8951 4.5412 7.1460 9.2585

0.4 1.9105 4.5332 7.1454 9.2595

0.6 1.9224 4.5231 7.1438 9.2597

0.8 1.9278 4.5107 7.1414 9.2591

1 1.9237 4.4958 7.1381 9.2577

with µ = 1nm2 and η = 0.5. Graphical results are presented in
Figure 4, where variation of first four frequency parameters with
L/h has been shown. From these tables, one may observe that
frequency parameters increase with increase in length-to-height
ratio except fundamental frequency parameter of CF nanobeams.
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FIGURE 3 | Variation of frequency parameter with non-uniform parameter. (A) Variation of Non-uniform parameter for SS Nanobeam. (B) Variation of Non-uniform

parameter for CS Nanobeam. (C) Variation of Non-uniform parameter for CC Nanobeam. (D) Variation of Non-uniform parameter for CF Nanobeam.

TABLE 19 | Frequency parameters
(√

λ

)

for SS case for different

length-to-height ratio.

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 3.0650 5.7839 8.0421 9.9177

20 3.1187 6.1390 8.9659 11.5651

30 3.1292 6.2180 9.2075 12.0704

40 3.1329 6.2468 9.3002 12.2758

50 3.1346 6.2604 9.3448 12.3771

TABLE 20 | Frequency parameters
(√

λ

)

for CS case for different

length-to-height ratio.

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 3.7552 6.4357 8.6333 10.4559

20 3.8320 6.8590 9.6642 12.2326

30 3.8471 6.9543 9.9379 12.7857

40 3.8524 6.9893 10.0434 13.0118

50 3.8549 7.0058 10.0942 13.1236

Effect of Boundary Conditions
One need to have adequate knowledge about boundary
conditions for designing engineering structures. It helps
designers to gather important information without carrying
out detail experimental investigation. Therefore, it is quite
important to study the effect of boundary conditions on
frequency parameter. Figure 5 illustrates variation of frequency

TABLE 21 | Frequency parameters
(√

λ

)

for CC case for different

length-to-height ratio.

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 4.5986 7.1436 9.2607 11.0174

20 4.6981 7.6449 10.4067 12.9317

30 4.7177 7.7588 10.7149 13.5354

40 4.7246 7.8006 10.8342 13.7835

50 4.7279 7.8204 10.8918 13.9063

TABLE 22 | Frequency parameters
(√

λ

)

for CF case for different

length-to-height ratio.

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 1.9171 4.5284 7.1447 9.2597

20 1.9098 4.6213 7.6246 10.3932

30 1.9084 4.6389 7.7328 10.6956

40 1.9080 4.6452 7.7724 10.8123

50 1.9078 4.6480 7.7911 10.8686

parameter with nonlocal parameter for different boundary
conditions. The values of other parameters are taken as
L = 10nm and η = 0.5. One may observe from
the figure that CC nanobeams are having highest frequency
parameter whereas CF nanobeams possess the lowest frequency
parameter.
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FIGURE 4 | Variation of frequency parameter with length-to-height ratio. (A) Variation of L/h for SS Nanobeam. (B) Variation of L/h for CS Nanobeam. (C) Variation of

L/h for CC Nanobeam. (D) Variation of L/h for CF Nanobeam.

FIGURE 5 | Variation of frequency parameter with boundary condition. (A) Variation of boundary condition for 1st mode. (B) Variation of boundary condition for 2nd

mode. (C) Variation of boundary condition for 3rd mode. (D) Variation of boundary condition for 4th mode.
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CONCLUSIONS

Free vibration of the variable cross-section (non-uniform)
single-layered graphene nano-ribbons (SLGNRs) is investigated
using the Differential Quadrature Method (DQM). Euler–
Bernoulli beam theory is considered in conjunction with the
nonlocal elasticity theory of Eringen. In this study, width of
the cross-section is varying exponentially along the length of
the nano-ribbon while other parameters are kept constant.
Complete procedure of Differential Quadrature Method (DQM)
is depicted clearly including application of boundary conditions
and MATLAB code has been developed to obtain the numerical
results for different scaling parameters as well as for four types
of boundary conditions. Numerical as well as graphical results
are presented to show the effects of the nonlocal parameter, non-
uniform parameter, aspect ratio and the boundary conditions
on the frequency parameters. one may observe that the effect
of the nonlocal parameter is more in higher modes and
another interesting observation is that fundamental frequency
(1st mode) parameter of the cantilever (CF) nanobeam does not
decrease with increase in nonlocal parameters whereas frequency
parameters of other modes of nanobeam decrease with increase
in nonlocal parameters. Frequency parameters decrease with
increase in the non-uniform parameter for the fundamental
frequency of SS condition while other modes are increasing.With

the increase in non-uniform parameter, frequency parameters
decrease for all mode of CS edge whereas this is exactly opposite
in case of CC nanoribbons. For the CF case, fundamental
frequency increases, second mode decreases, and other modes
show random behavior with increase in the non-uniform
parameter. One may also conclude that frequency parameters
increase with increase in length-to-height ratio (aspect ratio)
except fundamental frequency parameter of CF nanobeam.
Moreover, it is also found that clamped (CC) case possesses
highest frequency parameters and cantilever (CF) nanobeam
possesses the lowest among all other types of boundary
conditions.
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In this paper a parallel iterative solver based on the Generalized Minimum Residual

Method (GMRES) with complex-valued coefficients is explored, with applications to the

Boundary Element Method (BEM). The solver is designed to be executed in a GPU

(Graphic Processing Unit) device, exploiting its massively parallel capabilities. The BEM

is a competitive method in terms of reduction in the number of degrees of freedom.

Nonetheless, the BEM shows disadvantages when the dimension of the system grows,

due to the particular structure of the system matrix. With difference to other acceleration

techniques, the main objective of the proposed solver is the direct acceleration of

existing standard BEM codes, by transfering to the GPU the solver task. The CUDA

programming language is used, exploiting the particular architecture of the GPU device

for complex-valued systems. To explore the performances of the solver, two linear water

wave problems have been tested: the frequency-dependent added mass and damping

matrices of a 3D floating body, and the Helmholtz equation in a 2D domain. A NVidia

GeForce GTX 1080 graphic card has been used. The parallelized GMRES solver shows

reductions in computing times when compared with its CPU implementation.

Keywords: GMRES (generalized minimal residual) algorithm, CUDA (compute unified device architecture), GPU

(CUDA), floating bodies, boundary element method - BEM

1. INTRODUCTION

The Boundary Element Method (BEM) is a numerical technique to obtain approximated solutions
of partial differential equations. The origins of the method comes from Finite Element Method
(FEM) ideas in the 1970s. The paper by Cheng and Cheng (2005) shows the previous works and
the initials of the BEM. The birth date of the technique is considered in 1963, with the first paper
by Jaswon and Porter (1963). The first BEM conference was held at Southampton University in
1978, and and the first book was published in the same year, by Brebbia (1978). With refference
to three-dimensional boundary value problem, the basic idea of the BEM is the use of boundary
integral equations for primary variables at internal points (e.g., displacements, or potentials), and
its extension to boundary points after a limit-to-the-boundary process. The integrals are interpreted
in the sense of the Cauchy Principal Values (primary variables) or the Hadamard Finite Parte
(derived variables). To solve a boundary value problem, a mesh is defined at the boundary, and
the integral equation is used at collocation points. A fully-populated coefficient system matrix is
obtained. Comparing to the FEM, the BEM is a boundary method, in the sense that the numerical
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discretization is carried out at reduced spatial dimension (e.g.,
in three-dimensional problems, a mesh is required only at
the surfaces). This reduced dimension leads to smaller linear
systems, less computer memory requirements, and more efficient
computation.

The BEM is particularly well suited in wave problems due to
mesh reduction and the natural treatment of radiation boundary
conditions. Thus, it is an efficient competitor of some particuar
techniques, such as the partition of unity method in diffraction
and refraction problems (Ortiz and Sánchez, 2001; Ortiz, 2004)
in the Finite Element Method.

The classical book by Brebbia and Dominguez (1996) explain
the basic BEM theory and applications for potential and solid
mechanics. The book by Bonnet Bonnet (1999) is a recent
reference, with applications to solid and fluid mechanics. In the
specific context of fluid mechanics, Hess (1990) introduced the
panel method, which is equivalent to BEM techniques; the book
by Brebbia and Partridge (1992) is focused on particular BEM
topics for fluid mechanics.

Besides the inherent advantages, the BEM shows some
disadvantages for systems with large number of degrees of
freedom. In the standard BEM, the system matrix is fully
populated, without symmetry or sparsity structures. This causes
that the main bottleneck in computing times comes from the
solver task. The use of acceleration iterative solvers, popular in
FEM (e.g., the conjugate gradient) can not be used in BEM.
For large system of equations this problem is crucial and
makes the standard BEM not competitive with respect to other
domain techniques, such as the Finite Element Method. This
is particularly notorious in wave problems in the frequency
domain, where the system matrix is complex-valued and fine
meshes with large number of degrees of freedom are required.

In the BEM literature several acceleration techniques have
been developed for large systems. The review paper by Liu
et al. (2012) shows historical aspects and recent advances in
acceleration methods for the BEM. A first approach consists on
the multipole expansion of the Green functions, with an iterative
solver. This is known as the Fast Multipole Method (FMM).
The FMM has been regarded as one of the top 10 algorithms
in scientific computing and has progressed very significantly. It
was first introduced by Rokhlin (1985) in potential problems.
The tutorial by Liu and Nishimura (2006) explain the basic
algorithm and implementation details. The FMM has been
extended to other fields: in elastostatic, Liu (2008) develops the
algorithm for hipersingular 2D boundary integral equations in
multidomain problems; Djojodihardjo (2010) considers the use
of the FMM in FEM-BEM acoustic-structural interaction; in
3D time-harmonic elastodynamics, Chaillat and Bonnet (2013)
review the basic developments in FMM; in electromagnetism,
the book by Gumerov and Duraiswami (2005) shows a detailed
exposition of the FMM applied to the solution of the general
three-dimensional Helmholtz equation. The book by Liu (2009)
covers the basic FMM algorithms for potential, elastostatics,
Stokes flow and acoustic waves. Fortran codes are included.

When the FMM is implemented in a code based on the
sequential use of the Central Processing Unit (CPU) for a system
with N unknowns, the computing times is considerably reduced,

with times O
(

N1.5
)

, or even O
(

N log2 N
)

with a multilevel
approach (see López-Portugués et al., 2012 ).

The implementation of the FMM algorithm requires a strong
redesign of an existing code: a new hierarchical mesh of reference
points must be created, and the multipole expansion modifies the
way in which the system matrices are computed. The method is
also dependent on the kind of multipole expansion of the Green
function. The multipole expansion is not unique, and it is not
available for any Green function. As a consequence, the FMM is
not a general method. In the literature there have been developed
different strategies to accelerate a BEM code, independent on
the Green function. Such techniques can be classified into two
groups: the pFFT (pre-corrected Fast Fourier Transformation)
and the ACA (Adaptive Cross Approximation).

The pFFT method was proposed in 1997 by Phillips (1997);
Phillips and White (1997), in the context of potential problems,
with Laplace and Helmhotz equations as the governing equation.
It has been extended to other fields in the BEM: Stokes equation,
linear elasticity, coupled electrostatic and elasticity, Poisson,
dynamics and quasi-linear equations (described in Liu et al.,
2012). In the pFFT the algorithm does not depend on the Green
function, and its implementation is easy. The computing time in a
sequential CPU implementation are O(N)+O(Ng log2 Ng), with
Ng the number of nodes of an auxiliary mesh, which is required
by the method.

The ACA method (Lu et al., 2004; Benedetti et al., 2008) is
in the context of methods in which the improvement comes
from the acceleration of the solver, with the use of hierarchical
matrices, introduced by Hackbusch (1999) . The system matrix is
approximate by a low-rank expansion.

The Generalized Minimum Residual Method (GMRES) is an
iterative solver for the general use in the BEM. It was introduced
by Saad and Shultz (1986). It is based on Krylov subspaces
approximations. The main attraction of the GMRES comes
from its direct use with fully-populated matrices, typical in the
collocation BEM. Its use is widely extended, as a direct solver
or to accelerate other fast methods, as FMM or AKA. Leung
and Walker (1997) developed a combined GMRES with Dual
Compensation method in 3D elastostatics. In multipole BEM,
Margonari and Bonnet (2005) developed a combined BEM-FEM
method in 3D elastostatics; the GMRES is used to solve the linear
system of equations, and the FMM to accelerate thematrix-vector
multiplications. In AKA, Brancati et al. (2009) combine the use of
hierarchical matrices with GMRES in acoustics.

In comparison with the FMM, pFFT, or ACA, the main
advantage of the GMRES is its use as a direct solver; it does not
require modifications of an existing BEM code respect to the
collocation schema and generation of the system matrices. The
computational cost of the GMRES isO

(

N2
)

.
Recent advances in computing hardware have extended

the implementation of parallelization to improve the solver
performances. The parallelizaction can be carried out in multi-
core CPU (Central Processing Unit) systems. In addition,
the use of the Graphics Processing Unit (GPU) for massive
parallelization is extending nowadays. Its first use comes
from the Graphics processors developed by NVIDIA, and
the computing languaje CUDA (Computer Unified Device
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Architecture) Sanders and Kandrot (2010). Thus, a new
computing paradigm has been developed for numerical analysis,
based on heterogeneous massive parallel computation (Kirk and
Hwu, 2012). This paradigm requires a new global vision of codes,
by splitting the global tasks in blocks which are best suited to
be executed in the CPU, and blocks which are best suited to be
executed in massive parallel GPU processors.

The use of the GPU to accelerate the BEM is a recent trend
since 2009. Hamada and Takahashi (2009) show the use of the
GPU in the collocation stage, in acoustic wave problems governed
by the Helmholtz equation. Wang et al. (2011), used the GPU
to accelerate both the collocation task and the solver stage,
in elastostatics problems, with the Dual-Compensation GMRES
solver.Wang et al. (2013) used the GPUwith the FMM to develop
an adaptive solver in 3D elasticity. In the context of the standard
collocation mehtod, the use of the GPU to perform the global
matrix assembly and the LU factorization is reported in the work
by D’Azevedo and Nintcheu Fata (2012).

In the context fluid dynamics and meshless methods, Kelly
et al. (2014) explore a GPU implementation of an incompressible
Navier-Stokes code based on a Radial-Basis Function Collocation
Meshless Method for two-fluid flows. For compressive flows, Ma
et al. (2014) show a GPU implementation.

The acceleration of the GMRES in GPU is explored by Li
and Saad (2013) for sparse matrices; in this paper, the BEM is
not considered. Geng and Jacob (2013) states the acceleration
of vector-matrix products in the GMRES. In the literature, the
development of acceleration techniques based on the GPU for
the GMRES are focused on real-variable (simple or double
precision).

This paper explores the acceleration of the BEM based on
the acceleration of the GMRES solver, in the GPU, for complex-
valued systems with a fully-populated matrix, that arises in linear
water wave problems. The interest of the topic covers fluid
and fluid-structure interaction analysis. The generation of the
system matrix is implemented in the CPU. The main idea of the
acceleration scheme is the use of direct BEM codes, in which the
CPU is used to assemble the system matrix, and the GPU is used
to solve the linear system of equations. At this point, the basic
GMRES algorithm is explored, in which a preconditioner has not
been implemented.

This paper is organized as follows: in section 2 the basic
wave problems are described; section 3 shows the parallelization
algorithm, describing the tasks to be run in the CPU and the
GPU; section 4 show the numerical benchmark; section 5 shows
the main conclusions of the work.

2. BASIC EQUATIONS

2.1. Mass and Damping Matrices of a
Floating Body
The first problem is centered in the computation of the mass
and damping matrices in a fluid-solid interaction problem. The
analysis of a moving solid floating in amoving fluid due to gravity
waves is considered. The solution can be obtained by splitting the
wave problem into a diffraction and a set of refraction problems,

in which the rigid-body modes of displacement are considered.
This decomposition can be found in classical references in water
waves, as described in Mei et al. book Mei et al. (2005). In the
diffraction problem, the solid is fixed in an incidental potential
field, giving the actions (forces and moments) which excites the
solid. In the radiation problems, the floating body is excited
by a time-harmonic force following the rigid-body degrees of
freedom; a potential problem is stated at the fluid, considering
the prescribed boundary condition at the velocity field in the
boundary with the body. The mass and damping matrices are
obtained by integration at the fluid-solid inter-phase.

With relation to Figure 1, and the reference system
R{0; x, y, z}, it is considered a 3D floating body in a fluid
domain � in which the interphase surface with the solid is SB.
Potential flow is considered at the fluid, with 8(x) the velocity
potential function, with x = (x, y, z) a vector representing
the coordinates of a point in the fluid domain, in an eulerian
framework. Considering the complex-valued variable, the
potential can be split into a spatial and temporal functions,

8(x, t) = φ(x) e−iω t (1)

with i =
√
−1 and ω the angular frequency. Function φ(x)

can be decomposed into a diffraction term and six radiation
components (rigid-body modes),

φ(x) = φ
D(x)+

6
∑

i=1

Viφi(x) (2)

with Vi the participation factors of the rigid-body motions.
Each potential φi(x) is governed by an independent Laplace

equation,

1φi(x) = 0 (3)

with 1 =

(

∂
2

∂x2
+ ∂

2

∂y2
+ ∂

2

∂z2

)

the Laplace operator.

FIGURE 1 | Floating body.
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The free-surface and non-permeable boundary conditions are
imposed at z = 0 and z = −h, respectively

∂φi

∂z
−

ω
2

g
φi = 0 in z = 0 (4)

∂φi

∂z
= 0 in z = −h (5)

with g the gravity acceleration constant. At the interphase, both
velocities at the solid and fluid are equal. Thus,

∂φi

∂n
= −iωVi (ai · n) in SB (6)

with n the unitary normal vector exterior to the fluid domain,
and ai the velocity vector due to a unitary-amplitude oscillation
given at the i degree-of-freedom. Last, the Sommerfeld radiation
boundary condition is given as,

lim
r→∞

(

∂φi

∂r
− i kφi

)

= 0 (7)

with r =
√

x2 + y2, and k the wavenumber, which verifies the
following dispersion equation,

ω
2 = g k tanh

(

k h
)

(8)

The mass matrix components (µij) and added damping (λij) are
obtained by integration.

µij = ρ

∫

SB

Re
[

φi

(

aj · n
)]

dS (9)

λij = ρ ω

∫

SB

Im
[

φi

(

aj · n
)]

dS (10)

With ρ the fluid density.

2.2. Mild-Slope Equation
The second selected problem is centered in the propagation of
gravity waves in a three-dimensional fluid domain characterized
by a slow-varying depth profile. The governing equation is known
as the Mild-Slope equation, proposed by Berkhoff (1972, 1976),
in the context of harbor problems. This problem has been
solved by numerical methods by the Finite Element Method (e.g.,
Ortiz and Pastor, 1990; Ortiz and Sánchez, 2001; Ortiz, 2004)
for refraction-diffraction. In the BEM literature the domain
formulation is explored for particular cases. Isaacson and Qu
(1990) develop a method based on Green functions and BEM
techniques for predicting the wave field in a harbor containing
partially reflecting boundaries. Liu (2001) solves the numerical
prediction of combined difraction and refraction ocean waves by
use of a Dual Reciprocity BEM (DRBEM).

With reference to Figure 2, a velocity potential 8(x, t) is
considered. The free surface is characterized by the function
ς(x, y, t). Function h(x, y) represents the varying depth. In the
frequency domain, the complex potential φ(x) (1) is introduced.
Thus, function ς(x, y, t) can be written as:

ς(x, y, t) = η(x, y) e−iω t (11)

FIGURE 2 | Parameter definition in the Mild-slope problem.

The complex-valued function η(x, y) represents the wave height,
interpreted as a perturbation of the free surface respect to the rest
position.

Potential φ(x) verifies the Laplace equation, analogous to (3).
The impermeable boundary condition at the bottom depth can
be written as,

∂φ

∂z
+∇φ · ∇h = 0 in z = −h(x, y) (12)

with∇ the gradient operator in the spatial coordinates (x, y). The
free-surface condition can be written as,

∂φ

∂z
−

ω
2

g
φ = 0 in z = 0 (13)

For the particular case of constant-depth, it can be proved
Chamberlain and Porter (1995) that function η(x, y) verifies the
Helmholtz equation,

1η(x, y)+ k2η(x, y) = 0 (14)

with k the wave length, for which the dispersion Equation (8) is
verified.

2.3. Boundary Element Formulation
To approximate the solution by the BEM, the first step is the
statement of a Boundary Integral Equation (BIE). For an internal
point, (3), and considering the potential φ, the BIE is

φ(x)+

∫

S

∂G(x; y)

∂n
φ(y) dS(y) =

∫

S
G(x; y)

∂φ(y)

∂n
dS(y) (15)

with x ∈ �, y ∈ S, and G(x; y) is the Green function of the
problem; for the three-dimensional Laplace equation, the Green
function is,

G(x; y) =
1

4πr(x; y)
(16)

with r(x; y) the euclidean distance from point x, or collocation
point to the observation point y.
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The BIE for a smooth boundary point x ∈ S is obtained after
a limit-to-the-boundary process (Brebbia and Dominguez, 1996;
Bonnet, 1999)

φ(x)

2
+

∫

S

∂G(x; y)

∂n
φ(y) dS(y) =

∫

S
G(x; y)

∂φ(y)

∂n
dS(y) (17)

Both BIEs (15, 17) are valid for the Helmholtz Equation (14),
considering a bi-dimensional domain and replacing variable φ by
η, with the Green function,

G(x; y) =
1

2π
K0(i k r) (18)

with K0 the modified Bessel function order 0. In Isaacson and
Qu (1990) it is derived an alternative expression for this Green
function in the context of the Mild-slope equation. In case of
variable-depth, the Dual Reciprocity Method (Liu, 2001) leads to
a BEM formulation.

Equation (17) is used in a standard collocation method.
After the boundary discretization, and integral evaluation, it is
obtained the basic matrix formulation, as follows

HU = GQ (19)

with H and G two matrices, and U and Q vectors with degrees-

of-freedom in potential φ or flux ∂φ

∂n , respectively. After the
application of the prescribed boundary condition, the linear
system of equations is obtained,

AX = B (20)

The evaluation of the integrals depends on the type of
shape functions selected to interpolate the potential or flux
variables (Brebbia and Dominguez, 1996), with particularities
for singular or quasi-singular integration. In this paper
constant elements have been considered, due to its widely
use in the literature about acceleration techniques in
BEM.

3. A PARALLEL GMRES WITH CUDA

3.1. The Generalized Minimum Residual
Method
In this section the restarted GMRES (van der Vorst, 2003)
is described. With reference to system (20), the first step
in the GMRES solver is the definition of an initial solution
vector, X0. Thus, a first residual is defined as r0 = B −

A · X0. Algorithm 1 describes the steps of the restarted
GMRES, in which a new initial point X0 is set after m steps,
unless the convergence criteria is reached. This technique
allows important reductions in memory and computing times.
In the context of this paper, the GMRES schema has
been adapted to incorporate complex-valued matrices and
operations.

With reference to Algorithm 1, vector e1, length m, is a
unitary vector, in which the first position is 1 and 0 the other

Algorithm 1: Restarted GMRES

1: r = B− A · X0 for an initial approximation X0

2: for j = 1, 2, . . . do
3: β = |r|

4: v1 = r/β

5: B̂ = βe1
6: for i = 1, 2, . . . ,m do

7: w = A · vi
8: for k = 1, . . . , i do
9: hk,i = vk · w

10: w = w− hk,ivk
11: end for

12: hi+1,i = |w|

13: vi+1 = w/hi+1,i

14: u1,i = h1,i
15: for k = 2, . . . , i do
16: γ = ck−1uk−1,i + sk−1hk,i
17: uk,i = −sk−1uk−1,i + ck−1hk,i
18: uk−1,i = γ

19: end for

20: δ =

√

∣

∣ui,i
∣

∣

2
+

∣

∣hi+1,i

∣

∣

2

21: if
∣

∣ui,i
∣

∣ <
∣

∣hi+1,i

∣

∣ then

22: µ = ui,i/hi+1,i

23: τ = µ/ |µ|

24: else

25: µ = hi+1,i/ui,i
26: τ = µ/ |µ|

27: end if

28: ci =
∣

∣ui,i
∣

∣ /δ

29: si =
∣

∣hi+1,i

∣

∣ τ/δ

30: ui,i = ciui,i + sihi+1,i

31: b̂i+1 = −sib̂i
32: b̂i = cib̂i

33: ω =

∣

∣

∣
b̂i+1

∣

∣

∣

34: if ω/ |B| ≤ Tolerancia then
35: nr = i
36: ynr = b̂nr/unr ,nr
37: Ir a línea 41
38: end if

39: end for

40: nr = m
41: ynr = b̂nr/unr ,nr
42: for k = nr − 1, . . . , 1 do

43: yk =
(

b̂k −
∑nr

i=k+1
uk,iyi

)

/uk,k

44: end for

45: X = X0 +
∑nr

i=1 yivi
46: ω2 = |B− A · X|

47: if ω2/ |B| ≤ Tolerancia then
48: Solution obtained→ End
49: end if

50: r = B− A · X

51: end for

positions. The dot products with complex-valued components
are interpreted in the sense of the inner product in a Hilbert
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space. Thus, if a and b are complex-valued vector, the dot product
is defined as follows,

a · b =
∑

ai · bi. (21)

with ai the complex-conjugate of term ai. The sum (21) is
extended to the dimension of the complex vector.

The norm |v| is defined in terms of the previously defined
product,

|v| =

√

∑

vivi (22)

The stopping criterion is an important aspect in solver iterative
algorithms. In the context of this work, a dimensionless norm has
been considered, reported in Frayssé et al. (1998).

|r|

α |x| + χ
≤ Tolerance (23)

with α and χ two parameters to be set up by the user. In this
paper, parameters α = 1 and χ = 0 have been considered.

3.2. GPU Parallelization With CUDA
In the GMRES, the most demanding operation is the calculation
of the matrix-vector products. The parallelization of these
products has been implemented in CUDAprogramming languaje
and run in the GPU. The GPU is a device with specific resources
that must be considered in the design of the algorithms.

Computing times are sensitive to particular aspects, such
as the use of the shared memory, registers per thread and
the block-threads structure of the computing grid Kirk and
Hwu (2012). These parameters determine the occupancy1 of
the GPU. CUDA allows the code to be optimized for each
particular GPU device, which cause portability and scalability
of the generated codes. To adapt the execution parameters to
each singular GPU, the CUDA Occupancy Calculator developed
by NVidia has been used. Given the shared memory and the
number of registers per thread, the highest value of number
of threads per block are optimized for any particular GPU
device.

Figure 3 shows the global schema for the proposed solver. The
operations are grouped into four steps: two of them are carried
out in the CPU, and two into the GPU device.

Algorithm 2 is implemented with CUDA to be run in the
GPU. This algorithm is focused on control of the matrix-vector
products. Given a matrix M and vector V, the grid structure
is determined depending on the matrix and vector dimensions,
for maximum GPU occupancy. In general, for systems with
large number of degrees of freedom it is required the use of
more than one block per row, in order to balance the number
of operations required to process each row. However, when
more than one block is required per row, results computed
at each block must to be reduced to a unique value per
row.

1Number of simultaneous threads computed by multiprocessor divided by the

maximum allowed.

After the definition of these setup parameters, the memory
transfer operations between GPU and CPU must be minimized.
In this sense, the system matrix in the BEM code is fully
populated; thus, no compression methods are available, and all
the components of the matrix must be transferred to the GPU.
This transference is carried out by splitting the matrix in sub-
matrices. Each sub-matrix block is transferred to the GPU, in
which the matrix-vector product is carried out.

Algorithm 3 describes the first set of operations run in the
GPU. Each thread is used to carry out the product of the matrix
elements by the vector. Results are stored in a local vector in the
shared memory at each block. The reading/writing access to the
shared memory are faster than global memory.

The next step is the addition of the vector elements in each
thread in the shared memory, obtaining a unique value per block.
This addition is stored in a vector R in the global memory of the
GPU.

Algorithm 2:Matrix-Vector product - Main (CPU)

1: InputM: Matrix
2: Input V: Vector
3: Input N: Matrix dimension
4: Set TB, number of Threads per Block
5: Set BR, number of Blocks per Row
6: Set memory and copy Vector V to the GPU
7: Set memory and define vector R, dimension N·BR
8: if Total memory < GPU memory then
9: Set memory and copy MatrixM to the GPU
10: i=0
11: Call Algorithm 3 with a block mesh BR×N
12: else

13: Set Number of Steps = NS
14: Set NR, Number of Rows to be activated in each

multiplication step
15: for i=0,1,. . .,NS-1 do
16: Allocate memory and copy NR rows of MatrixM to the

GPU
17: Call Algorithm 3 with a mesh of BR×NR blocks
18: Free memory from GPU occupied by the NR rows
19: end for

20: end if

21: if BR>1 then
22: Call Algorithm 4 with a mesh, with number of threads ≥

N
23: end if

24: Copy the computed vector from GPU to CPU
25: Free all the global memory in GPU

The second step to be carried out in the GPU is described by
Algorithm 4. The aim of this part is the addition of the individual
values obtained at each block, in order to give the resulting vector.
This part is only required in case of defining more than one block
per row of matrix M. The last step is copying the N first elements
in vector R to the RAMmemory in CPU.
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FIGURE 3 | Solver: global schema.

4. NUMERICAL TESTS

The proposedGMRES has been implemented in C++ andCUDA,
in the context of two BEM codes. The main objective of the
tests is the direct comparison of the computing times required
by the parallel GPU solver, compared with a pure sequential CPU
implementation. Tests are designed to measure the performances
of the parallel solver in the GPU. Thus, the CPU operations have
not been parallelized. No additional compiler optimizations have
been used in CPU, which could cause wrong conclusions about
computing times associated with the tested algorithms.

The NVidia GeForce GTX 1080 graphic card has been used,
with a compute capability 6.1, 8GB in global memory, 48KB of
shared memory per block, and 20 multiprocessors type SPMD
(Single Program Multiple Data), with 128 CUDA cores per
multiprocessor. CUDA 10 version has been used. The GPU
allows a maximum of 1024 threads per block and 2048 threads
per multiprocessor. For Algorithm 3, the code allocates 22
registers per thread and the required shared memory is 16
bytes (size of a double precision complex number) per thread.
On the other hand, for Algorithm 4, the code computes 28
registers per thread and no shared memory is required. With
these values, the occupancy calculator selects 1,024 threads per
block with 100% occupancy. The CPU is an Intel i7-6800K
processor.

The Salome mesher (http://www.salome-platform.org/) has
been used to generate the three-dimensional meshes in the
floating body problem. The post-processing software Paraview
(http://www.paraview.org/) has been used to visualize the results.

4.1. Added Mass of a Floating Cylinder
This first example is in the context of fluid-solid interaction
analysis. In this problem, term µ11 in (9), corresponding to a
time-harmonic movement in direction x, is solved. The floating
body is a cylinder, shown in Figure 4, as a function of the
wavelength. This problem has an analytic solution in terms
of a normal modes expansion (Bhatta, 2003). The objective is
the observation of the dependence on the frequency on the
computing times at a fixed mesh.

The number of elements of the computing mesh is 7568,
shown in Figures 5 and 6. Constant three-node elements are
used. The minimum element size has been selected according to
a criterium dependent on the minimum wavelength, associated
with the higher frequency. Ten elements per minumum
wavelength have been considered.

The Laplace Equation (3), with the boundary conditions
given by Equations (4–6) have been considered. The radiation
condition (7) has been set in a simplified way Ortiz and Pastor
(1990), because the Green function considered does not fulfill the
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Algorithm 3:Matrix-Vector Product - GPU product

1: Store in the shared memory, given a vector of HB elements
(MC)

2: id1=threadIdx.x+blockIdx.x·blockDim.x
3: id2=threadIdx.x
4: while id1 < N do

5: MC[id2]+=M[blockIdx.y][id1]·V[id1]
6: id1+=blockDim.x·gridDim.x
7: end while

8: Thread synchronization
9: Set integer: j=blockDim.x/2
10: while j 6= 0 do
11: if id2 < j then
12: MC[id2]+=MC[id2+j]
13: end if

14: Thread synchronization
15: j=j/2
16: end while

17: if id2=0 then
18: R[i·NF+N·blockIdx.x+blockIdx.y]=MC[0]
19: end if

Algorithm 4:Matrix-Vector Product - Reduction in (GPU)

1: id=blockDim.x·blockIdx.x+threadIdx.x
2: if id < N then

3: for j=1,2,. . .,BF-1 do R[id]+=R[id+N·j]
4: end for

5: end if

FIGURE 4 | Floating cylinder.

radiation boundary condition. An external boundary has been
defined in r = 250 u.l. (units of length), for which relation (7)
is established. In this way, a complex-valued boundary condition
is given, which allows progressive waves in the solution. This
approximation avoids matching with an external solution based
on a normal-mode expansion, with a good approximation in the
frequency range tested.

Figure 7 shows the results for the added mass. Values
computed by integration (9) are compared, when potential
function is obtained by the BEM or by the analytic solution

FIGURE 5 | Floating body problem. 3D Mesh, seen from above.

FIGURE 6 | Floating body problem. 3D Mesh, perspective.

reported in Bhatta (2003). The dimensionless variable k r is
shown in abscissas, in which r is the cylinder radius and k the
wavenumber. The Y-axis represents the dimensionless values of
the added mass µ11. Small differences between the added mass
values are observed, less than 2%. Note that the comparison
is in integrated values of the computed potential, and not
in the potential itself. Both solutions includes representation
errors; the analytic solution is given in series form, in which
the singular behavior in corner is not included (Guzina et al.,
2006). In contrast, the BEM solution is obtained with constant
elements, and the radiation boundary condition is imposed in an
approximate form.

Table 1 shows the computing times required, as a function of
the wavelength. Column CPU shows the times required by the
GMRES in CPU (sequential). ColumnGPU shows the computing
times required by the GMRES in GPU. The last column shows
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FIGURE 7 | Added mass µ11, as a function of k · r.

TABLE 1 | Computing times in the floating cylinder problem.

Wavenumber CPU (s) GPU (s) Speedup

0.025 73.12 7.14 10.24

0.050 138.48 14.04 9.86

0.075 236.68 26.31 9.00

0.100 392.63 50.04 7.85

0.125 598.39 89.36 6.70

0.150 932.56 165.50 5.63

0.175 1614.29 368.86 4.38

0.200 3302.82 1047.79 3.15

0.225 3946.75 1352.72 2.92

the speedup, computed as the rate between the CPU and GPU
times. It is observed a dependence in the computing times with
respect to the wavelength. The parallel GMRES is more effective
at low frequencies. This is due to the fixed mesh considered in
all the tests, with constant elements. The solution with constant
elements is poor for high frequency. The GMRES algorithm
shows poor convergence, and more iterations are required. At
low frequency, fast convergence is observed.

4.2. Internal Harbor Oscillations
In this section, the Mild-Slope equation is solved by the BEM,
to characterize the internal waves in a harbor. This problem has
been studied by Isaacson and Qu (1990); the same conditions
have been adopted in this paper.

Figure 8 shows the harbor geometry. The incidental wave η
I

is characterized by a period 2.0 u.t (units of time), amplitude 0.5

FIGURE 8 | Harbor configuration.

FIGURE 9 | Internal solution for η.

u.l. (units of legth) and a propagation direction perpendicular to
the harbor opening. Absorbing boundaries are considered at the
harbor. Constant depth, 20 u.l. is considered.

The Helmholtz Equation (14) is solved, for the wave elevation
η. The numerical results obtained for η inside the harbor domain
are shown in Figure 9. Note that this case corresponds with a
high frequency problem, with short wavelengths.

In this problem different meshes have been used, in order
to observe the efficiency of the GPU parallelization when the
number of degrees of freedom is increased. Table 2 shows the
computing times; column DOF reports the number of degrees of
freedom in the system; column Collocation shows the computing
time required by the BEM to generate the system matrix and
vector; columns CPU y GPU show the computing times required
by the GMRES solved in CPU or GPU, respectively. The last
column shows the speedup of the GPU solver.
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TABLE 2 | Harbor oscillations.

DOF Collocation (s) CPU (s) GPU (s) Speedup

1,250 1.66 4.79 1.19 4.03

2,500 6.54 22.14 3.93 5.63

3,750 14.81 55.84 8.37 6.67

5,000 26.17 107.83 14.40 7.49

7,500 58.67 266.92 31.63 8.44

10,000 103.84 510.12 56.58 9.02

15,000 232.82 1276.89 131.66 9.70

20,000 415.31 2460.94 240.60 10.23

Computing times.

Numerical results shows that computing times required by
the collocation BEM (both in CPU) are one order less to the
computing times required to solve the linear system of equations.
It is also shown that the GPU solver is more efficient for large
number of degrees of freedom. For small number of degrees of
freedom, the bottleneck comes from time required to transfer
memory from CPU to the global memory in GPU. The speedup
increases for large number of degrees of freedom, even in
systems with 15,000 and 20,000 equations, in which the product
matrix-vector is carried out by blocks, with multiple memory
transferences from GPU to CPU.

5. CONCLUDING REMARKS

In this paper, a GPU implementation of the GMRES algorithm
is presented in the context of the BEM with fully-populated
matrices and with complex-valued arguments. It is explored
an interesting field related to the acceleration techniques for
the BEM in the frequency domain. With difference to other
acceleration techniques for the BEM (FMM, pFFT or ACA), the
proposed approach does not require modifications in the main
program, which computes the systemmatrix and the right vector.
This allows the use of standard BEM codes, with the solver task
transferred to the GPU.

The GMRES version described here does not include a pre-
conditioner. The use of preconditioners in the GMRES and
BEM is an important aspect for particular problems with poorly
conditionedmatrices. In the context of this paper, numerical tests

have been designed to show the performances of the proposed
solver. The development of a general preconditioned GMRES in
GPU for the BEM is out of the scope of this paper.

The acceleration is carried out by a main task controlled in
the CPU, which allows the massive parallelization of the matrix-
vector products in the GPU. The CUDA programming language
has been used to implement an adaptive solver, in the sense that
the generated code is optimized for the particular GPU device in
which it is compiled. The generated solver is portable and scalable
for future GPU devices. All the different GPU and CPU tasks are
described in algorithmic language.

Numerical tests show time reductions when compared with
a standard CPU solver. In the context of the BEM, the
inherent reduction in the number of degrees of freedom

(only at the boundary) causes that the standard collocation
method, with a direct assembly of the system matrix and right

vector, is extended among the different numerical codes for
a wide number of applications. For such codes, the proposed

solver represents an easy way to obtain time reductions in
computing times by transferring the solver task to the GPU.

Due to the fast development of the GPU systems, with
improvements in the number of cores, increasing the device
memories and improving the speed of the memory transferences,
the proposed GPU solver shows an interesting way of
acceleration, with future improvements depending on the device
developments.
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mantic@us.es

Specialty section:

This article was submitted to

Computational Methods in Structural

Engineering,

a section of the journal

Frontiers in Built Environment

Received: 03 July 2018

Accepted: 28 September 2018

Published: 27 November 2018

Citation:

Panagiotopoulos CG, Mantič V,
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A unified methodology to solve problems of frictionless unilateral contact as well as

adhesive contact between linear elastic solids is presented. This methodology is based

on energetic principles and is casted to a minimization problem of the total potential

energy. Appropriate boundary integral forms of the energy are defined and the quadratic

problem form of the contact problem is proposed. The problem is solved by the

collocation boundary element method (BEM). To solve the quadratic problem two

algorithms are developed, both being variants of the well-known conjugate gradient

algorithm. The difference between them is given by the explicit construction or not of

the quadratic-problemmatrix. This matrix has the same physical meaning as the stiffness

matrix commonly used in the context of the finite element method (FEM). Both symmetric

and non-symmetric formulations of this matrix are presented and discussed, showing

that the non-symmetric one provides more accurate results. The present procedure, in

addition to its interest by itself, can also be extended to problems where dissipative

phenomena take place such as friction, damage and plasticity. Essential steps of the

numerical implementation are briefly presented and the numerical solutions of some

standard problems of frictionless contact are given and compared to those obtained

by other well-known BEM and FEM procedures for contact problems.

Keywords: unilateral frictionless contact, adhesive contact, linear elasticity, boundary element method, stiffness

matrix in BEM, total potential energy minimization

1. INTRODUCTION

Contact problems (Johnson, 1985), often present in engineering applications, represent one of
the most important and interesting topics of mechanics. Contact between deformable bodies is a
complex and inherently non-linear problem. It is essentially a boundary phenomenon which has a
strong effect on stress and displacement fields in the vicinity of the boundary of the contacting
bodies. Phenomenologically one of the simplest models of contact is given by the Signorini
(1959) contact condition, that imposes the strict non-penetrability of the bodies in contact. After
early studies by Hertz (1896), many contact problems have been solved analytically. However,
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complicated geometries or loads, as well as, more complex
interfacial conditions (e.g., adhesion, cohesion, friction, etc.),
require the use of numerical methods (Wriggers, 2006; Yastrebov,
2013). Unilateral frictionless contact problems for deformable
bodies are usually numerically solved by the finite element
method (FEM) or boundary element method (BEM).

For crack onset and growth modeling (see Panagiotopoulos
et al., 2013; Roubíček et al., 2013), the first two authors with
coworkers developed an energy based procedure implemented
by BEM. In these applications, contact between crack faces
should be considered, hence it is important to present in detail
the theoretical background as well as details of the numerical
procedure for problems of unilateral (i.e., Signorini) and adhesive
frictionless contact. Hereinafter, this framework is referred to as
Energetic approach for the solution of elastic Contact problems by
BEM (EC-BEM).

Unilateral frictionless contact stands for the case where there
is no other material in the interfaces (=contact zones) between
elastic bodies. For this case the (Signorini, 1959) condition
models the exact non-penetrability of the bodies in contact, by
the following relations, Eck et al. (2005):

• The relative normal displacement at the interface cannot be
larger than the initial distance between the bodies in contact.

• Stresses can be transmitted only if contact takes place.
• Only compressive normal tractions can be transmitted

through the contact zone.

Adhesive unilateral contact is represented by bodies connected
across their common interfaces by a continuous distribution of
springs, similar to the Winkler spring model, with (possibly)
distinct normal and tangential elastic stiffnesses whose values
range from zero to infinity.

Several approaches for solving contact problems by BEM
were developed in the past. In engineering literature an
approach based on incremental-iterative procedures was
developed and widely used from the very beginning (see París
and Garrido, 1989; Katsikadelis and Kokkinos, 1993; París
et al., 1995), among others. In this approach successive
increments of load are applied and the Signorini contact
condition is verified in each step by an iterative procedure.
A BEM methodology for frictionless contact problems,
based on the strong formulation of the problem, where the
position of contact zones is defined through geometrical
parameters is presented in Méchain-Renaud and Cimetière
(2000).

In contrast to these approaches, the present approach
for solving frictionless contact problems is based on general
energetic considerations. Usually this approach requires
the minimization of the potential energy under unilateral
constraints on displacements (Gurtin, 1972; Lazaridis and
Panagiotopoulos, 1987; Panagiotopoulos and Lazaridis,
1987), although different approaches may also be found
(see Kalker and Randen, 1972), where instead of the
potential energy the minimum enthalpy principle is employed,
formulated as a boundary integral equations method, valid
for frictionless contact problems in the absence of dissipative
processes.

In the present work the contact problem is modeled
as a quasi-static and rate-independent process, (Wriggers
and Panagiotopoulos, 1972) (neglecting inertial and viscous
forces) for linear elastic solids. In section 2 the energetic
approach employed is presented. In section 3, the energetic
principles formulated in boundary integral forms amenable to
numerical implementation are introduced. A particular BEM
implementation is presented in section 4. A procedure for
computation of matrices in an explicit form that may be used
in quadrature programming algorithms is described in section 5.
Some details for analysis of a possible contact between elastic
bodies, through interface elements, are presented in section 6,
while specific features of the minimization algorithms are
described in sections 7 through 10. Finally, in section 11, results
of two-dimensional multi-region simulations are presented and
compared to solutions obtained by other BEM and FEM
techniques available in the literature, showing that the present
framework is suitable to confront problems of contact between
elastic bodies.

2. THEORETICAL BACKGROUND

Consider a finite number N of linear elastic bodies possibly in
frictionless contact. Let these bodies be represented by mutually
disjoint subdomains �i ⊂ R

2 (i= 1, ...,N) with Lipschitz
boundaries ∂�i=Ŵi (see Figure 1) and the unit outward normal
and tangential vectors νi and τ i, with τ i = (−(νi)2, (ν

i)1).
Let C

(i) denote the elastic stiffness tensor of subdomain
�

i, ui(x, t) the time dependent displacements on �i, ei(ui) =
1
2

(

(▽ui)T + ▽ui
)

the small strain tensor, σ i(ui) = C
(i)ei(ui) the

stress tensor, pi(ui) = σ
i(ui)νi the boundary tractions, σ i

n =

pi(ui)νi and σ i
t = pi(ui)τ i the normal and tangential component

of boundary tractions, respectively.
Let Ŵi

j ⊂ Ŵ
i denote the part of the boundary Ŵi which possibly

can contact with �j (j = 0, ...,N and j 6= i), referred to as
potential contact zone of�i with�j. We also consider a possible
contact with a rigid obstacle on a part of Ŵi denoted as Ŵi

0.
We assume that the rest of Ŵi is partitioned into the Dirichlet

and Neumann parts of the boundary, Ŵi
D and Ŵi

N, respectively.
Time-dependent boundary displacement and traction vectors,
uiD(x, t) and piN(x, t), are prescribed on Ŵi

D and Ŵi
N, respectively.

Thus, e.g., any admissible displacement ui(x, t) on �i has to be
equal to the prescribed displacement uiD(x, t) on Ŵ

i
D. Let

ŴD =
⋃

1≤i≤N

Ŵ
i
D and ŴN =

⋃

1≤i≤N

Ŵ
i
N. (1)

In the simplest case of conforming or receding contact with a zero

initial gap, Ŵi
j can be equal to Ŵ

j
i , but in general, e.g., in the case

of advancing contact or a positive gap, they do not coincide. The
initial contact zone (in the undeformed configuration) between
subdomains �i and �j, and also the active contact zone (the set
of points on each subdomain which will enter in contact in the

deformed configuration) both should be included in Ŵi
j and Ŵ

j
i .

Specially, Ŵi
j and Ŵ

j
i may be larger than ∂�i ∩ ∂�j for modeling

an advancing contact.
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FIGURE 1 | Schematic illustration of the geometry and of the notation for the

2D case of N = 3 subdomains in contact including a rigid obstacle.

We assume that an intermediate contact surface, denoted as
Ŵij = Ŵji, can be defined for each couple of potential contact
zones, with one-to-one and onto (bijective) and continuous

mappings (projections) between Ŵi
j , Ŵ

j
i and Ŵij. A discretized

version of such mappings is briefly introduced in section 6. A
recent comprehensive revision of different projection techniques
for a general contact configuration can be found in Yastrebov
(2013). Additionally a normal direction is defined at each point

of Ŵij by a unit normal vector νij (= −ν
j
i ) (outward with respect to

�
i). Recall that all Ŵi

j , Ŵ
j
i and Ŵij are defined in the undeformed

configuration. In the simplest case of conforming or receding

contact with a zero initial gap, typically, Ŵi
j = Ŵ

j
i = Ŵij.

The contact zone ŴC in the present problem is defined by the
union of all intermediate contact surfaces

ŴC =
⋃

0≤i<j≤N

Ŵij. (2)

The initial normal distance (gap) between some points xi ∈ Ŵ
i
j

and xj ∈ Ŵ
j
i corresponding each other by the above defined

mappings is given by the scalar gap function gij = (xj − xi)νij
defined on the intermediate contact surface Ŵij. A positive value
of the gap functionmeans an initial separation whereas a negative
value means an initial overlapping between the bodies in contact.
This gap function is denoted as gn on ŴC.

Similarly, we also define [u]ij = uj(xj) − ui(xi) on Ŵij as the
signed difference of displacements (displacement jump) between

some points xi ∈ Ŵi
j and x

j ∈ Ŵ
j
i corresponding each other by the

above defined mappings. The normal and tangential components
[u]n and [u]t on ŴC, respectively, are defined as [u]n = [u]ijν

i
j

and [u]t = [u]ijτ
i
j . According to this definition, [u]n, referred

FIGURE 2 | Constitutive relations for the unilateral frictionless contact

considered.

to as opening, decreases when subdomains�i and�j are getting
closer, and [u]n+gn ≥ 0 should hold. [u]t is referred to as sliding.
Therefore, [u]ij = [u]nν

i
j + [u]tτ

i
j . In fact, the model does not

depend on the chosen orientation, and indices i and j are omitted
when displacement jump is defined on ŴC. The relations between
the components of the tractions and displacement jump on a
unilateral contact surface are shown in Figure 2, which indicates
that σn ≤ 0 if [u]n + gn = 0 (contact), no overlapping being
allowed, whereas σn = 0 if [u]n+gn > 0 (separation), and σt = 0
in both cases.

The elastic strain energy E stored in the volume � =
⋃

1≤i≤N �
i is

E (u) =

N
∑

i=1

E
i(ui) =

N
∑

i=1

∫

�i

1

2
C
(i)ei(ui):ei(ui) d�. (3)

Then, the total potential energy functional, also referred to as the
stored energy functional, is defined as

5(t, u) =







E (u)− W (t, u) if u = uD on ŴD,
[u]n ≥ −gn on ŴC,

∞ elsewhere,

(4)

where, W (t, u) =
∑N

i=1

∫

Ŵ
i
N
ui(x, t) · piN(x, t) dS gives the work of

external forces in �, the body forces being neglected for the sake
of simplicity.

According to Fichera (1964, see also Kalker and Randen, 1972;
Panagiotopoulos and Lazaridis, 1987), the minimizer u(t) of the
total potential energy functional 5(t, u) at each time t is the
solution of the unilateral frictionless contact considered.

Remark 1 (Adhesive unilateral frictionless contact). We refer to
adhesive unilateral frictionless contact as the case where a
continuous distribution of springs exists on an interface, i.e.,
a contact zone. The normal and tangential elastic stiffnesses
of an interface, κn ≥ 0 and κt ≥ 0, respectively, may have
different values (Figure 3). The interface response is considered
frictionless, since no frictional dissipation of energy is considered,
the tangent stiffness describing an adhesive elastic behavior. The
elastic energy stored in such an adhesive interface (layer) is

EC(u) = ECn(u)+ ECt(u), (5)
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FIGURE 3 | Constitutive relations for the adhesive unilateral contact

considered.

where the components corresponding to the normal and
tangential directions, respectively, are

ECn(u) =

{

∫

ŴC

κn
2 [u]n

2 dS if [u]n ≥ −gn on ŴC,

∞ elsewhere,
(6)

and

ECt(u) =

∫

ŴC

κt

2

[

u
]

t
2 dS. (7)

The total potential energy is augmented by the elastic energy
stored in the adhesive interface layer giving

5(t, u) = E (u)+ EC(u)− W (t, u). (8)

The relations between the components of the tractions and
displacement jump on an adhesive interface layer are shown in
Figure 3, which indicates that σn ≤ 0 if [u]n + gn = 0 (contact),
whereas σn = κn[u]n if [u]n + gn > 0 (separation). Additionally,
σt = κt[u]t in shear. In this case, gn represents the width of
the adhesive layer. If [u]n > 0 then the layer is under tensile
stresses and we do not allow to break it, whereas if [u]n < 0 then
the layer is under compressive stresses and we assume a linear
behavior until the two domains enter in contact, no overlapping
being allowed.

It is easy to realize, that for vanishing interface stiffnesses, κn → 0
and κt → 0, the above described Signorini unilateral contact
model is recovered, cf. Figures 2, 3.

3. ENERGY PRINCIPLES IN BOUNDARY
INTEGRAL FORMS

For given body forces Fi in the elastic domain �i, the following
equilibrium condition holds:

−divσ i(ui) = Fi in�i,

which multiplied by some virtual displacement field ũi and
integrated by parts over�i gives

∫

�i
σ
i(ui) : ǫi(ũi) d�−

∫

Ŵi
σ
i(ui) · νiũi d x =

∫

�i
Fiũi d�. (9)

This expression may be seen as the principle of virtual work,
for virtual displacements ũi. The dependence of stresses and
subsequently tractions on displacements is explicitly indicated in
the notation used. By assuming zero body forces (Fi=0) (in the
present work) and choosing ũi=ui, the volume integral in (3) is
replaced by the boundary integral

E
i(ui) =

1

2

∫

Ŵi
uipi(ui) dS. (10)

Furthermore, the total potential energy for�i is

5
i(t, ui) = E

i(ui)−

∫

ŴN
i
ui(x, t)piN(x, t) dS. (11)

In order to formulate the problem as a quadratic programming
problem involving boundary values only, we further proceed
manipulating (11). Similar formulations may be found in Antes
and Panagiotopoulos (1992) (see chapter 8), where also a proof
of existence and uniqueness of solutions is provided, and in Aour
et al. (2007), however without the extent and the analysis
introduced in the present work.

In the following, the BVP for a sub-domain�i is considered in
a similar way as in Panagiotopoulos et al. (2013). Hereinafter in
this section we will omit superindex i, for the sake of simplicity.
Let uη and pη, respectively, denote the displacement and traction
solutions of this BVP restricted to Ŵη , η = C, D and N, e.g.
uC = u|ŴC and pD = p|ŴD . We study here a mixed-type operator
M which formally assigns (pC, pD, uN) to the known boundary
data (uC, uD, pN) of the original BVP P

O shown in Figure 4, and
may be partitioned using the following block structure as

(

pC
pD
uN

)

=

(

MCC MCD MCN

MDC MDD MDN

MNC MND MNN

)(

uC

uD

pN

)

. (12)

The columns of the aforementioned block operator M are
associated to the sub-problems P

η defined in Figure 4. The
displacement solution of a subproblem P

η is denoted as uη.
From the principle of superposition the displacement solution of
the full problem P

O may be reconstructed by the sum:

u = uC + uD + uN. (13)

In view of (10) and (11), the total potential energy for the mixed
type BVP P

O may be written in an expanded form as

5(t, u)=
1

2

∫

ŴC

uC(u)pC(u)dS+
1

2

∫

ŴD

uDpD(u)dS−
1

2

∫

ŴN

uN(u)pNdS,

(14)

where we tacitly assumed that u fulfills the Dirichlet and
Neumann boundary conditions. By substituting the unknown
data for problem P

O from (12), the total potential energy can
be written as

5(t, uC) =
1

2

(∫

ŴC

uCMCCuC dS+

∫

ŴC

uCMCDuD dS+

∫

ŴC

uCMCNpN dS
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FIGURE 4 | Solution of a mixed BVP PO for a single elastic domain given as a superposition of the solutions of the three sub-problems PC,PD and PN.

+

∫

ŴD

uDMDCuC dS+

∫

ŴD

uDMDDuD dS+

∫

ŴD

uDMDNpN dS

−

∫

ŴN

pNMNCuC dS−

∫

ŴN

pNMNDuD dS−

∫

ŴN

pNMNNpN dS

)

. (15)

From (15) it is clear, that since, at time t, uD and pN are a priori
known prescribed values, the total potential energy is actually a
function of only the contact displacements uC. We further modify
(15) in order to keep the unknown contact displacements uC in
the integrals onŴC part only, by utilizing the following reciprocity
relations between the elastic solutions of P

C and P
N

−

∫

ŴN

pNMNCuC dS =

∫

ŴC

uCMCNpN dS (16)

as well as between the solutions of P
C and P

D,

∫

ŴD

uDMDCuC dS =

∫

ŴC

uCMCDuD dS. (17)

A similar reciprocal relation holds true for the solutions of P
N

and P
D,

−

∫

ŴN

pNMNDuD dS =

∫

ŴD

uDMDNpN dS. (18)

Notice a somewhat surprising presence of the negative sign in
(16) and (18). It should be mentioned that (16), (17) and (18)
hold only approximately in the case of numerical solution of the
pertinent problems.

Substituting the relations (16) and (17) into the expression
(15) gives

5(t, uC) =

∫

ŴC

uC

(1

2
MCCuC+MCDuD+MCNpN

)

dS+
1

2

∫

ŴD

uDMDDuD dS

+
1

2

∫

ŴD

uDMDNpN dS−
1

2

∫

ŴN

pNMNDuD dS−
1

2

∫

ŴN

pNMNNpN dS (19)

The present problem can be defined now in an explicit form as
a quadratic programming problem. By observing here that the
last four integrals in (19) are constant with respect to uC, we
may omit them in the minimization procedure since they do not
have influence on the minimizer of the total potential energy.
This leads to the following simplified expression including only
the variable part of the total potential energy functional (for
the sake of simplicity the notation of this functional is kept the
same):

5(t, uC) =
1

2

∫

ŴC

uCMCCuC dS

︸ ︷︷ ︸

A (uC)

+

∫

ŴC

uC

(

MCDuD(t)+MCNpN(t)
)

dS

︸ ︷︷ ︸

- b(t, uC)

(20)

After a suitable discretization of uC by means of a linear
combination of standard vector shape-functions

uC(x) =

MC
∑

i=1

φi(x)ξi (21)
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where MC is the number of displacement degrees-of-freedom
(DOFs), typically nodal values of displacement components, on
the contact zone ŴC. The expression in (20) may be rewritten
as an algebraic representation of the corresponding quadratic
function

5(t, ξ ) =
1

2
ξTAξ − ξTb(t), (22)

where ξ is a vector of the nodal displacements uC on ŴC, and A is
a kind of the boundary stiffness matrix associated to ŴC.

Recall that (20), (21) and (22) refer to a single domain. Then,
the total potential energy for the assemblage of N bodies is
defined as follows

5 =

N
∑

i=1

5
i(t, uiC). (23)

This leads to the fact that the algebraic representation of the
total potential energy 5 for the assemblage in of N bodies in
(23) adopts the same form as in (22), however, with the matrix
A defined as a block diagonal matrix formed by the individual
matrices Ai for subdomains�i,

A = block-diag
{

A1, . . . ,AN
}

, (24)

and similarly the vector b defined as a block vector by formed by
the individual vectors bi for�i

bT =

{

(b1)T , . . . , (bN)T
}

. (25)

4. BOUNDARY ELEMENT METHOD

As can be seen, the possibilities for a numerical implementation
of the above framework are quite wide, the key issue is the
approximation of the operators M

i
CC, M

i
CD and M

i
CN for each

subdomain �i. Several numerical methods, such as the finite
element method (FEM) or boundary element method (BEM),
may be utilized. Since the adjacent bodies represented by �i

(i =, 1, . . . ,N), possibly in contact, are linearly elastic, collocation
BEM or symmetric Galerkin BEM provide an intrinsic advantage
herein. In the present implementation, the collocation BEM has
been adopted.

The BEM is closely related to the map between the prescribed
boundary conditions in displacements or tractions and the
unknown boundary displacements or tractions. In pure Dirichlet
and Neumann boundary-value problems (BVPs), these maps are
called Steklov-Poincaré and Poincaré-Steklov maps, respectively,
and BEM can be considered as an approach to discretize these
maps. In the present computational procedure, the role of the
BEM analysis, applied to each subdomain �i separately (which,
in fact, makes this problem very suitable for parallel computers),
is to solve the corresponding BVPs on each �i. For this goal, we
numerically solve the Somigliana displacement identity (see París
and Cañas, 1997; Aliabadi, 2002),

ciml(y)u
i
m(y)+

∫

Ŵi
− uim(x)T

i
ml(x, y) dSx =

∫

Ŵi
pim(x)U

i
ml(x, y) dSx,

(26)

where y ∈ Ŵ
i and uim(x) and pim(x) denote the m-component

of displacement and traction vectors, respectively. The weakly
singular integral kernel U i

ml
(x, y), two-point tensor field, given

by the Kelvin fundamental solution (free-space Green’s function)
represents the displacement at x in the m-direction originated
by a unit point force at y in the l-direction in the unbounded
linear-elastic medium defined by C

(i). The strongly singular
integral kernel Ti

ml
(x, y), two-point tensor field, represents the

corresponding tractions at x in the m-direction. The coefficient-
tensor ci

ml
(y) of the free-term is a function of the local geometry of

the boundary Ŵi at y, and may be evaluated by a closed analytical
formula for isotropic elastic solids (seeMantič, 1993). The symbol
∫

− in (26) stands for the Cauchy principal value of an integral.
Consider a discretization of the boundary Ŵi by a boundary

element mesh, which is also used to define a suitable
discretization of boundary displacements ui(x) and tractions
pi(x) by interpolations of their nodal values along Ŵi denoted as
ui and pi, respectively. By imposing (collocating) the Somigliana
identity (26) at all boundary nodes (called collocation points) we
set the BEM system of linear equations for Ŵi, typically written as
Hiui = Gipi (see París and Cañas, 1997; Aliabadi, 2002). The
solution of this system provides the unknown nodal values of
boundary displacements and tractions.

In the present computational implementation of BEM,
straight elements with piecewise linear continuous interpolation
for displacements and piecewise linear (possibly discontinuous)
interpolation for tractions are adopted, respectively. On the ŴC

part of the boundaries, usually standard continuous interpolation
for tractions is used.

In the context of BEM, operators M
i
IJ, of (12), with I, J=C,D

and N do not need to be explicitly constructed, since what we
actually need are the resultant tractions or displacements for each
sub-problem, as also shown in Figure 4. Thus, we need to solve
these three sub-problems for each subdomain�i by BEM.

5. EXPLICIT COMPUTATION OF THE
MATRIX A AND VECTOR B

The matrix A in (22) has the physical meaning of a boundary
stiffness matrix for a subdomain. Several established techniques
may be utilized for its computation, a survey of such techniques
based on the BEM may be found in Hartmann (1981) and
Tullberg and Bolteus (1982). Hereinafter a new methodology for
computing A is introduced. This methodology is consistent with
the present energetic approach and leads directly to a symmetric
form of A. From (20), the quadratic form A and linear form b
write as

A (ξ ) =
1

2
ξTAξ =

1

2

MC
∑

i,j=1

aijξiξj, (27)

b(ξ ) = ξTb =

MC
∑

i=1

biξi, (28)

withMC being the number of displacement DOFs on the contact
zone ŴC.
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Choosing ξ (i) defined as

ξ
(i)
i = 1, ξ

(i)
j = 0, ∀j 6= i, (29)

then (27) simplifies to

A (ξ (i)) =
1

2
aii → aii =

MC
∑

k,l=1

ξ
(i)
k
ξ
(i)
l

∫

ŴC

φkMCCφl dS. (30)

Solving the above problem P
C by BEM sequentially for all i =

1, . . . ,MC, and by utilizing the first integral of (20), we may
compute all the diagonal components aii of matrix A.

Furthermore, in order to compute the non-diagonal

components aij we choose ξ (i,j) defined as

ξ
(i,j)
i = ξ

(i,j)
j = 1, ξ

(i,j)
m = 0, ∀m 6= i, j, (31)

then, similarly to (30),

A (ξ (i,j)) =
1

2

(

aii + ajj + aij + aji
)

=
1

2
aii +

1

2
ajj + aij (32)

=
1

2

MC
∑

k,l=1

ξ
(i,j)

k
ξ
(i,j)

l

∫

ŴC

φkMCCφl dS. (33)

Having computed the diagonal elements aii we may compute
from the last equation also the non-diagonal elements,
considering aij = aji, by

aij =
1

2





MC
∑

k,l=1

ξ
(i,j)

k
ξ
(i,j)

l

∫

ŴC

φkMCCφl dS− aii − ajj



 . (34)

Similarly, solving the above problems P
D and P

N by BEM, the
computation of vector b is carried out by using the first set of

vectors ξ (i) and computed by the second integral in (20), and its
components are given as

b(ξ (i)) = bi → bi = −

MC
∑

k=1

ξ
(i)
k

∫

ŴC

φk

(

MCDuD+MCNpN
)

dS.

A more direct relation of the matrix A to a respective stiffness
matrix could be understood for the case of a single domain where
the whole boundary Ŵ coincides with ŴC (see also section 10).
Although by the procedure described above a direct symmetric
stiffness matrix may be constructed, this matrix was found to
lack the properties of equilibrium and rigid motion representation,
which are satisfied only approximately and although after a mesh
refinement their fulfillment is improved nevertheless they are
not fully satisfied. A further detailed study of the properties of
this matrix is given in section 10. Additionally in section 9,
some alternative modified procedure in order to construct a non-
symmetric matrix A together with the reasoning of its necessity
is proposed and discussed.

6. THE CONTACT DESCRIPTION VIA
INTERFACE ELEMENTS

Usually, a unilateral frictionless contact law is defined by a
geometric condition of non-penetration (also referred to as
compatibility of displacements), a static condition of no tension
and no friction and equilibrium of forces (see Renaud and Feng,
2003). In the context of small displacements deformation, we
may write the non-penetration condition in the normal direction
associated to the surfaces under contact (see below). The exact
portion of the boundaries�i and�j which will really contact, the
so-called active contact zone, is a priori unknown, for this reason

initially we consider Ŵi
j and Ŵ

j
i as potential contact boundaries,

which should include the points of the active contact zone (see
Figure 1).

FIGURE 5 | (A) Interface elements constructed on an intermediate surface between two domains under possible contact, and (B) main and secondary elastic

domains, corresponding nodes and interface elements.
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The establishment of relations that impose the non-
penetration also referred to as Signorini condition, is one of
the most crucial parts of the present formulation. Some of the
BEM formulations for contact problems enforce compatibility
of displacements on one of the domains, while on the other
the equilibrium is enforced (cf. Blázquez et al., 1998b; Graciani
et al., 2005). These equilibrium conditions might be given
in weak sense instead of their strong form (see Blázquez
et al., 1998a). In the present methodology only compatibility
conditions are enforced between the bodies in potential contact,
by establishing the non-penetration condition which include the
evaluation of the displacement jump [u] and gap gn along ŴC,
while the equilibrium of contact tractions arises through the
enforcement of the principle of minimum of the total potential
energy.

The interconnection of the subdomains as well as the
consideration of Signorini kinematical conditions is succeeded
by the intermediate surface discretized by interface elements, as
shown in Figure 5A. Let us consider an intermediate surface
between two bodies. The gap gn, at this surface may be
considered as finite or zero valued. For each node of the
interface elements we define a local reference system and each
relative displacement may have an opening (normal) and sliding
(tangential) component. In the case of contact problems of two
deformable bodies where only small changes in the geometry are
assumed and also themesh of each elastic domain is a conforming
one, it is possible to incorporate the contact constraints on a
purely nodal basis. However, for the general case of nodes being
arbitrarily distributed along the potential contact zone between
two bodies, which can occur, e.g., when automatic meshing is
used for these bodies, further consideration must be taken into
account in the definition of Signorini contact conditions. Such
techniques have been developed in the case of BEM in Blázquez
et al. (1998b), Graciani et al. (2005), Blázquez et al. (2006),
Graciani et al. (2009), and Vodička (2000). Nevertheless, the
necessity of non-conforming algorithms may also occur in small
displacements contact problems and conforming discretizations
as shown in Blázquez and París (2009). The non-penetration
conditions for the case of non-conforming mesh are considered
in the normal direction of the intermediate surface at interface
nodes. Each interface node, related to a pair of the adjacent
BEM node and boundary point, the latter may coincide with a
BEM node or just be located on a BEM element as depicted in
Figure 5B. For the latter case, the displacements of the boundary
point are computed by the respective displacements of the nodes
of this BEM element. The Signorini conditions, that also take into
account a possible initial gap (or a finite thickness of the adhesive
layer) are imposed on the normal displacements of those pairs.
We will write here the conditions taken into account for two
different cases referring to Figure 5B. In the first case, the BEM
node is denoted as im (main) and the adjacent boundary point
coincides with another BEM node denoted as is (secondary), and
the following condition is taken into account:

[

um(im)− us(is)
]

n ≥ −gn(i). (35)

In the next case, the BEM node is denoted as lm (main) and
the adjacent boundary point, denoted as ls (secondary), does not
coincide with any BEM node (see Figure 5B), then the following
condition is taken into account:

[

um(lm)− us(ls)
]

n ≥ −gn(l) ⇒

[

um(lm)−
Lln

Lkn
us(ks)−

Lkl

Lkn
us(ns)

]

n ≥ −gn(l). (36)

The entire set of such equations may be given in a more compact
algebraic form in terms of new variables

fi = cijuj, (37)

where fi is given by the ith constraint expression, cij is the so-
called constraint matrix and uj are the components of normal
displacements on the potential contact zone, which are the
only variables included in the minimization procedure for the
frictionless contact as will be shown in the following section.
The inclusion of the tangential components of displacements on
the contact zone in the case of adhesive frictionless contact is
straightforward and will be omitted here for the sake of brevity.

7. MINIMIZATION OF TOTAL POTENTIAL
ENERGY

As shown in section 2, the contact problem can be formulated as a
minimization problem of the total potential energy functional
defined in (4). In section 3 appropriate boundary integral forms
of this functional were derived in order to generate a pure
boundary value problem, as in (10) or (11), which was further
manipulated in order to derive a quadratic functional in (20).
In section 1 it was assumed, that the problem is a quasi-static
one (neglecting inertial and viscous effects), introducing by this
way a (pseudo)time variable t into the stored energy functional
in (4). Finally, in section 6 it was shown that in order to define
the minimization problem as a simple bound constrained one it is
advantageous to work with variables fi defined by (37). Making a
time discretization by adopting, for simplicity only and without
loss of generality, an equidistant partition of [0,T] with a fixed
time-step τ > 0, assuming T/τ ∈ N, the minimization of
the total potential energy functional defined in (4) leads to the
following (formally written) recursive minimization problem:

minimize F
k(f ) = 5(kτ , u(f ))

subject to f≥− g

}

(38)

to be solved successively for k = 1, ...,T/τ . Here, f is the vector
defined by Equation (37) and g the vector that contains the gap
values.

For the numerical resolution of the above minimization
problem there are two possible approaches, always taking into
account the transformation in (37), the first is to directly
minimize the objective function of type given in (11). In this
case we may use a general algorithm for bound-constraint
optimization problems, such as the L-BFGS-B by Zhou et al.
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(1997). However, it is usually advantageous to solve the problem
as a quadratic one and for this reason we utilize (23) or its
algebraic form as in (22). A variety of algorithms for quadratic
programming may be found in Dostál (2009). Notice that,
using the algebraic form of (22), the problem may be stated
as a Linear Complementarity Problem (LCP), cf. (Gakwaya
et al., 1992; Stavroulakis and Antes, 1997), and may be solved,
for example, by Lemke’s algorithm. For the present EC-BEM
computer implementation, we use a modified conjugate gradient
method which does not need an explicit form of matrix A and
vector b in (22) and directly minimizes (23). Its pseudocode is
given in Table 1. Nevertheless, also the conventional conjugate
gradient method is reproduced in Table 2 following Dostál
(2009). A further discussion on differences between these two
variants of the conjugate gradient algorithm is given in section 9.

Regardless of the minimization algorithm we use, except if it
would be a derivative free algorithm, we always need to calculate

TABLE 1 | (M1) Conjugate gradient method (CG) adapted for EC–BEM.

Given a quadratic form A (x) and a linear form b(x)

with x ∈ R
n

Step 0. {Initialization.}

Choose x0 ∈ R
n, set g0 = A ′

x (x
0)− b′x (x

0),

p1 = g0, k = 1

Step 1. {Conjugate gradient loop.}

while ‖ gk−1 ‖> ǫ

Solve BEM for displacements pk on ŴC

α
k =‖ gk−1 ‖2 /A (pk )

xk = xk−1 − αkpk

gk = gk−1 − αkA ′
x (p

k )

β
k =‖ gk ‖2 / ‖ gk−1 ‖2

pk = pk−1 − βkpk

k = k + 1

end while

Step 2. {Return the solution.}

x̂ = xk

TABLE 2 | (M2) Conjugate gradient method (CG).

Given a matrix A

and a vector b with x ∈ R
n

Step 0. {Initialization.}

Choose x0 ∈ R
n, set g0 = A x0 − b, p1 = g0, k = 1

Step 1. {Conjugate gradient loop.}

while ‖ gk−1 ‖> ǫ

α
k =‖ gk−1 ‖2 / 12 (p

k )T Apk

xk = xk−1 − αkpk

gk = gk−1 − αkApk

β
k =‖ gk ‖2 / ‖ gk−1 ‖2

pk = pk−1 − βkpk

k = k + 1

end while

Step 2. {Return the solution.}

x̂ = xk

the partial derivatives of the potential energy5. An alternative to
compute these derivatives would be to use finite differences but
such an approach was proved to be extremely time consuming.
For this reason, we set up an analytical computation of derivatives
of5. By applying the chain rule of differentiation we obtain

∂5

∂fi
=
∂5

∂uj

∂uj

∂fi
, (39)

and by inverting (37)

ui = rijfj, (40)

where rij = (c−1)ij, which substituted into (39) leads to

∂5

∂fi
=
∂5

∂uj
rji. (41)

Having established the quadratic formula for (23), the derivatives
in (41) can be easily defined. In section 8 we give a more general
treatment on how to define the derivatives of the total potential
energy (11) with respect to a displacement component.

8. DERIVATIVES OF THE TOTAL
POTENTIAL ENERGY WITH RESPECT TO
DISPLACEMENTS

When the minimization problem (38) is formulated as a
quadratic programming problem, derivatives of 5, for a single
domain, with respect to the degrees-of-freedom (DOFs) of
displacements uC on the potential contact zone can be easily
computed.

However, we might also treat the minimization problem as
a general one. In that case we might need the derivatives of
5 as given in (11). The total potential energy functional 5
from (11), for a single domain, is a function of u defined on
Ŵ, but it also contains the tractions p, which are functions of
displacements, i.e., p(u), and for this reason the derivatives with
respect to u cannot be computed in a straightforward manner.
The displacement and traction variables, according to the BEM
formulation, are discretized for x ∈ Ŵ as

u(x) =
∑

i

φi(x)ui, (42a)

p(x) =
∑

i

ψi(x)pi, (42b)

where φi(x) and ψi(x) are the vector shape-functions associated
to DOFs i defining the boundary values of displacements and
tractions, respectively. The partial derivative of the total potential
energy with respect to a DOF ui is the functional derivative with
the test function being the vector shape-function φi associated to
this DOF

∂5(u)

∂ui
= lim
δui→0

5
(

u+ φi(x) δui
)

−5(u)

δui
, (43)
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where utilizing (11) leads to

5
(

u+ φi(x) δui
)

=

1

2

∫

Ŵ

p
(

u(x)+ φi(x)δui
) (

u(x)+ φi(x)δui
)

dx

−

∫

ŴN

(

u(x)+ φi(x)δui
)

pN dx =

1

2

∫

Ŵ

(

p
(

u(x)
)

u(x)+ p
(

u(x)
)

φi(x)δui + p
(

φi(x)
)

u(x)δui

+ p
(

φi(x)
)

δu2i φi(x)
)

dx

−

∫

ŴN

(

pNu(x)+ pNφi(x)δui
)

dx, (44)

where the linearity of the tractions p(u) with respect to the
displacements u was used. Note that the term in the above
integral which includes a higher order term (δu2i ) is dropped out
in the limit in (43). Introducing the above expression in (43) leads
to

∂5(u)

∂ui
=

1

2

∫

Ŵ

(

p
(

u(x)
)

φi(x)+ p
(

φi(x)
)

u(x)

)

dx

−

∫

ŴN

pNφi(x) dx =

∫

Ŵ

p
(

u(x)
)

φi(x) dx

−

∫

ŴN

pNφi(x) dx, (45)

where the reciprocity between the two states:
(

(u(x), p
(

u(x)
))

and
(

φi(x), p
(

φi(x)
))

was used. Equation (45), after introducing
also (42b) (actually the tractions computed by the (numerical)
solution of the Dirichlet problem with the boundary conditions
given by u on Ŵ), will result in the following formula, for a single
domain, appropriate for the EC-BEM implementation:

∂5(u)

∂ui
=

∫

Ŵ

ψj(x)φi(x)pj dx−

∫

ŴN

ψj(x)φi(x)pNj dx. (46)

The integration in (46) does not need to be extended all over
the boundary Ŵ since ψj and φi are local vector shape-functions
whose support is given only by the boundary elements associated
to the DOFs j and i, respectively. Taking also into account that,
for the minimization problem under study, the relevant DOF are
associated to ŴC and their support is a part of ŴC, supp φi ⊂ ŴC,
Equation (46) can be further simplified as

∂5(u)

∂ui
=

∫

Ŵ

ψi(x)φi(x)pi dx. (47)

This expression gives the relevant numerically computed
gradient of the potential energy in the present problem in terms
of the numerically computed boundary tractions on ŴC.

9. A CRITICAL COMPARISON OF
ALGORITHMS M1 AND M2

In Tables 1, 2 of section 7, two variants of the conjugate gradient
method considered, M1 and M2, respectively, were described

by pseudocodes, where M2 is the original version introduced
byDostál (2009). Themain difference between these two variants,
is that in M1 we do not explicitly calculate the matrix A, since
instead of using the vector-matrix-vector product 1

2x
TAx and

the matrix-vector product Ax, we use the quadratic form A (x)
and the derivative A

′(x). In reference to M2, we initially need
to compute the matrix A, as it is described in section 5 (actually
it is the Step 0 in Table 2), which might be time consuming,
but then the rest of the procedure, that is actually the conjugate
gradient loop, showed to be fast enough. On the contrary, for
M1 the initialization (Step 0) is direct and fast, however each
time we need to compute the value of the quadratic form A (x)
and its derivative A

′(x), that is in each kth step of the conjugate
gradient loop (Step 1 in Table 1), a BEM solution is required.
Nevertheless, the influence BEM matrices need to be computed
only once, for all the iterations and time steps. Additionally,
having decomposed the matrix of the linear algebraic system of
equations produced by BEM (e.g., by LU- or QR-decomposition),
each time that the solution of this system is required, only a
back-substitution takes place.

Details of the algorithms for constrained minimization
problems can be found in Dostál (2009). In this work, for
both variants of the conjugate algorithms, we employed Polyak’s
algorithm for bound constrained minimization (Algorithm 5.2
in Dostál, 2009), for which the number of iterations is bounded
by Ñ= n22n, while for the standard conjugate gradient algorithm
by N= n, with n being the number DOFs, i.e., the order of the
matrix A. However, according to Dostál (2009), this bound for
Polyak’s algorithm may be considered too pessimistic.

It was found, in this work, that in M2 the usage of the
symmetric matrix described in section 5, leads to exactly the
same results for the energy calculation as in M1, i.e., A (x) =
1
2x

TAx. However, the accuracy of the results for displacements
and tractions was worse in M2 using the symmetric matrix than
in M1, especially for points near a change of boundary condition
type (that is fromŴC toŴN). Previously, similar observations were
made in BEM by de Paula and Telles (1989) and Tullberg and
Bolteus (1982), when the symmetric stiffness matrices was chosen
instead of the non-symmetric one. We conclude that the source
of this lose of accuracy in our context is because the numerically
computed derivatives (gradient) of the quadratic form used in
M1 and M2 may be quite different, i.e., A

′(x) 6= Ax, when
the symmetric matrix A is used in M2 and if in M1, instead of
computing explicitly the gradient of the quadratic form, we use
its expression in terms of the boundary tractions according to
section 8. In order to overcome this difficulty in M2 application
we proceed to construct a consistent non-symmetric matrix Ã for
its usage in M2.

In Antes and Panagiotopoulos (1992), it is claimed that the
stiffness matrix constructed by BEM should be symmetric due
to Betti’s theorem, and not because of the numerical method
used to compute the unit displacement response. This might
be equivalent with our consideration here, that the reciprocity
statements in the context of a numerical implementation of BEM
are only approximately valid. In order to construct the non-
symmetric matrix Ã, we solve by BEM a problem, for each ith
DOF of displacements on ŴC, such that each time this is the only
non zero component and equal to the unit value. The ith column
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of the Ã matrix consists of the derivatives ∂A

∂uj
, with uj being a

DOF of displacements on ŴC.
It can be shown, and also it was numerically verified, that

the matrix A of section 5, is the symmetric part of matrix Ã

constructed here, i.e., A = ÃT+Ã
2 .

10. PROPERTIES OF THE SYMMETRIC
AND NON-SYMMETRIC BEM MATRICES: A
AND Ã

As mentioned in Table 2, the matrix A is assumed to be
symmetric and positive definite. However, it is well known
that it is possible to apply the conjugate gradient method
of Hestenes and Stiefel (1952) also to non-symmetric systems
after a minor modification of the method (e.g., solving ÃTÃξ =

ÃTb instead of Ãξ = b). The well established and reported
fact of a convergence property reduction in the conjugate
gradient method for nonsymmetric, Saad and Schultz (1985), and
general inconsistent systems, Axelsson (1980), did not have any
significant influence on the numerical examples studied here. The
linear system matrix computed by the collocation BEM, using
the procedure described in section 5, may not be positive definite
even if it is symmetric. Actually, this is the case when the Dirichlet
and potential contact boundary parts, ŴD and ŴC, are empty,
whereas a non-empty Dirichlet part guarantees also the positive
definiteness.

In order to numerically explore properties of the eigensystem
of the BEM system matrix, we consider a circular elastic body
of radius r= 5.0, whose Young’s modulus is E= 1000.0 and
Poisson’s ratio ν = 0. Assuming the entire boundary of the
body as a potential contact zone, i.e., ŴC =Ŵ, we construct the
matrix A as described in section 5, and compute its eigenvalues
and eigenvectors. It is observed that three small, possibly
negative, eigenvalues exist which approximate the theoretically
zero eigenvalues associated to the three rigid body motions of
the circular domain. Two negative eigenvalues have almost equal
value of −6.116E-6, and correspond to translations, whereas the
third one is several orders of magnitude smaller, taking the value
of 7.395E-9 and corresponds to a rotation. In Figure 6 deformed
shapes given by some eigenvectors of the matrixA are plotted, for
the above defined circular body. Note that for n nodes we have 2n
kinematic DOFs and eigenvectors.

In Figure 7 (left) it is shown how the theoretically
zero eigenvalues associated to rigid body translations are
approximated by the two equal and small (possible negative)
eigenvalues of the symmetric and non-symmetric BEM matrices
A and Ã, respectively, for a refinement of the boundary
element mesh. The absolute values of the numerically computed
eigenvalues are plotted in logarithmic scale. These eigenvalues
are negative for the symmetric matrix A. Recall that the number
of nodes is one half of the number of DOFs. We may observe
that these two small eigenvalues are numerically zero regardless
discretization in the case of the non-symmetric matrix Ã. Thus,
the symmetric matrix A describes the rigid body motions only
approximately (an approximation which is improved with a
mesh refinement), while in the case of the non-symmetric matrix
Ã these rigid body motions are well represented. Finally, in

Figure 7 (right) the largest and smallest positive eigenvalues for
a mesh refinement are plotted, for both matrices A and Ã, a very
good agreement being observed.

In order to numerically study the influence of the application
of A instead of Ã in BEM calculations, we present the following
trivial example whose solution is a rigid body translation. A
quadrangular domain is considered with zero tractions on the
right and left sides, thus they belong to ŴN. On the upper
side, which belongs to ŴD, positive normal displacements (in
the outward normal direction) are prescribed together with
zero horizontal displacements. The bottom side is in frictionless
contact with an obstacle, thus it belongs to ŴC. This problem is
quite trivial, since the solution is a rigid body translation in the
vertical direction with zero tractions along the whole boundary
of the domain. Recall, that in the present computational
implementation, both displacements and tractions along the
bottom side are considered as unknowns. Figure 8 (left) shows
that numerically zero horizontal displacements are obtained, and
similarly Figure 8 (right) shows that the vertical displacements
accurately represent the rigid body translation by applying the
methodM1, and also by applying the methodM2 where however
the non-symmetric matrix Ã is used. On the other hand, when
the symmetric matrix A is used in the method M2, both results
for horizontal and vertical displacements are not so accurate
although they improve with the mesh refinement. The main
difference from the exact solution is observed near the corners
where ŴC intersects with ŴN.

11. NUMERICAL EXAMPLES

A numerical implementation of EC-BEM for both cases of
contact was accomplished using an in-house BEM software
(Panagiotopoulos, 2017) developed, mainly by the first author,
in Java programming language. Linear continuous elements with
two nodes are used for the analysis of several examples assuming
plane strain conditions. The results obtained by this code are
compared with the results obtained by 2D BEM codes developed
previously by Blázquez et al. (1998a,b, 2006), and Graciani
et al. (2005) in which standard techniques of BEM for contact
problems essentially based on the so-called displacement and
load scaling techniques (recently also referred to as Sequential
Linear Analysis, SLA) (París and Blázquez, 1994) are deployed,
as well as by the commercial FEM code ANSYS.

The energetic implementation of the first case of contact
described, the Signorini contact, is tested in section 11.1 by
solving two problems: one of them with receding contact, in
section 11.1.1, and another with advancing contact in section
11.1.2. The case of adhesive unilateral contact is tested in section
11.2 with a similar problem to that used as example of receding
contact to test the numerical solution of the Signorini contact
problem.

11.1. Numerical Examples to Test the
Signorini Contact Implementation
11.1.1. A Case of Receding Signorini Contact
The first problem studied is shown in Figure 9. The geometry
is composed by two rectangular solids �1 and �2 in frictionless
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FIGURE 6 | Some of the eigenvalues and the corresponding eigenvectors of the symmetric BEM matrix A represented by the deformed shapes for the circular body.
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FIGURE 7 | Left: Absolute values of the two equal and small eigenvalues (associated to rigid body translations) of the BEM matrices A and Ã for a mesh refinement.

Right: The largest and smallest positive eigenvalues of A and Ã for a mesh refinement.

FIGURE 8 | Numerical results along the contact zone, for the trivial contact problem whose solution is a vertical rigid body translation. Left: Horizontal displacements,

ũ1 represents the exact zero horizontal displacement. Right: Vertical displacements, ũ2 represents the exact vertical displacement.

contact. The shorter rectangle�1, located below, has dimensions
(L7 + L8 + L9) × h1, see Table 3 for lenght values. Vertical
and horizontal displacements are restrained, respectively, along
a horizontal segment of length L1 at the lower edge and the
lower-left corner of the rectangle. A larger rectangle �2 with
dimensions

∑6
i=1(Li) × h2 is located at the top. Its vertical and

horizontal displacements are restrained, respectively, along an
horizontal segment at the lower edge and the upper-right corner.
In addition, a uniform vertical displacement uD is imposed
along a segment with dimension L3 at the upper edge of this
rectangle. A segment of length L8 along the common edge of
both solids is defined as potential contact zone, while L7 and L9
are assumed to be traction free zones, since separation of the
solids is expected, thus, no interpenetration of solids happens
along L7 and L9. The material of both solids is assumed to be
linear elastic and isotropic with properties of aluminum shown
in Table 3.

In the case of the BEM models presented below, the mesh
used is set by the number of elements ni with i= 1, 2, ..., 9

FIGURE 9 | Representation of the receding problem studied: Two beams in

contact, �1 and �2, subjected to bending.

corresponding to the segment of length Li and nh1 and
nh2 corresponding to the segments with lengths h1 and h2
respectively. Element length is constant along each segment. In
the case of the FEM model, solids are meshed in such a way
that the nodes along their edges coincide with those in BEM
models. Values for the different meshes used here are presented
in Table 4.
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TABLE 3 | Geometry, elastic properties and the imposed displacements.

Model A B

L7 (m) 0 0.32

L8 (m) 0.8 0.1

L9 (m) 0 0.38

uD (mm) 0.035

E1 = E2 (GPa) 70

ν1 = ν2 0.35

L1 (m) 0.1

L2 (m) 0.55

L3 (m) 0.1

L4 (m) 0.05

L5 (m) 0.5

L6 (m) 0.1

h1 (m) 0.05

h2 (m) 0.05

TABLE 4 | Values for the variables ni .

Mesh: 1 2 3 4

n1 20 20 20 20

n2 110 110 110 110

n3 20 20 20 20

n4 10 10 10 10

n5 100 100 100 100

n6 20 20 20 20

n7 0 64 64 64

n8(�1) 160 20 20 60

n8(�2) 160 20 40 120

n9 0 76 76 76

nh1 10 10 10 10

nh2 10 10 10 10

Along the potential contact zone defined between both solids,
two distinct types of contact are considered: (a) unilateral
frictionless Signorini contact analyzed in this section, as well as
(b) adhesive unilateral frictionless contact shown in section 11.2.

Firstly, computation is carried out taking the model A with
the mesh 1 (see Tables 3, 4 respectively). The boundary of the
domain �1 is discretized by 340 elements, and that of �2

by 580 elements. The EC-BEM computation works with 160
interface elements along the segment denoted as L8, requiring the
optimization of a quadratic problem of 322 DOFs. Note that n8 in
Table 4 is the same for both solids, so themesh along the potential
contact zone is conforming.

The model is solved by applying the above algorithm.
Figure 10 shows the deformed shape, with the scale factor of 500,
predicted by the EC-BEM. Note that the potential contact zone is
divided into three regions: two segments at both extremes of the
initial contact zone where both solids are separated and an active
contact zone in the central segment.

The numerical results along the potential contact zone are
of most interest. Figure 11 shows the normal tractions and

relative normal displacements along this boundary part. The
central region has compressive tractions and null opening, as
expected. On the contrary, normal tractions are almost zero
along the regions with a positive relative normal displacement.
It is interesting to recall that, in any iteration, during the
minimization in the EC-BEM procedure the initial potential
contact zone is assumed as a Dirichlet boundary part. According
to this, the simultaneity between compressive tractions and null
opening or null tractions and positive opening is not explicitly
imposed by the algorithm used, as in most contact algorithms.
However, the results obtained show that these conditions are well
predicted by the energy optimization procedure.

Results from the EC-BEM algorithm described here are
compared in Figure 12 with the results computed for the same
problem with a classic point method algorithm implemented
in BEM and the code ANSYS using an Augmented Lagrange
algorithm. Note that the agreement between the predictions is
accurate in spite of the strong qualitative difference between
the different algorithms. The most significant difference is the
presence of fictitious oscillations predicted by the EC-BEM at
the extremes of contact zone, which do not appear in other
numerical results. Also in Figure 12, a second solution obtained
by the EC-BEM algorithm and a finer mesh (mesh 2 in Table 4),
where additionally a reduced potential contact zone (model B)
was assumed, is shown. As can be seen there, the oscillations
are reduced, together with the maximum values of the fictitious
tensional tractions.

Previous results were obtained using conforming meshes
along the potential contact zone. Results obtained with non-
conforming meshes are presented in the following. However,
strategies presented here for non-conforming meshes are very
simple, more advanced formulations may be combined with
the present framework for contact problems using energetic
principles.

In order to evaluate the influence of a non-conforming mesh
on the results obtained by the present algorithm, a computation
with the model B and the mesh 3 (see Tables 3, 4 respectively)
is carried out. Mesh 3 as well as mesh 4, which have a reduced
potential contact zone given by L8, are defined in view of results
of the previous analysis. The number of elements along the
potential contact zone of�2 (top) is twice that of�1 (bottom).

As can be seen in Figure 13-top, the normal tractions along
the contact boundary of �2, which is the one with finer mesh,
present some oscillation around the smooth solution of tractions
of �1. This behavior does not depend on the choice of main
and secondary domain, a distinction which actually is just
auxiliary. Note that, this oscillatory behavior reduces with mesh
refinement. In order to observe the reduction of these oscillation,
a finer mesh, at the contact boundaries, is employed (mesh 4
in Table 4), maintaining the ratio of number of elements at
both sides of the contact zone. Figure 13-bottom shows the
comparison of tractions along the boundary of�2 for the coarser
and finer mesh. Note that these oscillations are slightly reduced.

11.1.2. A Case of Advancing Signorini Contact
The indentation of a half cylinder against an elastic foundation is
considered. This is an advancing contact problem as the length of
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FIGURE 10 | Deformed shape for example A with Signorini contact, with the scale factor of 500.

FIGURE 11 | Normal tractions and the relative normal displacements

computed along the potential contact zone by the algorithm EC-BEM, for both

domains �1 and �2.

FIGURE 12 | Comparison of tractions computed along the contact zone by

the algorithm described here (EC-BEM) and the point method with BEM

(PM-BEM) and the FEM code ANSYS using an Augmented Lagrange

algorithm. The EC-BEM solution corresponds to model A with Mesh 1, while a

finer one also included here, for model B with Mesh 2 (see Tables 3, 4,

respectively).

the contact zone depends on the value of the prescribed loading.
The problem geometry, shown in Figure 14, is composed by a
rectangle with dimensions L1 × h1 and a half circle with radius

FIGURE 13 | Normal tractions computed along the potential contact zone by

EC-BEM, for both domains and for two non-conforming Meshes 3 and 4 of

Table 4, with uD = 0.035 mm.

h2. The potential contact zone is defined by the length L2 and the
angle φ for the rectangle and the circle respectively. Vertical uD
and null horizontal displacements are imposed along the whole
straight edge of the half circle.

Linear elastic and isotropic behavior is assumed for both
solids, values of Young’s moduli E and Poisson’s ratios ν
being given in Table 5, where also the geometrical dimensions
can be found. The number of elements along each boundary
part are detailed in Table 6. Frictionless Signorini contact
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FIGURE 14 | A half elastic cylinder on an elastic rectangle.

TABLE 5 | Geometry, elastic properties and imposed displacements.

Model A B

uD (mm) 37.5 37.5

E1 = E2 (GPa) 70 70

ν1 = ν2 0.35 0.35

L1 (m) 1.5 1.5

L2 (m) h2 sinφ h2 sinφ

h1 (m) 0.75 0.75

h2 (m) 0.75 0.75

φ (◦) 18 45

TABLE 6 | Values for the variables ni defining the different meshes.

Mesh 1 2 3

n1 13 26 94

n2 6 12 100

nh1 7 13 47

nh2 7 13 47

nφ 6 12 100

n90◦−φ 8 16 53

nL1−L2 11 22 61

is considered on the potential contact zone. Due to the
fact that this is an advancing contact problem, we are
interested in tracking the evolution of the load, which is a
non-linear function of the prescribed displacements. In the
numerical solution the vertical displacement is introduced
by increasing 10 times this displacement in a monotonic
way leading to the value uD shown in Table 5 at the
step 10.

The problem is solved using the EC-BEM code described
above with the mesh 1 (see Table 6), where n1, n2, nh1 and nφ
correspond to the number of elements on the boundary part
defined by L1, L2, h1 and φ respectively. n90◦−φ is the number of

FIGURE 15 | Deformed shape predicted by EC-BEM for Mesh 1 of Table 6.

elements along the arc of the half cylinder which is not a potential
contact zone and nL1−L2 is the number of elements at the two
parts of the upper edge of the rectangle which are not potential
contact zones.

The deformed shape predicted by this code is represented in
Figure 15. Consequently, as expected, the vertical displacement
imposed on the half circle results in its indentation onto the
rectangle. A part of the potential contact zone is in active
contact.

In a similar way to the example described in section 11.1.1
and for comparison purposes, the problem is solved by the BEM
code implementing a classic algorithm of contact by Blázquez
et al. (1998a, 2006). The results of the deformed shape around
the contact zone for both meshes in Table 6 are represented
in Figure 16. Results obtained by the codes using different
meshes (see Table 6) and distinct lengths of the potential contact
zone (see Table 5). The aim of this figure is to compare both
algorithms, and, for that reason, results obtained with the same
mesh are grouped. Macroscopically both solutions for EC-BEM
and PM-BEM show a very good agreement. However, it is
interesting to see in the detailed plot of solutions for mesh 1,
plotted in Figure 17, that results for EC-BEM, even for this
coarse mesh, show a very good agreement with the Reference
solution.

A comparison of tractions along the potential contact zone
predicted by EC-BEM, PM-BEM and the reference solution is
represented in Figure 18. In this figure, unlike those described
previously, results are grouped by the method, in order to
evaluate the influence of the mesh on the results for each method.
Notice that both codes present more accurate results for finer
meshes, thus confirming the expected solution convergence with
mesh refinement.

The resultant force along the upper part ŴD of the half
cylinder can be estimated from the results of tractions predicted
by both methods. In particular, we focus on the vertical
component Fy of this force because it is the only one which
produces work since horizontal displacements are zero by the
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FIGURE 16 | Comparison of the deformed boundaries around the contact

zone predicted by EC-BEM, for two different meshes (Mesh 1 and 2 of

Table 6 in the top and bottom plot, respectively) with the Reference solution

by PM-BEM (using Mesh 3 of Table 6).

boundary conditions. This value is calculated by the integration
of stresses over ŴD,

Fy =

∫

ŴD

σyydx (48)

where σyy represent the normal tractions at the nodes. The
integral is calculated by a standard quadrature.

The values of the resultant force Fy, calculated for the 10
steps by both codes, are represented in Figure 19 as a function
of the vertical displacement imposed. Both codes predict that
stiffness is increasing with the vertical displacement, as typical
for the Hertz contact problems. The reason is that the contact
zone between both solids is enlarging, with a consequence that
the global system becomes stiffer.

FIGURE 17 | Detailed comparison of the deformed boundaries around the

contact zone predicted by EC-BEM and PM-BEM for coarse meshes (Meshes

1 and 2 of Table 6) together with the Reference solution by PM-BEM (using

Mesh 3 of Table 6).

11.2. Numerical Examples to Test the
Adhesive Contact Implementation
This section aims to compare the results obtained by the energetic
approach and commercial FEM code (ANSYS, 2010) in the case
of the elastic contact described in section 2. To this effect, the
problem of receding contact studied above is solved again, this
time with the contact conditions of the adhesive elastic contact.

The problem represented in Figure 9 is studied with the
properties of model A, see Table 3, and the mesh 1, see Table 4.
The stiffness parameters, assumed for this example, are κn=150
GPa/m and κt=0.

Results from the EC-BEM computations for displacements
and tractions along the boundary between both solids are
presented in Figure 20. As expected, zones with tensions
correspond to positive relative displacements (external zones for
example) and zones with compressions correspond to vanishing
relative displacements (zones adjacent to the previous ones). In
this case, a strongly complex zone is predicted at the center of the
boundary, which will be studied below.

For comparison purposes, the problem is solved using the
FEM code (ANSYS, 2010) setting the contact properties in the
following way:

• Contact behavior: No separation (always)
• Contact: Surface to surface
• Contact algorithm: Penalty method
• Contact detection: At nodal points (normal from contact

nodes)
• Opening contact stiffness (KFOP): κn

Results for tractions in the solids obtained by ANSYS and
the EC-BEM code are compared in Figure 21. In the upper
figure we can observe that the agreement along the four zones
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FIGURE 18 | Comparison of the normal tractions computed by EC-BEM and

PM-BEM along the interface for different meshes.

described above is accurate. It is interesting to focus on the
zone in the middle of the boundary where tractions looks
like vanishing at the scale of the upper figure. Lower figure
shows the complexity of this zone, which is composed by two
lateral regions where both solids are separated and a central
region where both solids are under contact (compression). The
agreement between both results is reasonable in spite of the very
small scale compared to the tractions obtained on the whole
boundary.

A subsequent analysis is carried out by multiplying the
displacement uD by 100 without modifying any other parameters
in both codes. In this case, the results from the energetic
approach presented here remain qualitatively similar, whereas
the results from ANSYS present some problems to match
the complex central zone. To the knowledge of authors, this
could be solved by modifying some of the values of the key-
options which configure the contact algorithm of ANSYS. This
shows the robustness of the energetic approach compared to
other contact algorithms, where convergence depends on the
value of certain non-physical parameters of the numerical
model.

FIGURE 19 | Force Fy predicted by both methods as a function of the

imposed vertical displacement uD.

FIGURE 20 | Normal tractions and normal relative displacements along the

potential contact zone in the example of Figure 9 with the adhesive elastic

contact computed by EC-BEM, and with uD = 0.035 mm.

12. CONCLUDING REMARKS

A novel approach for contact problems of elastic bodies was
presented. This method is based on the energy principles
expressed by boundary integrals. The solution of contact
problems is obtained by the minimization of the total
potential energy. Appropriate algorithms to solve the
quadratic problems were presented. The cases of conforming
as well as non-conforming meshes for contact zone were
addressed.

Numerical examples, showing the suitability of the present
framework to solve typical contact problems were examined,
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FIGURE 21 | Comparison of the normal tractions computed by EC-BEM and

ANSYS for the adhesive elastic contact, with uD = 0.035 mm.

and also successfully compared to other well established BEM
methodologies as well as a commercial FEM code.

The proposed framework can be easily incorporated to
existing BEM or FEM codes. Possible extension to the case
of elastodynamics, where instead of the principle of virtual

work we may use the principle of virtual power in order

to compute the total energy (kinetic plus elastic), using only
boundary values, of tractions and velocities, is possible. For
this it might be convenient to utilize a formulation such
as that introduced in Panagiotopoulos and Manolis (2010,
2011).

Finally, the present framework is found to be very useful
in the case where also dissipative mechanisms exist on the
boundaries or common interfaces of elastic bodies. In such cases
we may apply energetic approaches to solve the corresponding
non-linear problems as was shown in previous publications
by some of the present authors (e.g., Panagiotopoulos et al.,
2013).
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Blázquez, A., París, F., and Mantič, V. (1998b). BEM solution of two-

dimensional contact problems by weak application of contact conditions

with non-conforming discretizations. Int. J. Solids Struct. 35, 3259–3278.

doi: 10.1016/S0020-7683(98)00016-X

de Paula, F. A., and Telles, J. (1989). A comparison between point collocation

and Galerkin for stiffness matrices obtained by boundary elements. Eng. Anal.

Bound. Elements 6, 123–128. doi: 10.1016/0955-7997(89)90025-8

Dostál, Z. (2009). Optimal Quadratic Programming Algorithms: With Applications

to Variational Inequalities, Vol. 23 of Springer Optimization and Its

Applications. New York, NY: Springer Science+Business Media.

Eck, C., Jarušek, J., and Krbec, M. (2005). Unilateral Contact Problems. Variational

Methods and Existence Theorems. Boca Raton, FL: Chapman & Hall; CRC;

Taylor & Francis Group.

Fichera, G. (1964). Problemi elastostatici con vincoli unilaterali: il problema di

signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei VIII,

91–140.

Gakwaya, A., Lambert, D., and Cardou, A. (1992). A boundary element and

mathematical programming approach for frictional contact problems. Comput.

Struct. 42, 341–353. doi: 10.1016/0045-7949(92)90030-4
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The present study is aimed at developing a hybrid approach to consider the effect of

concrete cracking on the hysteretic response of RC frames. The mechanical behavior

of the concrete is defined according to the smeared cracking approach, while discrete

cracking surfaces are included in the geometrical model. The interface behavior of

the discrete cracking surfaces is defined by the combination of contact and cohesive

elements. The proposed approach is adopted in ABAQUS to simulate an experimental

test on a double cantilever column for the calibration of the numerical model. Therefore,

a test conducted on a RC portal and modeled numerically for the first time is

simulated. Numerical and experimental results are compared in terms of hysteretic force-

displacement behavior and cumulative dissipated energy, in order to assess the reliability

of the proposed model in simulating the energy dissipation capacity of RC members

subjected to lateral cyclic loading. The hybrid modeling approach proposed allows an

accurate description of the stress distribution and a fairly satisfactory matching of the

hysteretic behavior with a reasonable compromise in terms of computational effort.

Keywords: reinforced concrete frames, cyclic behavior, hysteretic response, micro-modeling, abaqus, hybrid

micro-model

INTRODUCTION

Finite element (FE) analysis is widely adopted in earthquake engineering, particularly when dealing
with systems with a high number of degrees of freedom (DOF), representing the structural
configuration of buildings. On the other hand the simulation of the seismic response of RC
structures through finite element analysis can be complex and challenging. This is mainly caused by
the difference between themechanical response of concrete and steel rebars and by their consequent
complex interaction. In numerical studies, either micro- or macro-modeling approaches are
usually adopted depending on the aim of the study, which can require the accurate simulation
of several phenomena influencing the response of the frames. Macro-models generally adopt
simplified formulation which implicitly consider the influence of the micro-mechanical interaction
phenomena on the response of the elements/materials. This approach leads to a significant
simplification of the numerical problem. In micro-modeling approaches, the micro-mechanical
interaction phenomena are explicitly modeled numerically (e.g., Karavelić et al., 2017; Sinaie
et al., 2018) and generally high computational efforts are required. Therefore, when the target
of the analysis is global behavior of RC structures, generally macro-models are preferred (e.g.,
Vamvatsikos and Fragiadakis, 2010; De Risi et al., 2017). This is mainly due to the substantial
reduction of the computational effort required with respect to micro- and meso-models. In the
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last decades, large numbers of macro-models have been
developed, able to accurately reproduce the response of RC
members. On the other hand, for the accurate reproduction
of stress/strain distribution in the elements subjected to cyclic
loads, micro- and meso-models still represent the best option.
The latter approach represents the compromise between micro-
and macro-modeling, featuring a simplification of the numerical
problem aimed at accurately evaluate only the phenomena which
are object of the analysis. For this reason, the difference between
macro- and meso-models can’t be unambiguously defined. In
macro-models, RC frames are usually modeled through beam
elements, while both micro- and meso-models generally feature
solid or shell elements to represent the concrete region, whereas
the steel reinforcement is simulated with embedded beam/truss
elements (e.g., Viswanathan et al., 2014; Redmond et al., 2018).

Mechanical models for concrete and steel, available in most
of the FE platforms, allow reproducing the stress-strain response
under monotonic loading and the degradation of the strength
and stiffness due to cyclic loading. The mechanical response of
the steel is generally reproduced adopting a symmetric bi-linear
behavior, characterized by kinematic or isotropic hardening laws;
even if in some cases the compressive response is modified to take
into account the buckling phenomenon on rebars.

Although the simulation of the concrete response is
more challenging; as well-known, the compressive behavior is
characterized by a post peak softening slope, influenced by
different parameters, such as the confinement (Mander et al.,
1988), while the tensile response is generally composed of an
elastic branch up to the tensile strength of the concrete, followed
by concrete cracking.

The post-cracking response of concrete can be simulated
adopting the smeared cracking approach (Lotfi and Shing, 1991;
Lee and Fenves, 1998), where cracks are not explicitly defined in
the geometry of the model but they are implicitly considered in
the mechanical response of the material.

The smeared cracking approach has been widely adopted
in numerical studies to reproduce the monotonic response of
RC frames (Sinaei et al., 2012; Sümer and Aktaş, 2015; Ors
et al., 2016); although this mechanical model is not always able
to accurately reproduce the response of concrete under cyclic
loading.

The discrete cracking approach is an alternative method to
reproduce the crack opening in the concrete (Dolbow et al., 2001;
Giner et al., 2009), it generally allows high simplifications of
the mechanical model adopted for the concrete. Discrete cracks
develop in the mesh once the tensile strength or the cracking
energy is attained and they can be explicitly identified in the post
processing.

The two methods discussed allow the accurate reproduction
of the effects of crack development in concrete members, but, in
many cases, they are time consuming and lead to convergence
issues.

Furthermore, when dealing with the cyclic behavior of
the concrete members, the effects of the cyclic opening and
closure of the cracks should be considered in the numerical
simulation; in the smeared cracking approaches, this leads to a
significant increase of the complexity of the mechanical model

(Koutromanos and Shing, 2012; Redmond et al., 2018), while the
eXtended Finite Element Method (XFEM) requires the definition
of a contact law along the cracking surfaces, which is not pre-
defined in the geometrical model (Yu et al., 2016).

The present study is aimed at proposing a hybrid approach
using ABAQUS (Dassault Systemes, 2016) which combines the
discrete cracking approach and the smeared cracking approach.
The cracking surfaces are pre-defined in the numerical model
by splitting the geometry in different “macro blocks”; along the
cracking surfaces, cohesive and contact laws are defined, in order
to simulate the crack opening and closure, respectively.

This approach makes possible to simplify the definition
of the mechanical response of the concrete, since the cyclic
opening/closure is not implicitly taken into account in the tensile
behavior definition. Furthermore, since the cracking paths are
predefined in the geometry, the contact and cohesive laws are
only defined for specific surfaces in the geometry, leading to a
significant reduction of the computational efforts.

The proposed approach is aimed at reproducing the hysteretic
response of RC members subjected to cyclic lateral loading. In
order to assess the reliability of the proposed model, a test on
a double cantilever column was simulated (Ohue et al., 1985)
by proposing different modeling approaches. The monotonic
and hysteretic response of the numerical simulations were
compared to the experimental results with a particular focus
on the influence of the adopted model on the accuracy of the
reproduction of the shape of the hysteresis loops. Then, a recent
experimental test on a RC portal conducted by Verderame et al.
(2016) is modeled numerically for the first time in order to assess
preliminarily the reliability of the proposed approach. Hysteretic
force-displacement response is evaluated and the numerical and
experimental results are compared, in order to assess the accuracy
of the simulation of the cyclic loops.

MICRO-MODELING OF RC
FRAMES—ISSUES IN THE SIMULATION OF
THE CYCLIC BEHAVIOR

Most of the mechanical models available on FE platforms
to simulate the behavior of the concrete take into account
the significant asymmetry of the response in compressive and
tensile direction. The compressive stress-strain relationship of
the concrete is represented through a non-linear formulation
(Figure 1A) whose parameters depend on the reinforcement
details, as the post-peak softening response, being highly
influenced by the transverse reinforcement (Mander et al., 1988).
On the other hand, the tensile behavior definition depends on the
approach adopted to simulate the concrete cracking.

The response of RC members under cyclic lateral loading
is indeed highly influenced by the cracking of concrete, which
modifies the energy dissipation capacity. The pinching effect
characterizing the flexural response of frames is caused by
the cyclic closure/opening of cracks, leading to a significant
reduction of the stiffness in the load-inversion phase, due to the
closure of the cracks. Depending on the adopted approach, the
cyclic loops characterizing the lateral response of a RC frame
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FIGURE 1 | Example of mechanical model for concrete in compression (A) and tension stiffening (B).

can be reproduced in different ways, explained in the following
section.

The Smeared Cracking Approach
In the smeared cracking approach, the development of cracks
in the concrete is considered by defining a post-peak tensile
response of the material. Thus, rather than tracking individual
“macro” cracks in the geometrical model, the presence of
cracks is considered implicitly by modifying the stress and the
material stiffness associated with the integration point. After the
attainment of the tensile strength of the concrete (fct), a post-peak
softening branch (tension stiffening) simulates the progressive
degradation due to the crack openings. Tension stiffening is
reported in Figure 1B and can follow either linear or exponential
laws.

In this approach, the simulation of the crack closure,
requires an increase of the complexity of the material model
(Koutromanos and Shing, 2012) and, as said before, highly
influences the dissipation capacity of the frame members.

As reported in Figure 1B, once unloading takes place, after
the crack has opened, the unloading branch stiffness is equal
to the elastic stiffness, reduced by a factor δt that takes into
account the degradation due to damage. As soon as the elastic
displacement is restored, the crack closure stage begins and a
significant reduction of the stiffness up to the complete closure of
the crack is observed. At this point, the elastic stiffness is restored
and compression takes place; the variation of the stiffness during
the load inversion phase (pinching) is more marked in case of
relevant crack patterns in RC members.

The analytical formulation to simulate the monotonic
response of concrete usually requires the definition of two
yielding surfaces; the first one is referred to the end of the elastic
branch in compression, at which the linear stress-strain law turns
into an exponential one. The second yielding surface is referred
to the end of the elastic slope in tension, where tension stiffening
takes place.

The model proposed by Oliveira and Lourenço (2004) was
adopted in finite-element analysis of masonry structures to
simulate the cyclic behavior of interface elements; although the
same formulation can be used for concrete. The cyclic response
is defined by the adoption of two auxiliary yielding surfaces
moving within the monotonic yielding surface, representing the
unloading/reloading phase.

The monotonic surfaces are active when either only
monotonic loading has occurred or the stress point reaches the
monotonic yielding surfaces during an unloading process. The
proposedmodel was validated by comparisons with experimental
results of uniaxial tests on concrete and was assessed to be highly
reliable to simulate all the phenomena characterizing the cyclic
response of asymmetric materials as concrete.

In some cases, mechanical models available in finite-
element software packages are unable to simulate the response
under cyclic loads, particularly in case of large tensile
strain/displacement (Figure 2A); compression stiffness recovery
in the reloading phase can occur earlier than expected, depending
on the criterion adopted in the model to discern the transition
from tension. As observed by Nikaido et al. (2015), if the
compression stiffness recovery is detected at zero stress point,
the pinching effect simulation can be challenging, since the crack
closure cannot be accurately reproduced in the numerical model
(as shown in Figure 2B).

In other cases, the auxiliary yielding surfaces are not even
defined and the stiffness degradation, representing the cracking
closure, does not take place.

If the mechanical model is unable to produce a satisfactory
simulation of the pinching effect, a significant mismatch is
obtained in the numerical simulation of the flexural response of
RC members in terms of energy dissipation, since cracking of the
concrete leads to a noticeable decrease of the energy dissipated.

The Discrete Cracking Approach
In the discrete cracking approach, the cracking process is ruled
by cracks developed in the geometrical model; the most used
modeling approaches are the extended finite element method and
the adoption of cohesive elements to express the post-cracking
response of the concrete.

The XFEM was developed by Moës and Belytschko (2002);
it allows to significantly simplify the definition of the tensile
response in the mechanical model of the material. The
cracking path is generated by adding discontinuous basis
functions to standard basis functions for nodes where cracking
energy/displacement is computed, in order account for the
displacements due to crack opening. The main advantage in the
XFEM is that no update of the mesh is required to track the crack
path, thus, the mesh-dependency of the results is significantly
reduced with respect to a smeared cracking approach.
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FIGURE 2 | Effect of the cracking closure simulation (A) in the mechanical model and (B) in the global response showing the pinching effect.

Since the XFEM allows to model the discontinuity in a
displacement field along the crack path, the simulation of the
crack growth requires an accurate definition of the fracture
modes; generally, the cracking path is computed adopting the
mixed mode in order to consider not only the response under
uniaxial traction (Ballatore et al., 1990). Dolbow et al. (2001) also
incorporated friction laws in order to simulate more accurately
the crack growth under compression, which is an important
feature when dealing with cyclic response of the frame members.

Since the crack path is not pre-defined, the accurate

simulation of the cyclic response of reinforced concrete members
requires the inclusion of contact laws in order to consider the
effect of the crack closure. This assumption generally leads

to high computational effort, and in many cases can cause
convergence issues, particularly when dealing with RC members
with embedded rebars, for which multiple crack paths are

expected to develop under cyclic lateral loading.
Discrete cracking approaches adopting cohesive elements

rather than XFEM have been also widely adopted in the literature
(Bocca et al., 1991). The so-called discrete interelement cracks
require remeshing in the model after the generation of the

cracks, since the path is defined between the elements. This
method is similar to the XFEM since the crack path is not pre-
defined and can lead to high computational efforts as well as
convergence issues. Notwithstanding the discussed issues, it was
used specifically to simulate the lateral response of reinforced
concrete members as well as crack growth in ductile materials
(Tvergaard and Hutchinson, 1996; Gullerud et al., 2000).

The so-called intraelement approach features the
incorporation of embedded discontinuities in the geometry
(Belytschko et al., 1988), to simulate the post cracking response
of the material. This approach allows the pre-definition of
the crack paths, identified by a preliminary analysis of the
stress distribution along the member, in order to define the
regions where cracks are most likely to develop. Despite this
approach reduces the complexity of the model, in some cases the
preliminary definition of the crack paths may be difficult, as in
the case of RC members subjected to cyclic loading.

In the study proposed by Yu et al. (2016), the simulation of the
pinching effect characterizing the flexural cyclic response of a RC
column, was conducted providing a novel modeling approach,

developed through combination of the XFEM, to detect the crack
paths in concrete, traction-separation cohesive laws to simulate
the post-cracking response, and contact elements to take into
account the clack closure process. A satisfactory simulation of the
experimental response of RC frame members was obtained and
the comparison between experimental and numerical hysteretic
loops demonstrated the high reliability of themodel in simulating
the pinching effect.

An alternative discrete cracking approach for the simulation
of the lateral response of RC members was proposed by Stavridis
and Shing (2010). Triangular elements were connected with
double-node interface elements, simulating the post cracking
behavior of the concrete. The model was validated by comparing
numerical results with experimental tests on infilled frames,
showing a good match with the experimental backbone curve
(Stavridis and Shing, 2010; Redmond et al., 2018).

A similar approach was recently developed from Zivaljic
et al., 2013, combining triangular plane-stress elements with
discrete cracking interfaces to reproduce concrete cracking and
embedded one-dimensional elements simulating steel rebars. The
bar slip was also considered by defining a pre- and post-cracking
mechanical model for steel. The proposed model was adopted
for the simulation of several reinforced concrete elements and
was assessed to be very reliable in reproducing the crack paths in
concrete (Zivaljic et al., 2013; Živaljić and Nikolić, 2014; Nikolić
et al., 2017).

Also in this cases, a satisfactory simulation of the pinching
required a complex mechanical model for interfaces elements,
increasing the computational efforts.

THE SIMULATION OF THE HYSTERETIC
RESPONSE IN THE PROPOSED
APPROACH

As discussed in section Micro-Modeling of RC Frames—Issues
in the Simulation of the Cyclic Behavior, the main issues in the
simulation of the cyclic response of RC members under lateral
loading are related to the pinching effect; when the post cracking
behavior is defined in the mechanical model of the material,
the process of crack closure requires a significant increase of
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the complexity of the formulation, while in discrete cracking
approaches, the cracking closure must be simulated by the
inclusion of contact laws, which can lead to convergence issues.
XFEM method was assessed to be reliable when simulating the
lateral response of RC members under monotonic lateral loads
even if the post-cracking behavior of the concrete is not defined in
the material model (Zi and Belytschko, 2003). On the other hand,
the adoption of this method requires an oversimplification of the
response of the material in compression, which in many cases
was assumed to be linear elastic (Dolbow et al., 2001; Liao and
Huang, 2015). When analyzing the non-linear response of frame
members experiencing displacements far beyond the yielding
point, the simplified assumption on the compressional behavior
of the material becomes questionable and the post-peak actual
response of the element can be mismatched.

Description of the Numerical Model
In the numerical model developed using ABAQUS, an equivalent
bi-dimensional system is proposed to simulate the cyclic lateral
behavior of a RC portal. 4-node bilinear shell elements with
reduced integration (CPE4R) are adopted for concrete, while
both longitudinal and transverse rebars are modeled using linear
truss elements (T2D2), embedded in the concrete geometry
(Figure 3A).

The mechanical behavior of the concrete is defined adopting
a Concrete smeared cracking model available in the software.
As evidenced by Nikaido et al. (2015), the latter is unable
to accurately simulate the crack closure process, since earlier
compressive stiffness restore occurs in the unloading phase when
the tensile deformation is relevant. Thus, a combination of the
smeared and discrete cracking approach is adopted to simulate
the pinching effect.

A bilinear kinematic hardening relationship was adopted for
the definition of the mechanical behavior of the steel rebars,
assuming a symmetric response in tension and compression.

In order to accurately define the compressive response of the
concrete, the well-consolidated and widely adopted formulation
proposed by Mander et al. (1988) was considered; which takes
into account the transversal reinforcement ratio to define the
ductility and strength capacity of the material. The tensile
response was assumed to be elastic-perfectly-plastic with no
tension stiffening, since the crack opening wasmodeled following
a discrete approach by the adoption of cohesive laws. The model

was implemented by direct input of the stress-strain backbone
curve in the mechanical model available in the software (Concrete
damaged plasticity); the parameters required for the definition of
the plastic flow and the yield function are assumed considering
values suggested from the literature (Lubliner et al., 1989; Lee and
Fenves, 1998).

The Interface Interaction
According to different experimental and numerical studies
(Sneed et al., 2016; Duan et al., 2017), flexural cracks are most
likely to develop along the discontinuity surfaces, represented by
the transversal rebars running through the concrete. Thus, in the
proposed model, discrete crack paths are preliminarily defined in
the geometry.

The path initiation position corresponds to the stirrups in
the frame (Figure 3B), while the inclination is defined according
to the variable strut inclination truss model (EN 1992-1-1,
2004; Fardis, 2009), assuming an angle of inclination of the
compression stress field equal to 21.8◦. Moreover, in order reduce
the computational efforts, the paths are only included in the
zones with the highest value of flexural moment. The geometry of
concrete members is divided in different “macro-blocks,” whose
interaction is defined through cohesive and contact relationships.

The interface zone between the macro blocks is divided in
three parts, as shown in Figure 3B; the external parts represent
the crack paths, while the central part is a rough connection
assumed as the center of the rotation of each block. The
assumption of a central rough connection means that cracks in
the members can only evolve up to the external boundaries of
the central zone; as consequence, the latter must be adequately
restricted, in order to assume that the collapse of the member is
attained before cracks develop up to the central zone.

Depending on the direction of the load, the two external zones
are characterized by compression and tension stress regime,
respectively (Figure 3B); thus, either cohesive or contact laws are
activated along the surfaces, on the basis of the stress regime.

The contact law is defined in order to simulate the complete
closure of the crack, when the elastic compression stiffness
is restored. The augmented Lagrange method (Powell, 1969)
is adopted to compute the contact stress, while the contact
stiffness is automatically defined depending on the stiffness of the
elements experiencing the contact. This approach also allows to
take into account the compressive stiffness reduction due to cyclic

FIGURE 3 | (A) Numerical model and (B) interface interaction.
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loading, by including compressive degradation in the mechanical
model of the concrete.

The stiffness factor for the contact surfaces is assumed to be
unitary, both for external and central surfaces.

In the initial stage, no gap exists between the blocks, and all
the contact surfaces are in a closed status; since for the external
zones separation of the surfaces is expected, the contact detention
is ruled by the definition of a minimum gap between the nodes,
this assumption assures contact elements being active every time
that surfaces cyclically experience contact.

Once traction takes places along the surface, the separation
between the surfaces follows a stress-displacement law, obtained
as a function of the post-cracking stress-strain relationship of
concrete, reported in Figure 2A.

The first elastic branch is defined considering the stiffness
of the shell elements, thus, it takes into account the stiffness
degradation by including a degrading tensile law in the
mechanical model of the concrete.

The stress limit at the end of the elastic branch is equal
to the tensile strength of the concrete. The post-peak behavior
is ruled by an exponential law, according to analytical models
expressing the tensile response of concrete available in the
literature (Pramono and Willam, 1989; Mehta and Monteiro,
2006). In this study, an exponent equal to three is assumed to
define the softening branch after the attainment of the tensile
stress. Once the displacement between the surfaces reaches the
residual limit, the cohesive law is inactive, meaning that no
stress-displacement relationship exists between the surfaces. At
this stage, once the load is reversed, the closure of the crack is
represented by a displacement with zero-stress variation along
the elements, making possible to simulate the pinching effect in
the global response of the frame. As said before, once the crack
is completely closed, the elastic compressive stiffness is partially
restored, according to the compressive degradation law defined
in the mechanical model of the material.

By this procedure, the pinching effect is “lumped” in the
cracking interfaces; beside this, the effect of the cracking of the
concrete on the flexural response in terms of strength is still
considered in the whole model, by the definition of a tensile
strength limit for the concrete, as well as tension stiffening.

NUMERICAL SIMULATION OF
QUASI-STATIC CYCLIC TEST ON RC
PORTAL

The numerical model developed was firstly validated considering
the experimental test conducted on a double-cantilever column
by Ohue et al. (1985). The column tested (named non-ductile
column or NDC), reported in Figure 4 featured a cross section
equal to 200 × 200mm and a height equal to 800mm. The
longitudinal reinforcement was composed of 2 + 2 rebars with
16mm diameter, while transverse reinforcement was realized
adopting 5.5mm stirrups with spacing equal to 50mm.

Axial load was applied on the top of the column to simulate the
presence of the gravity loads. The cyclic lateral load was applied in
displacement-control and it was composed of 9 load steps, each

FIGURE 4 | Description of the NDC specimen tested by Ohue et al. (1985).

of them characterized by two fully reversed cycles at the same
displacement amplitude.

A mixed shear-flexural failure mode of the specimen was
observed in the test, featuring major shear cracks at a
displacement amplitude equal to 17.5mm (drift equal to 2.2%).

In order to assess the reliability of the proposed model in
predicting the lateral behavior of RC portals, a campaign available
in literature and never modeled numerically, was considered
to carry out a numerical simulation. The reinforced concrete
frame (named ductile frame or DF) tested by Verderame et al.
(2016) was designed according to provisions of the Italian seismic
code NTC08 (2008), in order to simulate the behavior of seismic
designed frames.

In DF (Figure 5), the longitudinal reinforcement of the beam
is symmetric and made of three top and three bottom 10mm
bars. 12mm bars were used for the column reinforcement,
in order to follow the capacity design approach. Transverse
reinforcement of the beam and the columns was composed of
6mm stirrups, whose spacing was equal to 100mm in all the
three elements and 50mm in the “critical zones,” i.e., the end
regions of columns and beams and in the mid span of the
beam.

The experimental test was carried out by the application of
cyclic lateral load at the mid-span of the beam; the loading
protocol was composed of fully reversed displacement-controlled
load cycles, whose displacement amplitude was increased at each
load step up to the failure of the specimen. For each load step,
three fully reversed cycles were executed.

The axial load was applied on top of the column during
the quasi-static cyclic tests, to simulate gravity loads due to the
presence of higher floors in a five-story building.

In the test, the first damage was characterized by flexural
cracking at the beam ends. By increasing the displacement
amplitude, flexural cracks developed in the column ends, too.
The peak lateral strength was attained after the widening of the
flexural cracks in beam ends and in the bottom of the columns.
As expected for seismic designed frames, the collapse mechanism
was caused by major cracking in beams, according to a strong
column/weak beam mechanism behavior. The failure of the
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FIGURE 5 | Description of the DF specimen tested by Verderame et al. (2016).

specimen was attained at a drift1f equal to 5.3% (see Verderame
et al., 2016 for further details).

Numerical Simulation of the Tests in
ABAQUS
In the numerical simulation in ABAQUS, different
configurations of the finite element model are analyzed, in
order to evaluate the influence of the proposed modeling
approach on the numerical results. A Finite-Element “standard”
(FES) model is firstly developed, with the aim of assessing
the accuracy of the material model available in ABAQUS in
simulating the pinching effect. The only difference between FES
model (reported in Figure 6A) and the Finite-Element model
with macro Blocks (FEB) model proposed in section Description
of the Numerical Model is the absence of the macro blocks in
the geometry, meaning that a fully smeared cracking approach
is adopted, without the definition of contact and cohesive laws
to simulate the cyclic opening and closure of cracks, leading to a
high simplification of the numerical problem.

In FES model, the size of shell elements is assumed equal to
50mm in the whole geometry, while, in FEBmodel, it is gradually
reduced from 50 to 10mm in proximity to the interfaces between
the macro blocks. Referring to the truss elements adopted to
simulate longitudinal rebars, a length equal to the stirrups
spacing is assumed.

Furthermore, referring to FEB model, two different
configurations were developed (Figures 6B,C) for the test
considered; in order to analyse the influence of the simulation
of bond between concrete and steel rebars on the accuracy of
the simulation of the hysteretic loops characterizing the lateral
response of the portal.

In the first configuration (FEB1), the end zones of beams
and columns are divided in two macro blocks, meaning that
two discrete cracking surfaces are included. Bar slip is not
considered and the truss elements are embedded in the concrete
region. In the second configuration (FEB2), which features the
same number of blocks adopted for FEB1, bar slip is modeled

through linear elastic connectors between trusses representing
longitudinal rebars and shell elements. The mechanical behavior
of the connectors is defined according to CEB-FIP (2010).

It is worth mentioning that the same approach was adopted
for each of the experimental tests simulated, even if Figure 6 is
referred to the model adopted for the portal tested by Verderame
et al. (2016). The double-cantilever model for the simulation of
the test by Ohue et al. (1985) featured an encastre restraint for
both the bottom and the top nodes of the column.

A dynamic analysis adopting implicit method was carried
out; monotonic and cyclic displacements were applied on top of
the frame and the column as boundary condition to reproduce
the loading protocol applied in the experimental tests, while
the base shear at the fixed supports was computed during
post-processing in order to plot monotonic and cyclic load-
displacement relationships.

Comparison Between Numerical and
Experimental Results
The numerical simulation of the test on the NDC confirms the
low reliability of the mechanical model of the concrete available
in the software in simulating the cyclic response of reinforced
concrete columns. Firstly a monotonic push-over analysis was
carried out, in order to obtain the monotonic response of each
model developed (Figure 7). No significant variation in observed
in terms of yielding strength and pre-yielding stiffness for FES
and FEB1, confirming the equivalence of the two models in the
simulation of monotonic behavior.

On the other hand, FEB2 model featured a lower stiffness due
to the bar slip. The variation of the yielding strength with respect
to the experimental test is equal to +1.5, +.2%, and +1.1% for
FES, FEB1, and FEB2, respectively. The elastic stiffness increased
by 13% for both FES and FEB1 while a decrease of 36% was
observed for FEB2. The FES and FEB1 featured a hardening
response leading to an increase of the ultimate strength with
respect of the experimental results. This feature suggests that the
strength degradation obtained in the experimental test could be
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FIGURE 6 | Illustration of (A) FES model, (B) FEB1 model, and (C) FEB2 model.

FIGURE 7 | Comparison between the monotonic response of the three FE

model developed and the cyclic experimental response of NDC.

an effect of the cyclic loading, therefore it couldn’t be reproduced
through a push-over analysis. On the other hand, the strength
degradation obtained in FEB2 simulation, was caused by the bar
slip, leading to a softening behavior and a higher accuracy of the
simulation in terms of strength.

The comparison between the hysteretic response of FES
and FEB1 and the experimental test is reported in Figure 8.
The introduction of the macro-block in the model leads to a
significant reduction of the energy dissipation and the elastic
stiffness of the backbone curve with respect to the FES model.
Furthermore, the pinching effect observed in the experimental
response is only simulated in FEB1, confirming the limit of
the original model for the concrete in accurately simulate the
cracking closure process. Lastly, the isotropic hardening of
the reinforcement steel observed in FES simulation led to a
significant increase of the maximum strength with respect to
the experimental test as well as to the corresponding maximum
strength obtained from the push-over analysis. Referring to FES,

the maximum strength obtained increased by 14% with respect
to the experimental result (+7% with respect to the monotonic
response), Also in FEB1 model the isotropic hardening affected
the global response in the first cycles, as evidenced by the
different shape of the hysteretic loops comparing numerical
and experimental response for low displacement amplitude.
The increase in maximum strength observed for FEB1 was
11% comparing to experimental test (+3% with respect to the
monotonic response). Despite being affected by the isotropic
hardeningmodel of the reinforcement steel, the cyclic response of
FEB1 featured pinching effect and a satisfactory simulation of the
experimental response was obtained comparing to experimental
curve.

The introduction of the bond between steel rebars and

concrete led to a significant increase of the accuracy of the

experimental response simulation (Figure 9). The pinching effect
simulation caused by the bar slip significantly affected the shape

of hysteretic loops and led to a reliable simulation of the total

energy dissipated (−19% with respect to the experimental test).

A good correspondence in terms of maximum strength was
also observed, with a difference of 4.1% between numerical and
experimental results. On the other hand, the inclusion of the
bond in the numerical model affected the elastic stiffness, which
was 45% lower in the numerical simulation.

The total energy dissipated, ED is reported in Table 1. In
the FES a significantly higher value is obtained with respect to
the ED of the experimental test (+252%), due to the absence
of pinching and the isotropic hardening effect obtained in the
model. For FEB1 and FEB2, a higher accuracy in the simulation
of the crack opening/closure due to the presence of the macro-
blocks led to a satisfactory matching of the experimental curve
and, consequently, the ED. Furthermore, the bar slip simulation
characterizing the FEB2 approach reduced the influence of the
cyclic response of the reinforcement steel on the global behavior
of the column.

The numerical simulation of the test on the DF specimen
shows a significant variation of the results depending on the
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FIGURE 8 | Numerical simulation of NDC adopting (A) FES model and (B) FEB1 model.

FIGURE 9 | Numerical simulation of NDC adopting FEB2 model.

TABLE 1 | Total energy dissipated for experimental test and numerical models

referring to NDC.

Experimental

test

ABAQUS FES ABAQUS

FEB1

ABAQUS

FEB2

ED [kNm] 9.59 33.72 12.22 7.81

modeling approach adopted. The hysteretic force-displacement
(F-d) behavior obtained considering the FESmodel (Figure 10A)
confirms the assessments made in previous sections. No pinching
effect is observed in the cyclic response of the frame, leading to
a significant increase of the energy dissipated in the numerical
model with respect to the experimental test. Furthermore,
isotropic hardening effect is observed in hysteretic loops obtained
from the numerical simulation, caused by the influence of the
cyclic behavior of steel rebars on the lateral response of the frame.

In FEB1 (Figure 10B), the bar slip is not simulated since
embedded constraints were adopted between the nodes of shell
and truss elements. For this reason, an increase of the maximum
lateral stiffness is obtained in the numerical model compared
to the experimental test. The absence of bar slip increases the
influence of the rebar deformation on the strain developed in

the shell elements, and the crack opening is not adequately
simulated. On the other hand, higher quality of the matching of
the experimental test can be observed in terms of strength and
stiffness, even if the pinching effect is not simulated.

Comparing FES results to experimental ones, an increase of
199 and 24% is obtained in terms of elastic stiffness, Ek, and
yielding strength, Fy, respectively. Considering FEB1, the Fy is
11% higher than the value obtained from the test, while Ek
increases by 111%.

For FEB2 model (Figure 11), a better matching of the
experimental results is obtained both in terms of strength and
stiffness. The simulation of the bond leads to a significant
reduction of the elastic stiffness with respect to FEB1 (−64%),
while bar slip was found to have a sensible influence on the
pinching effect.

Comparing experimental to numerical results, an increase of
10% is obtained for Fy considering FEB2, while the elastic stiffness
decreases by 23%. It is worth saying that FEB2 simulation is the
only one which features a decrease of the elastic stiffness with
respect to the experimental test.

Lastly, the energy dissipation capacity is also computed for
the analyzed frame. The cumulative dissipated energy (CDE),
evaluated as the sum of the areas of the hysteretic loops in the F-d
response, is reported in Figure 12. Considering FES and FEB1, a
significant increase of energy dissipated is observed even for low
displacement amplitude, while in case of FEB2, a very satisfactory
match is obtained in the early stage.

This assessment is confirmed by the comparison of the
hysteretic loops of Figures 10, 11.

The pinching effect is more noticeable in the first loops
in case of FEB2, while the more the displacement amplitude
increases, the more the difference between the experimental and
the numerical CDE increases.

This effect could be caused by the increase of the strain in shell
elements adjacent to the cracking surface for high displacement
amplitudes.

For high displacements, the interaction between the stress
components in shell elements adjacent to the crack leads to
a significant increase of the strain, causing a distortion of the
geometry in the crack closure phase. For this reason, the cyclic
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FIGURE 10 | Numerical simulation of DF adopting (A) FES model and (B) FEB1 model.

FIGURE 11 | Numerical simulation of DF adopting FEB2 model.

FIGURE 12 | Cumulative dissipated energy obtained for experimental test and

numerical models.

loops obtained for high displacement amplitude are significantly
influenced by the hysteretic behavior of the steel, which is not
characterized by pinching.

The total energy dissipated, ED, is reported in Table 2. As
expected, ED in the FES and FEB1 models is significantly
higher with respect to the ED of the experimental test, due

FIGURE 13 | CPU time comparison between FES, FEB1, and FEB2.

TABLE 2 | Total energy dissipated for experimental test and numerical models

referring to DF.

Experimental

test

ABAQUS FES ABAQUS

FEB1

ABAQUS

FEB2

ED [kNm] 73.02 228.16 159.58 118.25

to the absence of pinching and because of the higher stiffness
obtained in these simulations. For FEB2, a better simulation is
obtained, confirming the need of accounting for the bar slip
in the simulation of the hysteretic response when dealing with
reinforced concrete members.

The efficacy of the proposed model was also assessed by
comparing CPU time of the numerical analysis (Figure 13). Since
the time is significantly influenced by the processor clock rate, the
comparison is provided in terms normalized CPU time (CPUn)
referring to the FES model, which is the simplest configuration
developed.

As expected, the absence of the discrete cracks in the FES
model led to a significant reduction of the CPU time with respect
of both FEB1 and FEB2. The presence of the macro blocks
and, consequently, the inclusion of contact and cohesive laws
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increased by 307% the solver time, while by including the bond
between concrete and steel rebars the increase was 405%.

Even if more complex and more computationally demanding,
the FEB2 model is still an appealing and simply-to-model
alternative for FE analyses with reduced effort with respect to
more complex approaches (e.g., Stavridis and Shing, 2010; Yu
et al., 2016).

CONCLUSIONS

Different numerical studies focussed on the seismic response
of reinforced concrete members pointed out the issues when
attempting to accurately reproduce the effects of the cyclic
opening and closure of the cracks in concrete when adopting
meso- and micro-modeling approaches. In different finite
element platforms, mechanical models simulating the concrete
tensile response as well as extended finite element methods
available allow to accurately reproduce the crack opening process
but lead to a significant increase of the computational efforts
as well as convergence issues when simulating the effects of the
crack opening on the cyclic response of the frames. Furthermore,
in some cases the results obtained adopting a smeared cracking
approaches show a significant difference compared to the actual
behavior observed in experimental tests.

The hybrid modeling approach proposed in the present
study was assessed to significantly improve the accuracy of
the simulation of the hysteretic loops characterizing the lateral
behavior of reinforced concrete members. The smeared cracking
approach adopted to define the mechanical response of the
concrete was combined with a discrete cracking approach
through the introduction of pre-defined cracking path in the
regions subjected to higher values of tensile stress.

Contact and cohesive interaction laws were adopted to define
the mechanical response along the cracking paths in order to
simulate the cyclic crack opening and closure. Two different
configurations of the proposed model were developed, in order
to evaluate the influence of the simulation of the bond on
the accuracy of the matching of the experimental hysteresis
loops. The simulation of the test on the double cantilever

column evidenced the major limits of the existing model of the

concrete in simulating the pinching effect. A better result was
obtained adopting the proposed modeling approaches, although
the simulation of the bond significantly affected the elastic
stiffness. The comparison with a portal frame experimental test
available in the literature also showed that the adoption of
the smeared cracking approach results in a numerical model
unable to accurately reproduce the hysteretic response, while the
introduction of discrete cracking paths leads to a better fit of the
experimental results in terms of strength and stiffness.

Also in this case, again, the simulation of the bond was found
to be fundamental to better reproduce the pinching effect and to
obtain a fair matching in terms of energy dissipation capacity.

Despite the significant improvement in the simulation,
results of the most sophisticated model with bond showed
that for high drift amplitudes the stress developed in shell
elements along the cracking surface led to a distortion of the
geometry of the concrete region. Consequently, the hysteretic
loops corresponding to higher imposed displacement are mostly
influenced by the behavior of the steel and pinching becomes less
pronounced.

The results obtained are useful to lay the basis for the
development of hybrid models to be adopted for the numerical
simulation of the cyclic behavior of reinforced concrete members
having fairly sustainable computational efforts. Further studies
will be conducted in order to increase the accuracy of the
simulation even for higher displacement amplitudes.
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Structural control and health monitoring scheme play key roles not only in enhancing

the safety and reliability of infrastructure systems when they are subjected to natural

disasters, such as earthquakes, high winds, and sea waves, but it also optimally minimize

the life cycle cost and maximize the whole performance through the full life cycle design.

In this scheme, system identification is regarded as a major technique to identify system

states and related parameter variables, thus preventing degradation of structural or

mechanical systems when unexpected disturbances occur. In this paper, three different

strategies are proposed to identify general hysteretic behavior of a typical shear structure

subjected to external excitations. Different case studies are presented to analyze the

dynamic responses of a time varying shear structural system with the early version

of Bouc-Wen-Baber-Noori (BWBN) hysteresis model. By incorporating a “Gray Box”

strategy utilizing an Intelligent Parameter Varying (IPV) and Artificial Neural Network

(ANN) approach, a Genetic algorithm (GA), and a Transitional Markov Chain Monte

Carlo (TMCMC) based Bayesian Updating framework system identification schemes

are developed to identify the hysteretic behavior of the structural system. Hysteresis

characteristics, computational accuracy, and algorithm efficiency are further discussed

by evaluating the system identification results. Results show that IPV performs superior

computational efficiency and system identification accuracy over GA and TMCMC

approaches.

Keywords: hysteretic behavior, BWBN model, Intelligent Parameter Varying (IPV), Genetic algorithm (GA),

Transitional Markov Chain Monte Carlo simulation (TMCMC), Bayesian updating

INTRODUCTION

In recent years, an increasing attention is witnessed to face the challenging issues of safety,
serviceability, reliability, risk and life-cycle management, and performance improvement of
structures and infrastructure due to changing and more frequently occurring natural and
man-made hazards, infrastructure crisis, and sustainability issues. These disturbances are dealt with
innovative technologies to enhance structural functionality and safety in various stages of research
and development (Spencer, 2003; Altabey, 2017a). Several types of structures that employ control
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strategies for different application scopes can be found in
Constantinou et al. (1998), Soong and Spencer (2002), and
Altabey (2014, 2017b,c); Altabey (2018). Proper modeling of
inherent non-linearity in vast majority of structural systems
plays an important role in understanding structural response
under hazardous loadings. System identification is an important
approach in control strategy regarded as the interface between
the mathematical world of control theory and the real world
of application and model abstractions (Zadeh, 1956; Ljung,
2010; Altabey, 2016, 2017d,e; Altabey and Noori, 2017a, 2018;
Zhao et al., 2018), and it handles a wide range of system
dynamics problem without the prior knowledge of actual system
physics. The schematic diagram of system identification process
is depicted in Figure 1.

Hysteresis can be described as the hereditary and memory
nature of a non-linear or inelastic system behavior where the
restoring force is dependent on both instantaneous as well as
past history of deformations. In general, under cyclic loading,
mechanical and structural systems are capable of dissipating
considerable energy and they exhibit appreciable hysteretic
behavior with hysteresis loops. Each loop enclosing the area in
the restoring force vs. displacement curve depicts the energy
dissipated over a complete cycle resulting from internal friction
within the structural system.

Various empirical hysteresis models have been proposed in the
past few decades. A class of smoothly varying hysteresis models
used in engineering fields are Bouc-Wen class of hysteresis
models. Bouc suggested a smooth and versatile hysteresis model
for non-linear systems and hysteretic systems (Bouc, 1967;
Wen, 1975, 1976, 1980, 1986, 1989; Park et al., 1986; Wen
and Yeh, 1989; Ikhouane and Rodellar, 2007; Ikhouane et al.,
2007; Ikhouane and Gomis-Bellmunt, 2008). Baber and Wen
extended the Bouc model to take the degradation in strength
or stiffness of structural systems into account (Baber and

FIGURE 1 | A diagram of system identification.

Wen, 1980). Baber-Noori, and later Noori, further extended
the capabilities of Bouc-Wen model by including pinching
behavior and studied the response of these systems under random
excitation (Noori, 1984; Baber and Noori, 1986). Baber-Noori
and subsequently Noori-Baber’s work on integrating the pinching
phenomenon in hysteretic behavior and extending Bouc-Wen-
Baber (BWB) model was the first work in developing a smooth
hysteresis model capable of taking into account strength and
stiffness degradation as well as shear pinching phenomenon
(Baber and Noori, 1985). BWBN was incorporated in structural
design software, OpenSees developed at the University of
California Berkeley (Hossain, 1995). A toolbox for computing
the parameters of BWBN hysteresis model using multi-objective
optimization evolutionary algorithms was also developed by
SourceForge, an Open Source community (Bouc Wen Baber
Noori Model of Hysteresis, Source Forge). Foliente showed Bouc-
Wen-Baber-Noori (BWBN) model could produce previously
observed inelastic behavior of wood joints and structural systems
using BWBN smooth hysteresis model (Foliente, 1995; Zhao
et al., 2017a,b; Noori et al., 2018). Deb et al. developed a toolbox
that identifies structural parameters of Bouc–Wen–Baber–Noori
hysteresis model through a noval multi-objective optimization
evolutionary algorithms (MOBEAs) (Deb et al., 2002; Deb,
2013). Ortiz et al. analyzed and identified BWBN model via
a multi-objective optimization algorithm (Ortiz et al., 2013).
Peng et al. utilized BWBN model for identifying the parameters
of a magneto-rheological damper and depicts its force-lag
phenomenon (Peng et al., 2014). Muller et al. investigated the
application of BWBN in their work and conducted performance-
based seismic design through a Search-Based Cost Optimization
(Muller et al., 2012). Chan et al. made a prediction of the
hysteretic behavior of passive control systems by applying BWBN
in a nonlinear-autoregressive-exogenous model (Chan et al.,
2015).
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Traditional artificial neural networks technique shows its
superiority in the identification, monitoring, and control of
complicated and non-linear dynamic systems (Narendra and
Parthasarathy, 1990; Masri et al., 1992; Lu and Basar, 1998;
Abouelwafa et al., 2014; Altabey and Noori, 2017b). However,
a priori knowledge of the characteristics of restoring force
is necessary and important for traditional parametric system
identification approaches, while the non-parametric methods
do not need information beforehand, lacking direct association
between system dynamics and system model. In order to
overcome the limitations of conventional parametric and non-
parametric approaches, an noval Intelligent Parameter Varying
(IPV) method was proposed, which makes full use of the
embedded radial basis function networks to make an estimation
of the hysteretic and inelastic characteristics of restoring forces
constitutively for a multi degree of freedom system. A scaled
three story base excited structure was designed to experimentally
verify the non-linearity and its associated hysteresis of a structure
using a displacement controlled shaking table (Saadat et al., 2003,
2004a,b, 2007). Further, a data-driven identification strategy for
non-linear and hysteretic behaviors of steel wire strands was
compared and verified using polynomial basis functions and
neural networks. The results showed that neural networks were
found more promising for the prediction of slightly pinched,
hardening hysteresis, strongly pinched, hardening hysteresis, and
classical quasi-linear softening hysteresis (Brewick et al., 2016).
Genetic algorithms have been used for system identification of
non-linear and hysteretic systems. The application of Real Coded
Genetic Algorithms (RCGA) was demonstrated and applied to
fit curves of synthetic and experimentally obtained Bouc-Wen
hysteresis loops for a sandwich composite material (Hornig and
Flowers, 2005). Different real coded genetic algorithms and their
related criteria for efficiently identifying non-linear systems are
regards as non-classical and optimized identification techniques
(Monti et al., 2009). A Bayesian probabilistic framework was
proposed to detect damage of continuous monitored structures
by incorporating load-dependent Ritz vectors as an alternative to
modal vectors (Sohn, 1998). A large body of work was conducted
to track, estimate and identify structural parameters, system
status and hysteretic and degrading behavior of structures using
Kalman filters, extended Kalman filters and unscented Kalman
filters (Jeen-Shang and Yigong, 1994; Yang et al., 2006; Wu and
Smyth, 2007, 2008; Chatzi and Smyth, 2009; Chatzi et al., 2010;
Lei and Jiang, 2011; Mu et al., 2013; Kontoroupi and Smyth,
2017; Erazo and Nagarajaiah, 2018). Traditional Markov Chain
Monte Carlo approach in conjunction with Bayesian updating
method were applied for structural response predictions and
performance reliability evaluation (Yuen and Katafygiotis, 2001;
Zhang and Cho, 2001; Beck and Au, 2002). Later, a transitional
Markov Chain Monte Carlo (TMCMC) approach was developed
by designing optimized sampling strategy from a series of
intermediate probability density functions (PDFs) that converge
to the target PDF, thus avoiding sampling difficulties. The
TMCMC theory and algorithm were verified and demonstrated
through the performance of the developed sampling approach,
different PDFs as well as higher dimensional problems (Ching
and Chen, 2007; Muto, 2007; Muto and Beck, 2008; Worden and

Hensman, 2012; Zheng and Yu, 2013; Behmanesh and Moaveni,
2014; Green, 2015; Green et al., 2015; Ortiz et al., 2015).

It is a major barrier to successfully design hysteretic structures
against degradation under severe cyclic loading. Most structural
systems degrade with significant hysteresis, for example wood
structures, dams, highways, reinforced concrete towers, steel
bridges are critical and key elements of our built environment. In
spite of their obvious importance, and their huge rehabilitation
and replacement costs, design, construction, and analysis of
the majority of these structures requires overly simplistic or in
some cases flawed assumptions regarding hysteretic evolution.
Development of a practical structural degrading identification
approaches is much deserving. A comparative study of online
and offline identification strategies for UAVs were discussed, and
it is found that online approach is more adaptive to changes
but with lower prediction accuracy (Puttige and Anavatti, 2007).
Therefore, offline learning is employed in this paper. Based
on what was discussed in the introduction above, the main
contributions of the research are to present a three story
hysteretically degrading shear structure by incorporating BWBN
slip lock hysteresis to represent the hysteretic restoring forces
in this system. This BWBN model will be capable of producing
all significant and prominent features of structural strength and
stiffness degradations as well as slip lock behavior, and conduct a
comparative study using three system identification approaches
including an Intelligent Parameter Varying Artificial Neural
Network developed in an earlier research work by a group that
involved one of the authors (a “gray box” model that considers
linear as well as non-linear parts of the dynamic system), genetic
algorithm optimization method, and a novel TMCMC statistical
approach.

The comparative study of the aforementioned approaches
for system identification and their application in a structural
system using BWBN MODEL is an original work. To the best
of the authors’ knowledge such comparative study has not been
reported in the literature.

STRUCTURAL SYSTEM MODELING AND
SYSTEM IDENTIFICATION

BWBN Hysteresis Model
The model employed herein is an earlier version of BWBN
hysteresis degradation model, which incorporates the previous
smooth system degrading element by Bouc as modified by
Baber and Wen in series with a slip-lock element (a non-
linear hardening spring) developed by Baber and Noori. Under
cyclic excitation, degradation manifests itself in the evolution
of progressively varying hysteresis loops. A non-linear system
governed by Equation (1) is given with the incorporation of
BWBNmodel.

mẍ+ cẋ+ R = F (t) (1)

R = αkx+ (1− α) kz (2)

ż =
Aẋ1 − ν

[

β |ẋ1| |z|
n−1 z + γ ẋ1 |z|

n
]

η
(3)
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ẋ2 =

√

2

π

s

σ
exp

[

−
z2

2σ 2

]

ż (4)

ε̇ = (1− α) kẋz (5)

s = δsε (6)

(x = x1 + x2) (7)

where, parameters m, c, k are, respectively, the mass, damping,
and stiffness coefficients, and parameters ẍ, ẋ, x are quantities
that describe the system acceleration, velocity and displacement,
and R is the restoring force and F (t) is the ambient excitation.
Parameter α is the weighting value denoting the ratio of post-
elastic to initial stiffness. Parameters A, β , and γ are basic
hysteresis shape control parameters. Parameter z is the hysteretic
displacement, and n is the degree of the sharpness of yield.
Strength and stiffness degradation coefficients are, respectively
denoted by ν(δν) and η(δη). Parameters x1 and x2 are Bouc-Wen
hysteretic system displacement and the additional displacement
that considers slip-lock behavior. Parameter ε is the measure
of the combined effect of duration and severity of the energy
dissipated through hysteresis, σ is a measure of the sharpness of
the peak of the hysteresis, and δs measures the slip magnitude. All
10 parameters are essential to produce the common features of
hysteretic behavior. It would be very helpful if a small number of
unspecified parameters for system identification can be reduced
in that large numbers of parameters increase the uncertainty
of convergence for updating parameters in search space. It was
proved that the redundancy of specific hysteresis parameters
can be eliminated through mathematical transformations in the
parameter space devised to freeze them without affecting the
system response (Ma et al., 2004; Charalampakis and Koumousis,
2008a,b; Charalampakis and Dimou, 2010).

Structural System Modeling
Restoring force curves of reinforced or steel structures show
complex hysteresis characteristics, revealing material non-
linearity, crack opening and closing, bond and slip between steel
bars and concrete and low cycle fatigue that result in structural
strength and stiffness degradation. The hysteresis model used
herein considers the specific case appropriate for both strength

and stiffness degradations, and slip-lock behavior of restoring
hysteretic forces of the structure. All the restoring forces of the
structure are assumed to follow the BWBN hysteresis model. The
structural system considered in this study is a shear type model
subjected to ambient sinusoidal wave and ElCentro seismic
excitation as input signals ẍg . The ground excitation motion
ẍg makes an integral transformation to be incorporated into
the structural equations. The structural system mainly includes
three lumped mass coupled subsystems, as shown in Figure 2.
These masses are lumped at floor (floor mi), levels and these
floors are assumed and constrained to only move laterally. The
restoring force Ri , in conjunction with the stiffness between the
adjacent floors, are represented by dampers and springs, with
the corresponding coefficients ci and ki, respectively. The time
varying system yields energy dissipation due to the hysteretic
behavior of the inner structure.

For this three story shear structure, the equations of motion
are represented by Equations (8–10):

m3ẍ3 + c3 (ẋ3 − ẋ2) + R3 = 0 (8)

m2ẍ2 + c2 (ẋ2 − ẋ1) + R2 − c3 (ẋ3 − ẋ2) − R3 = 0 (9)

m1ẍ1 + c1
(

ẋ1 − ẋg
)

+ R1 − c2 (ẋ2 − ẋ1) − R2 = 0 (10)

System Identification Theory
A typical system identification framework mainly has two
components including system itself and system identification
model. By defining an equivalence criterion, the parameters of the
system identification model are updated via a comparison with
the original system, until the system identification model will be
eventually equivalent to the original system. System identification
approaches used in this paper include intelligent parameter
varying based approach, GA based approach and transitional
markov chain monte carlo (TMCMC) based approach. IPV
approach employs ANNs and establishes a “Gray Box” system,
where the original system parameters are replaced by the
parameters of ANNs, and the system structure is replaced by
ANNs. For GA and TMCMCmethods, they are used to optimize
and identify the parameters of system model, which is regarded
as an approximate model of the original real system. The

FIGURE 2 | Structural lumped mass model.
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theoretical background for the three approaches are presented in
the following subsections.

Intelligent Parameter Varying Based System

Identification
Artificial neural network (ANN) is a non-linear and adaptive
information processing system composed of large numbers of
neuron units. A radial basis function (RBF) neural network is
employed to build the intelligent parameter varying model. In
ANN architecture, the Euclidean distance between the clustering
center and input vector is calculated and the result is activated
to pass through the output layer. The activation function is
Gaussian output function and is formulated as:

gj = exp

(

−

∑n
i=1

(

xi − cj
)2

σ
2
j

)

(11)

where gj is the output of the jth unit in the hidden layer, xi is

the input data fed to the network, cj is the center of the j
th unit

in the input space, and σj is the width of the jth function. j =

1, 2, · · · , m. Parameterm is the number of the centers of neurons,
and n represents the dimension of the input space. Linearly
weighted summation of hidden layer node outputs produces the
output nodes. Therefore, the output of the network is calculated
by:

y =

n
∑

j=1

wjgj (12)

where wj is the weight of the j
th node.

The objective is to find a series of weights that minimize the
square of error between the actual and desired network outputs,
i.e.,:

E
(

k
)

=
1

2

N
∑

j=1

(

d
(

k
)

− y
(

k
))2

(13)

where d(k) is the desired output and y(k) the actual output of
RBF and j = 1, 2, · · · , N, and N is the number of data sets.
There are commonly two approaches for utilizing ANNs, i.e.,
supervised and unsupervised learning. In supervised approach
the input and the referred output are usually known. The network
then processes the input values and makes a comparison between
its resulting output and the desired output. The network system
makes the errors propagate back through different layers, causing
the system to adjust tuned weights which control the network.
This process repeats over and over until all the weights are
continually tweaked in an appropriate way. During the training
process of a network the connection weights are continually
refined to a specific generalization level and a good network
performance level. In unsupervised training, the system itself
must then decide what features and how many features need to
be extracted to group the input data, which is often referred to as
self-organization or adaption. Herein, we use the non-supervised
learning algorithm to acquire the centers and variance of radial

basis function, and meanwhile the least mean squared error is
acquired by using supervised learning algorithm. The response
of the hysteretic system is used as the desired signal, and the
error between the desired signal and the simulated signal is back
propagated to modify the weights and threshold values of neural
network model.

Parametric system identification approaches have been widely
used but in most published literature in this area a priori
knowledge of the characteristics depicting the behavior of
restoring force is required. Non-parametric approaches generally
do not need information beforehand but they typically lack direct
associations between system dynamics and associated model.
When ANNs are implemented using the “Black Box” approach,
little of the system information might be obtained from the
traditional techniques due to the fact that the “Black Box”
only considers system input and output. Intelligent Parameter
Varying (IPV) method preserves the benefits of both traditional
parametric and non-parametric approaches, and utilizes the
embedded radial basis function as the activation of neurons to
estimate the constitutive characteristics of inelastic and hysteretic
restoring forces for a multi degree of freedom structural system.

IPV technique, i.e., a gray box approach (Figure 3) that
incorporates the advantages of both “White Box” and “Black Box”
approaches, was developed in such a way that themodel structure
can be determined using the first principle (Equations 18–20),
while non-linear and adaptive learning capabilities of ANNs can
be used to identify the non-linear, time varying system’s dynamics
(Equations 24–26) that would be difficult to model and identify
using the traditional “White Box” and “Black Box” (Saadat et al.,
2003, 2004a,b, 2007).

A non-linear system with full state measurement represented
by the Linear Parameter Varying (LPV) model structure is given
by:

ẋ = f1 (x, u) · x+ f2 (x, u) · u (14)

y = x (15)

The IPV approach introduced herein would preserve the model
structure inherent in Equation (14) without requiring a priori
representations of non-linearities f1 (x, u) and f2 (x, u). Instead,
these terms would be represented by separate artificial neural
networks g1 (x, u,w1) and g2 (x, u,w2) as depicted in Equations
(16, 17):

ẋ = g1 (x, u,w1) · x+ g2 (x, u,w2) · u (16)

y = x (17)

By modeling the non-linearities f1 (x, u) and f2 (x, u) via separate
artificial neural networks g1 (x, u,w1) and g2 (x, u,w2), the
model structure (Equations 16, 17) is preserved. Therefore,
the relationship between the model structure and artificial
neural network parameters is preserved. The structural model
is preserved by incorporating ANN, preserving a portion of
information of the structural model. The IPV approach preserves
the direct association between the construction of ANN and
the system dynamics, used for structural health monitoring for
system identification.
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FIGURE 3 | System identification using gray box.

Based on first principle, system dynamics can be transformed
to the following form:

− c3 (ẋ3 − ẋ2) − R3 −m3ẍg = m3ü3 (18)

− c2 (ẋ2 − ẋ1) − R2 + c3 (ẋ3 − ẋ2) + R3 −m2ẍg = m2ü2 (19)

− c1
(

ẋ1 − ẋg
)

− R1 + c2 (ẋ2 − ẋ1) + R2 −m1ẍg = m1ü1 (20)

where u1, u2, u3, respectively represent the relative displacements
of each floor, i.e., u1 = x1 − xg , u2 = x2 − xg , u3 = x3 − xg .

− R3 −m3ẍg = m3ü3 (21)

− R2 + R3 −m2ẍg = m2ü2 (22)

− R1 + R2 −m1ẍg = m1ü1 (23)

The stiffness and damping terms are lumped into restoring forces,
since in the hysteresis models the restoring force R associates
with the lateral relative displacement xr and the restoring
displacement z, where z is expressed by the function of lateral
relative velocity ẋr .

The modeling for the restoring forces using radial basis
function based neural network is as follows:

R̂3 = g3
(

ü3, ẍg
)

(24)

R̂2 = g2

(

ü2, ẍg , R̂3

)

(25)

R̂1 = g1

(

ü1, ẍg , R̂2

)

(26)

where, R̂1, R̂2, R̂3 represent, respectively, the identified restoring
forces through the training of ANN as shown in Figure 4.

Genetic Algorithm Based System Identification
Genetic algorithm (GA) is an approach that searches the global
optimal solution by simulating a natural evolution process.

The objective function can be formulated as the normalized
mean square error (MSE) of the predicted time history ỹ

(

t|p
)

as compared to the reference time history y (t). Herein, the
acceleration response signal is employed as the time history
series. The purpose of the following optimization approach is to
minimize the difference (or the error) between predicted time
history and the referred time history. The hysteretic structural
system objective function is introduced below:

OF
(

p
)

=

∑n
i=1

(

y (ti) − ỹ
(

ti|p
))2

Nσ 2
y

(27)

where p is a parameter vector, σ
2
y the variance of the

reference history, and N the number of points used. Sum of
three acceleration response signal differences of the hysteretic
structural system is used as the objective function. The
optimization problem can be stated as the minimization of the
objective function OF

(

p
)

when the parameter vector has the
following side constraints as:

xLB ≤ p ≤ xUB (28)

where xLB and xUB are vectors defining the lower and the upper
values of the model parameters, respectively. The basic strategy
for the parameter identification using GA is shown in Figure 5.
GA operates starting from a population of the potential solutions
to a representive problem, and one population is composed
of numbers of individuals coded by genes. Each individual is
chromosomes with the characteristics of entity. GA initializes
on a population of individuals (coded candidate solutions to
the problem) that are manipulated by some operators such
as selection, crossover, and mutation. In short, the selection
process drives the search direction toward the region of best
individuals, and the cross operator combines individuals to
generate offsprings.
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If it is indispensable to make selection and crossover operators
converge toward the optimum, mutation alters one or more
gene values (individuals) in a chromosome from its initial state,
thus, maintaining genetic diversity from one generation of a
population to the next. In this way, a complete exploration
of global search space is forced by algorithm within the
search space. Each individual in the population is represented
as chromosome, indicating the collection of parameters are
supposed to identify. GA adopts an elitist strategy, which consists
of the preservation of the most fit individuals obtained in the
current generation. Population representation and initialization
generate population and individuals, and the initialized value
will be assigned to the parameter space for solving the hysteretic
system model. The fitness function is established by using
the prediction error between the simulated signal response
and predicted signal response. After a series of successive
mathematical operators for optimization, the next generational
loop begins.

FIGURE 4 | IPV for structural system modeling.

Transitional Markov Chain Monte Carlo Based

System Identification
Markov Chain Monte Carlo (MCMC) is an analytic approach
which replaces numerical integration through summation over
numbers of samples generated from iteration. A Markov chain is
a stochastic process where one state is transformed to another
state after a sufficiently long sequence of transition procedure.
The next state is conditionally based on the last state. A key
property of Markov chain is that the starting state has no
influence on the state of the chain via a series of sequential
transitions. The chain reaches its steady state at a specific point

FIGURE 5 | A flow chart of system identification using GA.

FIGURE 6 | TMCMC based system identification strategy.
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where it reflects sampling distribution from stationary status. The
principle of Monte Carlo simulation is applied for the integration
to approximate the expected complex distribution status of
numbers of samples. By increasing the number of samples, the
approximation accuracy can be measured and achieve a desired
value, whichmainly depends on the independence of the samples.

Markov chain involves a stochastic sequential process where a
series of states can be sampled from some stationary distributions
while Monte Carlo sampling can make an estimation of various
characteristics of a specific distribution. The goal of MCMC is to
design aMarkov chain to meet the target distribution of the chain
which is what we are interested in sampling from.

TransitionalMarkov ChainMonte Carlo Theory (TMCMC) is
introduced to avoid the difficulty of sampling from complicated
target probability distributions (e.g., multimodal PDFs, PDFs
with flat manifold, and very peaked PDFs) but sampling from a
series of intermediate PDFs that converge to the target PDF and
are easier to sample.

Bayesian Inference describes a process of solving posterior
density functions given the likelihood and prior probability. The
target probabilistic model can be depicted by M, D is the data
acquired from the system, and the uncertain parameters of the
model are described as θ . Sampling from the posterior PDF of
θ conditioned on D is the aim of the Baysian model updating,
which is given as:

f (θ |M,D) =
f (D|M, θ) · f (θ |M)

f (D|M)

=
f (D|M, θ) · f (θ |M)

∫

f (D|M, θ) · f (θ |M) · dθ
(29)

where f (θ |M) is the prior PDF of θ , f (D|M, θ) is the likelihood
of D given θ , and f (D|M) is the evidence of the modelM.

Bayesian model updating generally employs simulation based
methods in that it is effective to obtain samples from f (θ |M, θ),
which can be estimated at a specific quantity of interest
E
(

g|M, D
)

based on the Law of Large Number.

E
(

g|M, D
)

≈
1

N

N
∑

k=1

g (θk) (30)

where
{

θk : k = 1, 2, · · · , N
}

represents a set of N samples from
f (θ |M,D). Consider the equation as follow:

f (θ |M,D) ∝ f (θ |M) · f (D|M, θ) (31)

It is usually difficult to sample from f (θ |M, D) using Importance
Sampling (IS) and Metropolis–Hastings (MH) in that it is not so
easy to understand the geometry of the likelihood f (D|M, θ).
To converge to the target PDF f (θ |M, D) from the prior PDF
f (θ |M), a series of intermediate PDFs are constructed as the
following:

fj (θ) ∝ f (θ |M) · f (D|M, θ)
pj , j = 0, 1, · · · , m

0 = p0 < p1 < · · · < pm = 1 (32)

Note that f 0 (θ) = f (θ |M) , fm (θ) = f (θ |M, D). T
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where the index j denotes the stage number. Although the
geometry changing from f (θ |M) to f (θ |M, D) is large, the
status of two changing adjacent intermediate PDFs is small. It is
efficient to sample from fj+1 (θ) according to the previous sample
from f j (θ) through this small change.

The function fj (θ) is used to extract samples and make an
estimation of the PDF itself as a kernel density function (KDF),
a combination of weighted Gaussian functions centered at the
samples. The kernel density function can be regarded as the
proposal PDF of the MH method to sample from f j+1 (θ). This

will subsequently and ultimately result in f (θ |M, D) samples.
This approach is called adaptive Metropolis–Hastings (AMH)
algorithm. Given that the proposal PDF (KDF) function is fixed,
rendering the MHmethod is as similar as IS, not efficient in high
dimension situation.

It is a totally different strategy for TMCMC to acquire
fj+1 (θ) samples based on fj (θ) samples, KDF method is replaced
by a resampling algorithm. It covers a battery of resampling
stages, with each stage completing the following, given Nj

samples from fj (θ), depicted by
{

θj, k : k = 1, · · · , Nj

}

, acquire

samples from f j+1 (θ), depicted by
{

θj+1, k : k = 1, · · · , Nj+1

}

. It

can be calculated by the following in a more easier way, with
the samples

{

θj, k : k = 1, · · · , Nj

}

from fj (θ). The “plausibility

weights (w
(

θj, k

)

)” of these samples regarding fj+1 (θ) can be
computed by:

w
(

θj, k

)

=
f
(

θj, k|M
)

f
(

D|M, θj, k

)pj+1

f
(

θj, k|M
)

f
(

D|M, θj, k

)pj
= f

(

D|M, θj, k

)pj+1−pj ,

k = 1, · · · , Nj (33)
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FIGURE 7 | System identification results (Sin) (A–C) IPV, (D–F) GA, (G–I) TMCMC.

Frontiers in Built Environment | www.frontiersin.org 9 January 2019 | Volume 4 | Article 80152

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Zhao et al. Identification of Hysterically Degrading Structures

Based on the normalized weights, the uncertain parameters can

be resampled, i.e. let: θj+1, k = θj, l and w.p.
w
(

θj, l

)

∑Nj

l=1
w
(

θj, l

)

k = 1, · · · , Nj+1

where “with probability” is represented by w.p. and pacifier
index is denoted as l. It is shown that if Nj and Nj+1 achieve
a relatively large quantity,

{

θj+1, k : k = 1, · · · , Nj+1

}

will be

distributed as f j+1 (θ). Moreover, w
(

θj, k

)

is expected as the

following value:

E
[

w
(

θj, k

)]

=

∫

w (θ) · fj (θ) · dθ

=

∫

f (D|M, θ)
pj+1−pj · fj (θ) · dθ

=

∫

f (D|M, θ)
pj+1−pj ·

f (θ |M) f (D|M, θ)
pj

f (θ |M) f (D|M, θ)
pjdθ

· dθ

=

∫

f (θ |M) f (D|M, θ)
pj+1dθ

∫

f (θ |M) f (D|M, θ)
pjdθ

(34)

Therefore,
∑Nj

k=1
w
(

θj, k

)

/Nj is the automatically unbiased

estimation made for
∫

f (θ |M)f (D|M, θ)
pj+1dθ

∫

f (θ |M)f (D|M, θ)
pjdθ

. According to the

results above, the following method is used to sample from
f (θ |M,D) and make an estimation of f (D|M).

More precisely, with probability w
(

θj, k

)

/
∑Nj

l=1
w
(

θj, l

)

, by
using a covariance matrix equal to the scaled version of the
estimated covariance matrix of f j+1 (θ), a Markov chain sample
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FIGURE 8 | System identification results (ElCentro) (A–C) IPV, (D–F) GA, (G–I) TMCMC.
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in the kth chain can be generated from a Gaussian proposal PDF
centered at the current sample of the kth chain:

∑

j

= β
2

Nj
∑

k=1

w
(

θj, k

)







θj, k −





∑Nj

j=1 w
(

θj, l

)

θj, l

∑Nj

j=1 w
(

θj, l

)











×







θj, k −





∑Nj

j=1 w
(

θj, l

)

θj, l

∑Nj

j=1 w
(

θj, l

)











T

(35)

where β is the prescribed scaling factor,
∑

j= product of β
2 and

the estimated covariance of f j+1 (θ). The rejection rate is chosen

as the value β , and MCMC may probably achieve a larger value
accordingly. The value 0.2 is found to be more reasonable for the
scaling parameter β .

It is essential to choose
{

pj : j = 1, · · · , m− 1
}

. The larger
value of p is desirable to make the transition between
the intermediate adjacent PDFs smoother. The number of
intermediate stages achieves a huge value if the increase of
p-values has slow change rates.

The degree of uniformity of the plausibility weights
{

w
(

θj, k

)

: k = 1, · · · , Nj

}

can appropriately indicate how
close fj+1 (θ) approaches fj (θ), so pj+1 should be chosen so that
the coefficient of variation (COV) of the plausibility weights can
be equivalent to a prescribed threshold. The Bayesian inference
framework for system identification is established (Figure 6) for
structural model updating, which is regarded as a determinant
reason for choosing the most suitable model parameters related
to the hysteretic behavior of the structures by minimizing the
difference between the predicted structural response and the
simulated structural response. For the hysteretic structural
model, the uncertain model parameters are selected as the ones
that need to be updated through Bayesian inference (Equation
31) by drawing samples of parameters from the posterior PDF of
parameters.

The TMCMC based Bayesian Updating algorithm is coded
and implemented to establish the computational environment
via exchange of data between the model and the algorithm. The
evolution of parameter updating process is that, the samples
from the prior PDFs are approximately uniformly distributed
in the model parameter space at the first stage

(

p0 = 0
)

.
Through applying Bayesian inference with TMCMCprobabilistic
simulations, the samples eventually populate well in the high
probability region of the posterior PDFs close to the true model
parameters at the last stage

(

pm = 1
)

.
TMCMC approach is employed to make an identification

of the parameters of Bouc-Wen class models, henceforth
represented by the vector θ ≤ 2 ⊆ Rd. The appropriate
choice of θ reflects the corresponding non-linear and hysteretic
behavior of structure. By applying Bayesian model updating, the
major advantage is that the result gives a probability distribution
expressing the likelihood probability distribution of different
parameters rather than yielding a single value for θ . It is clear
that the evolution of the model parameter variation represents
the Bayesian inference process. T
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To make a restriction of the parameter space 2, two side
constraint vectors θmin and θmax are defined such that:

θmin (i) ≤ θ (i) ≤ θmax (i) 1 ≤ i ≤ d (36)

The vector θ has specific constraints such that the generated
initial samples can determine the feasible values that the
parameters can take. By defining prior PDF of θ a uniform
distribution between the likelihood PDF and side constraints
are regarded as the prediction error assumed as Gaussian
function distributed with unknown variance and zero mean. The
prediction error is described as the error between the predicted
system response and the simulated system response given by:

f (D|θ) =

l
∏

i=1

1

σacc

√
2π

exp

[

−
1

2σ 2
acc

(

x (ti) − x̂ (ti|θ)

Sacc (ti)

)2
]

(37)

where σ
2
acc is the variance of the prediction errors and Sacc is the

weighting function used to normalize the acceleration response
of the hysteretic system. To achieve computational convenience,
the log-likelihood function lnf (D|θ) is employed in the actual
implementation of the TMCMC algorithm as:

lnf (D|θ) = −
1

2
Nt ln (2π) − Nt ln (σacc)

−
1

2σ 2
acc

(

x (ti) − x̂ (ti|θ)

Sacc (ti)

)2

(38)

The jth stage of parameter evolution process by correspondingly
choosing the values of pj can be shown as the contours of
PDF f j (θ).

NUMERICAL ANALYSIS OF SYSTEM
IDENTIFICATION

Parameter Settings
Table 1 lists the parameter assignments of the structural system
associated with BWBN hysteresis model for different cases. The
mass coefficient of each floor is 1 kg, stiffness coefficient 10 N/m
(sin) and 20 N/m (ElCentro), damping coefficient 0.05 N/(m/s)
for each floor, respectively.

For hysteresis model, A = 1, α = 0.01, β = 2, γ = 2, n =

1 (IPV), n = 1.5 (GA and TMCMC), δν = 0, δν1 = 1.5 (sin)
and 3 (ElCentro), δη = 0, δη1 = 1.5 (sin) and 3 (ElCentro),
σ = 0.01, δs = 0.05. Damage occurrences are assumed at 30 s,
60 s, 100 s (sin) and 10 s, 20 s, 40 s (ElCentro) when both the
strength degradation factor δυ and stiffness degradation factor
δη change to δυ1and δη1, respectively. For GA and TMCMC
approaches, parameter initial values are assigned between the
corresponding lower and upper bounds before the optimization
processes. Parameters are updated between the two bounds of
parametric searching space, and eventurally achieve the exact
values.

Numerical Analysis Results
Figures 7, 8 show the restoring force identification results
when the structure is subjected to sinusoidal signal and

TABLE 3 | Correlation coefficient analysis for different cases.

Approach SNR Case R-t3 R-t2 R-t1 R-x3 R-x2 R-x1 Running time(s)

IPV – Sin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 85.11

ElCentro 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 93.33

30 Sin 0.9978 0.9991 0.9996 0.9978 0.9991 0.9996 89.93

ElCentro 0.9969 0.9985 0.9991 0.9969 0.9985 0.9991 96.05

10 Sin 0.8708 0.9273 0.9566 0.8708 0.9273 0.9566 95.67

ElCentro 0.8243 0.8936 0.9314 0.8243 0.8936 0.9314 108.98

GA – Sin 0.9958 0.9964 0.9987 0.9958 0.9964 0.9997 901.31

ElCentro 0.9667 0.9770 0.9869 0.9667 0.9770 0.9869 911.52

30 Sin 0.9944 0.9952 0.9967 0.9944 0.9952 0.9967 908.25

ElCentro 0.9662 0.9810 0.9859 0.9662 0.9810 0.9859 916.26

10 Sin 0.8435 0.8924 0.9312 0.8435 0.8924 0.9312 927.76

ElCentro 0.8012 0.8370 0.8994 0.8012 0.8370 0.8994 929.19

TMCMC – Sin 0.9983 0.9986 0.9988 0.9983 0.9986 0.9988 64812.36

ElCentro 0.9925 0.9932 0.9957 0.9925 0.9932 0.9957 64901.47

30 Sin 0.9108 0.9138 0.9259 0.9108 0.9138 0.9259 65012.69

ElCentro 0.9018 0.9092 0.9129 0.9018 0.9092 0.9129 65109.53

10 Sin 0.8360 0.8401 0.8498 0.8360 0.8401 0.8498 66409.77

ElCentro 0.8209 0.8275 0.8302 0.8209 0.8275 0.8302 68014.28

The running time of system identification programs is computed using Samsung computer [Win 7 Ultimate, Processor: Intel (R), Xeon (R), CPU E3-1231 v3 @3.4G Hz, RAM: 8G, System

type: 64 operating system].
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ElCentro signal, respectively. Black curve represents the restoring
force of the original structural system while the red curve
represents the identified restoring force using IPV, GA, and
TMCMC approaches. For the case of sinusoidal excitation, the
identification results show that the degradation phenomenon
of restoring forces of 2nd−3rd floor and 1st−2nd floor are
more evident compared with ground-1st floor by using all of
the three approaches. For the case of ElCentro excitation, the
identification results show that the degradation phenomenon of
restoring forces existing in all adjacent floors by using IPV and
GA methods is more evident compared with that using TMCMC
method. The hysteresis curves rotate accordingly when damage
occurs. More results in details are discussed in the next section.

DISCUSSIONS

Choice of Signal Excitation Type and
Objective Function
Both sinusoidal excitation signal and ElCentro excitation signal
are used as input signals to the system identification of hyestetic
system. The frequency of sin signal is single and history curve is
smooth and periodic variation. The ElCentro wave is stochastic,
non-periodic, and non-steady state, and this represents the other
type of excitation which is totally counter to harmonic wave such
as sin signal. These two types of signals are employed to the
response analysis and verification of the generalization capability
of three different algorithms for identifying restoring forces of
hysteretic structure. In addition, the establishment of objective
functions employed in the GA and TMCMC are formulated
through the combination of desired and simulated acceleration
signal differences of all three degrees of freedom.

Parameter Choice for System Identification
Table 2 shows the parameter identification error using GA
and TMCMC for the case of noise free, SNR = 30 and
SNR = 10 (SNR = signal noise ratio). These error represents
the relative error between the “true value” and “identified
value.” All errors are no more than 10%. Generally for
the cases with higher SNR they perform better parameter
identification results since the disturbance of noise to signal
is low. From Figures 7, 8, and Table 2, for the noise free
case, it is shown that during the degradation process (damage
evolution), strength degradation factor δυ changes from 0 to
1.4695 (sin,GA) /3.0130 (ElCentro,GA) /1.5913 (sin,TMCMC)
/2.9890 (ElCentro,TMCMC), and stiffness degradation factor δη

changes from 0 to 1.5370 (sin,GA)/2.9142 (ElCentro,GA)/1.5400
(sin,TMCMC)/2.7357 (ElCentro,TMCMC).

The hysteresis loop rotates clockwise with a certain degree,
indicating large non-linearity and considerable degradation.
However, from the identification results, it is also found that
in the sin excitation case, the hysteresis loop exhibits better
slip-lock phenomenon, and can absorb more energy than the
case of ElCentro excitation. Noise corrupted cases have similar
parameter identification results.

Table 3 shows the analysis of correlation coefficients for
different cases. For the cases with small SNR, the identification
effectiveness is not relatively good compared with noise free and T
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higher SNR (R-t is the restoring force-time relationship, and R-x
is the restoring force-relative displacement relationship).

In this paper, IPV is a radius basis neural network which is
a completely data-driven approach, while GA and TMCMC are
not fully data-driven in that they assign the identification model
within specific initial parameter intervals and then update and
search to optimize structural model.

IPV method performs better identification results due to its
adaptive learning capability and anti noise property in the noise
environment. From computational time, it can be concluded
that the IPV approach is a more efficient identification method
compared with GA and TMCMC methods. Concretely, for the
case of noise free, the computational time for GA and TMCMC
are 9.59 and 760.51% longer than IPV (sin), and 8.77 and
694.40% longer than IPV (ElCentro). Similar results are also
shown in noise corrupted cases. This demonstrates IPV method
has higher computational efficiency than GA and TMCMC
approaches.

Strength and stiffness degradation parameters are both
very important in the hysteresis model, which determine the

hysteretic behavior of structural systems. Table 4 lists five groups
of parameter assignments regarding the variance of strength
and stiffness degradation coefficients. The objective of setting
these cases is studying the influence of change of degradation
parameters on system identification accuracy.

To simulate damage occurrence, for IPV approach, strength
degradation factor δυ and stiffness degradation factor δη change
from 1.5 to 1.8, 2.1, 2.4, and 2.7, respectively (sin), while change
from 3 to 3.3, 3.6, 3.9, and 4.2, respectively (ElCentro). For GA
(sin) method, for the first three groups, the true value of strength
degradation factor δυ and stiffness degradation factor δη keep
fixed value 1.5 but the lower and upper bound change from 0.1–3
to 0.5–2.5 and 1–2, respectively. For the last two groups, the true
value of strength degradation factor δυ and stiffness degradation
factor δη are 1.8 and 2.1, respectively but the lower and upper
bound correspondingly change from 0.1 to 3.6 and 0.1 to 4.2,
respectively.

For GA (ElCentro) method, for the first three groups, the true
value of strength degradation factor δυ and stiffness degradation
factor δη keep fixed value 3 but the lower and upper bound

TABLE 5 | Correlation coefficient analysis (IPV).

Approach Group SNR Case R-t3 R-t2 R-t1 R-x3 R-x2 R-x1 Running time(s)

IPV 1 – Sin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 85.11

ElCentro 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 93.33

30 Sin 0.9978 0.9991 0.9996 0.9978 0.9991 0.9996 89.93

ElCentro 0.9969 0.9985 0.9991 0.9969 0.9985 0.9991 96.05

10 Sin 0.8708 0.9273 0.9566 0.8708 0.9273 0.9566 95.67

ElCentro 0.8243 0.8936 0.9314 0.8243 0.8936 0.9314 108.98

2 – Sin 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000 89.01

ElCentro 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 92.17

30 Sin 0.9975 0.9984 0.9993 0.9975 0.9984 0.9993 95.11

ElCentro 0.9957 0.9960 0.9971 0.9957 0.9960 0.9971 98.02

10 Sin 0.8567 0.8580 0.8700 0.8567 0.8580 0.8700 104.78

ElCentro 0.8108 0.8179 0.8244 0.8108 0.8179 0.8244 115.90

3 – Sin 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 88.97

ElCentro 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 90.00

30 Sin 0.9967 0.9976 0.9987 0.9967 0.9976 0.9987 96.02

ElCentro 0.9955 0.9965 0.9973 0.9955 0.9965 0.9973 99.14

10 Sin 0.8607 0.8678 0.8711 0.8607 0.8678 0.8711 107.37

ElCentro 0.8236 0.8299 0.8317 0.8236 0.8299 0.8317 120.03

4 – Sin 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 83.12

ElCentro 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 87.21

30 Sin 0.9970 0.9976 0.9984 0.9970 0.9976 0.9984 95.09

ElCentro 0.9961 0.9973 0.9979 0.9961 0.9973 0.9979 97.33

10 Sin 0.8700 0.8736 0.8744 0.8700 0.8736 0.8744 100.20

ElCentro 0.8301 0.8315 0.8333 0.8301 0.8315 0.8333 107.69

5 – Sin 1.0000 0.9999 0.9999 1.0000 0.9999 0.9999 86.09

ElCentro 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 89.11

30 Sin 0.9968 0.9977 0.9990 0.9968 0.9977 0.9990 93.84

ElCentro 0.9957 0.9969 0.9980 0.9957 0.9969 0.9980 98.94

10 Sin 0.8657 0.8672 0.8680 0.8657 0.8672 0.8680 104.55

ElCentro 0.8489 0.8498 0.8524 0.8489 0.8498 0.8524 111.11
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change from 0.1–6 to 1–5 and 2–4, respectively. For the last
two groups, the true value of strength degradation factor δυ and
stiffness degradation factor δη are 3.3 and 3.6, respectively but the
lower and upper bound correspondingly change from 0.1 to 6.6
and 0.1 to 7.2, respectively. TMCMC parameter assignment has
similar cases.

Table 5 shows the influence of change of strength and
stiffness degradation parameter on system identification accuracy
indicated by correlation coefficients using IPV method. For sin
excitation, as the strength and stiffness degradation parameter
increase from 1.5 to 2.7, the correlation coefficients do not
increase or decrease for the same case, and the computational
time also keep almost unchanged: (sin) Group1: 85.11–95.67 s,
Group 2: 89.01–104.78 s, Group 3: 88.97–107.37 s, Group 4:
83.12–100.20 s, Group 5: 86.09–104.55 s. (ElCentro) Group
1: 93.33–108.98 s, Group 2: 92.17–115.90 s, Group 3: 90.00–
120.03 s, Group 4: 87.21–107.69 s, Group 5: 89.11–111.11 s.

Table 6 shows the influence of change of strength and
stiffness degradation parameter on system identification accuracy
indicated by correlation coefficients using GA method. For sin

excitation, when the strength and stiffness degradation parameter
value is fixed at 1.5, as bounds (interval) change from 0–3
to 1–2, the correlation coefficients approach 1, indicating the
system identification accuracy improves with the bound interval
decreasing. The closer the bounds approach to the true value, the
more accurate and deterministic the system identifiion results
are. Accordingly, the computational time decreases with the
bound interval decreasing. For details: Group 1: 901.31–927.76 s,
Group 2: 895.66–922.22 s, Group 3: 889.73–914.73 s. When
the true value of strength and stiffness degradation increases
from 1.5 to 2.1 with given bounds, the identification accuracy
decreases, and the computational time increases accordingly.
Similar cases can also be found for ElCentro excitation
signal.

Table 7 shows the influence of change of strength and
stiffness degradation parameter on system identification accuracy
indicated by correlation coefficients using TMCMC method.
For sin excitation, when the strength and stiffness degradation
parameter value is fixed at 1.5, as bounds (interval) change from
0–3 to 1–2, the correlation coefficients approach 1, indicating the

TABLE 6 | Correlation coefficient analysis (GA).

Approach Group SNR Case R-t3 R-t2 R-t1 R-x3 R-x2 R-x1 Running time(s)

GA 1 – Sin 0.9958 0.9964 0.9987 0.9958 0.9964 0.9997 901.31

ElCentro 0.9667 0.9770 0.9869 0.9667 0.9770 0.9869 911.52

30 Sin 0.9944 0.9952 0.9967 0.9944 0.9952 0.9967 908.25

ElCentro 0.9662 0.9810 0.9859 0.9662 0.9810 0.9859 916.26

10 Sin 0.8435 0.8924 0.9312 0.8435 0.8924 0.9312 927.76

ElCentro 0.8012 0.8370 0.8994 0.8012 0.8370 0.8994 929.19

2 – Sin 0.9963 0.9968 0.9993 0.9963 0.9968 0.9993 895.66

ElCentro 0.9700 0.9797 0.9888 0.9700 0.9797 0.9888 903.65

30 Sin 0.9947 0.9958 0.9971 0.9947 0.9958 0.9971 906.59

ElCentro 0.9668 0.9831 0.9877 0.9668 0.9831 0.9877 912.28

10 Sin 0.8553 0.9012 0.9337 0.8553 0.9012 0.9337 922.22

ElCentro 0.8108 0.8433 0.9042 0.8108 0.8433 0.9042 925.59

3 – Sin 0.9970 0.9976 0.9995 0.9970 0.9976 0.9995 889.73

ElCentro 0.9712 0.9800 0.9923 0.9712 0.9800 0.9923 894.49

30 Sin 0.9952 0.9967 0.9979 0.9952 0.9967 0.9979 900.01

ElCentro 0.9711 0.9828 0.9880 0.9711 0.9828 0.9880 905.38

10 Sin 0.8573 0.9103 0.9355 0.8573 0.9103 0.9355 914.73

ElCentro 0.8098 0.8449 0.9098 0.8098 0.8449 0.9098 918.90

4 – Sin 0.9813 0.9877 0.9921 0.9813 0.9877 0.9921 917.74

ElCentro 0.9512 0.9657 0.9703 0.9512 0.9657 0.9703 926.54

30 Sin 0.9754 0.9779 0.9837 0.9754 0.9779 0.9837 930.07

ElCentro 0.9534 0.9600 0.9718 0.9534 0.9600 0.9718 942.83

10 Sin 0.8301 0.8544 0.9009 0.8301 0.8544 0.9009 951.11

ElCentro 0.7885 0.8177 0.8836 0.7885 0.8177 0.8836 958.98

5 – Sin 0.9689 0.9788 0.9864 0.9689 0.9788 0.9864 926.34

ElCentro 0.9321 0.9555 0.9688 0.9321 0.9555 0.9688 929.88

30 Sin 0.9500 0.9633 0.9773 0.9500 0.9633 0.9773 937.48

ElCentro 0.9412 0.9678 0.9006 0.9412 0.9678 0.9006 940.05

10 Sin 0.9378 0.9538 0.9699 0.9378 0.9538 0.9699 956.01

ElCentro 0.7650 0.7948 0.8305 0.7650 0.7948 0.8305 968.44
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TABLE 7 | Correlation coefficient analysis (TMCMC).

Approach Group SNR Case R-t3 R-t2 R-t1 R-x3 R-x2 R-x1 Running time(s)

TMCMC 1 – Sin 0.9983 0.9986 0.9988 0.9983 0.9986 0.9988 64812.36

ElCentro 0.9925 0.9932 0.9957 0.9925 0.9932 0.9957 64901.47

30 Sin 0.9108 0.9138 0.9259 0.9108 0.9138 0.9259 65012.69

ElCentro 0.9018 0.9092 0.9129 0.9018 0.9092 0.9129 65109.53

10 Sin 0.8360 0.8401 0.8498 0.8360 0.8401 0.8498 66409.77

ElCentro 0.8209 0.8275 0.8302 0.8209 0.8275 0.8302 68014.28

2 – Sin 0.9985 0.9989 0.9990 0.9985 0.9989 0.9990 63508.90

ElCentro 0.9930 0.9941 0.9964 0.9930 0.9941 0.9964 63132.56

30 Sin 0.9112 0.9143 0.9265 0.9112 0.9143 0.9265 64657.77

ElCentro 0.9034 0.9106 0.9244 0.9034 0.9106 0.9244 64789.88

10 Sin 0.8373 0.8456 0.8543 0.8373 0.8456 0.8543 65546.11

ElCentro 0.8215 0.8288 0.8376 0.8215 0.8288 0.8376 66444.90

3 – Sin 0.9988 0.9990 0.9993 0.9988 0.9990 0.9993 62109.67

ElCentro 0.9935 0.9957 0.9970 0.9935 0.9957 0.9970 62476.67

30 Sin 0.9118 0.9156 0.9279 0.9118 0.9156 0.9279 63157.58

ElCentro 0.9056 0.9117 0.9279 0.9056 0.9117 0.9279 63654.59

10 Sin 0.8384 0.8491 0.8579 0.8384 0.8491 0.8579 64111.67

ElCentro 0.8244 0.8296 0.8383 0.8244 0.8296 0.8383 65000.78

4 – Sin 0.9867 0.9889 0.9902 0.9867 0.9889 0.9902 65457.89

ElCentro 0.9756 0.9780 0.9806 0.9756 0.9780 0.9806 65989.07

30 Sin 0.9000 0.9067 0.9138 0.9000 0.9067 0.9138 66675.88

ElCentro 0.8923 0.8979 0.9036 0.8923 0.8979 0.9036 66899.04

10 Sin 0.8222 0.8318 0.8440 0.8222 0.8318 0.8440 67476.68

ElCentro 0.8016 0.8066 0.8148 0.8016 0.8066 0.8148 68698.36

5 – Sin 0.9659 0.9770 0.9799 0.9659 0.9770 0.9799 66780.77

ElCentro 0.9502 0.9589 0.9664 0.9502 0.9589 0.9664 66999.75

30 Sin 0.8879 0.8909 0.9008 0.8879 0.8909 0.9008 67376.11

ElCentro 0.8748 0.8765 0.8800 0.8748 0.8765 0.8800 67980.04

10 Sin 0.8117 0.8277 0.8335 0.8117 0.8277 0.8335 68780.99

ElCentro 0.7980 0.8034 0.8110 0.7980 0.8034 0.8110 69333.56

system identification accuracy improves with the bound interval
decreasing.

The closer the bounds approach to the true value, the more
accurate and deterministic the system identifiion results are.
Accordingly, the computational time decreases with the bound
interval value decreasing, as shown in detailed cases: Group
1: 64812.36–66409.77 s, Group 2: 63508.90–65546.11 s, Group
3: 62109.67–64111.67 s. When the true value of strength and
stiffness degradation increases from 1.5 to 2.1 with given bounds,
the identification accuracy decreases, and the computational
time increases accordingly. Similar cases can also be found for
ElCentro excitation signal.

Comparison of Three Different Algorithm
Principles
Intelligent Parameter Varying approach uses radial basis function
to map the complex input signal to high dimensional signal,
and it is a data driven mechanism. By using appropriate error
back propagation mechanism, this method can design a good
neural network architecture to process considerable amount
of data or high parameter dimension, especially for system

identification application. Genetic algorithm and Transitional
Markov Chain Monte Carlo approaches are non-data-driven
intelligent optimization algorithms. Genetic algorithm optimizes
the parameters by using selection, crossover, and mutation
operators through elitist strategy. Transitional Markov Chain
Monte Carlo method employs model updating to optimize
parameters through applying Bayesian inference with TMCMC
probabilistic simulations, and the samples eventually populate
well in the high probability region of the posterior PDFs
close to the true model parameters through a series of
intermediate updating processes. The latter two methods are
related to optimization theory, and may not perform well
(tapped in local optimum) especially when the parameter
dimension is relatively large. Therefore, it is very significant
to conduct a comparative study on system identification
of hysteretic structures using Intelligent Parameter Varying,
Genetic Algorithm and Transitional Markov Chain Monte Carlo
methods.

The above discussions regarding the choice of signal excitation
type, parameter choice for system identification and comparison
between three different principles for system identification has
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demonstrated the necessity, feasibility and importance of this
research. It also illustrates the generalization of this research
and proves the superiority using IPV over GA and TMCMC for
system identification of hysteretic structures.

CONCLUSIONS

To better understand the hysterically degrading, structural
systems using an earlier version of smoothly varying Bouc-
Wen-Baber-Noori hysteresis model in this research, a detailed
description of BWBN hysteresis model is presented, and the
restoring force and the associated system variables are analyzed
using non-linear differential equations containing different
parameters. By choosing the parameters in a suitable way, it
is possible to generate a large variety of different shapes of
the hysteresis loops. A three floor shear structure is modeled
which composes of three adjacent subsystems by associating
system kinetic equations, restoring force expression and BWBN
hysteresis model. By using BWB-Noori model, a new scheme
is proposed to effectively and efficiently track and estimate the
hysteretic restoring forces using intelligent parameter varying
approach, genetic optimization algorithm and the transitional
Markov Chain Monte Carlo simulation. Most importantly,
comparative study by using these approaches for different cases is
demonstrated through parameter error analysis and correlation
coefficient analysis of system identification of time varying
degrading structures. Major findings are summarized in the
following statements.

(1) BWBN hysteresis model is a smoothly varying differential
mathematical model, and it can reflect highly non-linear
and gradual hysteretic degradation with slip lock behavior
observed in numerous structural and mechanical systems,
and this model can be widely used to predict the response
of degradation phenomena of general structures.

(2) When employing system identification and
parameter/model updating approach, the initial parameter
spaces of the hysteretic system should be well assigned to
satisfy the requirement of reliable system identification
process. Tracking of the restoring forces for the hysteretic
system using system identification approaches can accurately
estimate the changing of restoring force status in time,
i.e., the rotation of hysteresis loops indicates structural
degradation due to abrupt damages. This proves that system

identification techniques can be used as powerful tools
for detecting the damage/degradation for structural health
monitoring applications. Stiffness and damping terms are
lumped into restoring forces represented by structural
non-linearity, and this constructs effective IPV modeling.

(3) IPV, GA, and TMCMC methods are employed for the
system identification of BWBN model, and a comparative
study is conducted for the verification of the effectiveness
of these approaches. The results show higher SNR cases
have better correlation and smaller parameter errors. From
the correlation analysis, we also know that IPV has better
anti-noise capability than GA and TMCMC.

(4) Qualitative comparison regarding the computational time
of these three different algorithms are ranked for different
cases, i.e., IPV Based system identification approach <

GA based system identification method << TMCMC
based system identification approach. This demonstrates
that compared with traditional parameter optimization and
statistical methods, IPV approach is a promising, efficient
and effective way for system identification and Structural
Health Monitoring applications.

(5) IPV technique using the RBF based ANNs has its superior
advantages over the GA based identification and the
TMCMC based identification techniques for its fully data-
driven adaptive learning ability for high dimensional data.
Proper design of parameter initial bounds can improve the
computational efficiency for GA and TMCMC approaches.
The GA based identification may have relatively uncertain
values for the randomness of genetic operations (selection,
crossover, and mutation), while the TMCMC algorithm is
based on the sampling technique that is not as effective and
is uncertain, especially for the case that the system has a
relatively large number of parameters.

AUTHOR CONTRIBUTIONS

YZ as Ph.D. student. MN as main supervisor. WA supervisor.
TA was invited, due to his expertise in the area of Genetic
Algorithms, to join the paper as a co-author. TA carefully
reviewed the technical analysis and independently carried out
a system ID using Genetic Algorithm. His contributions were
valuable in this regard and thus, his name is added in the newly
revised version.

REFERENCES

Abouelwafa, M. N., El-Gamal, H. A., Mohamed, Y. S., and Altabey, W. A.

(2014). An expert system for life prediction of woven-roving GFRE

closed end thick tube subjected to combined bending moments and

internal hydrostatic pressure using artificial neural network. Int. J.

Adv. Mater. Res. 845, 12–17. doi: 10.4028/www.scientific.net/AMR.

845.12

Altabey, W. A. (2014). “Vibration analysis of laminated composite variable

thickness plate using finite strip transition matrix technique and MATLAB

verifications,” in MATLAB- Particular for Engineer, ed K. Bennett (InTech),

583–620.

Altabey, W. A. (2016). FE and ANN model of ECS to simulate the

pipelines suffer from internal corrosion. Struct. Monit. Mainten. 3, 297–314.

doi: 10.12989/smm.2016.3.3.297

Altabey, W. A. (2017a). An exact solution for mechanical behavior of BFRP

Nano-thin films embedded in NEMS. J. Adv. Nano Res. 5, 337–357.

doi: 10.12989/anr.2017.5.4.337

Altabey, W. A. (2017b). Free vibration of basalt fiber reinforced polymer (FRP)

laminated variable thickness plates with intermediate elastic support using

finite strip transition matrix (FSTM) method. J. Vibroeng. 19, 2873–2885.

doi: 10.21595/jve.2017.18154

Altabey, W. A. (2017c). Prediction of natural frequency of basalt fiber reinforced

polymer (FRP) laminated variable thickness plates with intermediate elastic

Frontiers in Built Environment | www.frontiersin.org 17 January 2019 | Volume 4 | Article 80160

https://doi.org/10.4028/www.scientific.net/AMR.845.12
https://doi.org/10.12989/smm.2016.3.3.297
https://doi.org/10.12989/anr.2017.5.4.337
https://doi.org/10.21595/jve.2017.18154
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Zhao et al. Identification of Hysterically Degrading Structures

support using artificial neural networks (ANNs) method. J. Vibroeng. 19,

3668–3678. doi: 10.21595/jve.2017.18209

Altabey, W. A. (2017d). Delamination evaluation on basalt FRP composite pipe

by electrical potential change. J. Adv. Aircraft Spacecraft Sci. 4, 515–528.

doi: 10.12989/aas.2017.4.5.515

Altabey, W. A. (2017e). EPC method for delamination assessment of basalt

FRP pipe: electrodes number effect. J. Struct. Monit. Mainten. 4, 69–84.

doi: 10.12989/smm.2017.4.1.069

Altabey,W. A. (2018). High performance estimations of natural frequency of basalt

FRP laminated plates with intermediate elastic support using response surfaces

method. J. Vibroeng. 20, 1099–1107. doi: 10.21595/jve.2017.18456

Altabey, W. A., and Noori, M. (2017a). Detection of fatigue crack in basalt FRP

laminate composite pipe using electrical potential changemethod. J. Phys.Conf.

Ser. 842:012079. doi: 10.1088/1742-6596/842/1/012079

Altabey, W. A., and Noori, M. (2017b). Fatigue life prediction for carbon

fibre/epoxy laminate composites under spectrum loading using two different

neural network architectures. Int. J. Sustain. Mater. Struct. Syst. 3, 53–78.

doi: 10.1504/IJSMSS.2017.092252

Altabey, W. A., and Noori, M. (2018). Monitoring the water absorption in GFRE

pipes via an electrical capacitance sensors. J. Adv. Aircraft Spacecraft Sci. 5,

411–434. doi: 10.12989/aas.2018.5.4.499

Baber, T. T., and Noori, M. N. (1985). Random vibration of

degrading, pinching systems. J. Eng. Mech. 111, 1010–1026.

doi: 10.1061/(ASCE)0733-9399(1985)111:8(1010)

Baber, T. T., and Noori, M. N. (1986). Modeling general hysteresis

behavior and random vibration application. J. Vib. Acoust. 108, 411–420.

doi: 10.1115/1.3269364

Baber, T. T., and Wen, Y. K. (1980). Stochastic Equivalent Linearization for

Hysteretic, Degrading, Multistory Strutctures. University of Illinois Engineering

Experiment Station; College of Engineering; University of Illinois at Urbana-

Champaign.

Beck, J. L., and Au, S. K. (2002). Bayesian updating of structural models and

reliability using Markov chain Monte Carlo simulation. J. Eng. Mech. 128,

380–391. doi: 10.1061/(ASCE)0733-9399(2002)128:4(380)

Behmanesh, I., and Moaveni, B. (2014). Probabilistic identification of simulated

damage on the Dowling Hall footbridge through Bayesian finite element model

updating. J. Struct. Control Hlth. Monit. 22, 463–483. doi: 10.1002/stc.1684

Bouc, R. (1967). “Forced vibration of mechanical systems with hysteresis,” in

Proceedings of the Fourth Conference on Non-linear Oscillation (Prague).

Brewick, P. T., Masri, S. F., Carboni, B., and Lacarbonara, W. (2016).

Data-based nonlinear identification and constitutive modeling of

hysteresis in NiTiNOL and steel strands. J. Eng. Mech. 142, 1–17.

doi: 10.1061/(ASCE)EM.1943-7889.0001170

Chan, R., Yuen, J., Lee, E., and Arashpour, M. (2015). Application of nonlinear-

autoregressive-exogenous model to predict the hysteretic behaviour of passive

control systems. J. Eng. Struct. 85, 1–10. doi: 10.1016/j.engstruct.2014.12.007

Charalampakis, A. E., and Dimou, C. K. (2010). Identification of Bouc–Wen

hysteretic systems using particle swarm optimization. J. Comput. Struct. 88,

1197–1205. doi: 10.1016/j.compstruc.2010.06.009

Charalampakis, A. E., and Koumousis, V. K. (2008a). Identification of Bouc–

Wen hysteretic systems by a hybrid evolutionary algorithm. J. Sound Vib. 314,

571–585. doi: 10.1016/j.jsv.2008.01.018

Charalampakis, A. E., and Koumousis, V. K. (2008b). On the response and

dissipated energy of Bouc–Wen hysteretic model. J. Sound Vib. 309, 887–895.

doi: 10.1016/j.jsv.2007.07.080

Chatzi, E. N., and Smyth, A. W. (2009). The unscented Kalman filter and

particle filter methods for nonlinear structural system identification with non-

collocated heterogeneous sensing. J. Struct. Control Hlth. Monit. 16, 99–123.

doi: 10.1002/stc.290

Chatzi, E. N., Smyth, A. W., and Masri, S. F. (2010). Experimental application of

on-line parametric identification for nonlinear hysteretic systems with model

uncertainty. J. Struct. Saf. 32, 326–337. doi: 10.1016/j.strusafe.2010.03.008

Ching, J., and Chen, Y. C. (2007). Transitional Markov ChainMonte Carlomethod

for Bayesian model updating, model class selection, and model averaging. J.

Eng. Mech. 133, 816–832. doi: 10.1061/(ASCE)0733-9399(2007)133:7(816)

Constantinou, M. C., Soong, T. T., and Dargush, G. F. (1998). Passive Energy

Dissipation Systems for Structural Design and Retrofit. Multidisciplinary Center

for Earthquake Engineering Research.

Deb, K. (2013). Bouc-Wen-Baber-Noori Model of Hysteresis. Source Forge.

Available online at: https://sourceforge.net/projects/boucwenbabernoo/

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE J. Trans. Evol. Comput. 6, 182–197.

doi: 10.1109/4235.996017

Erazo, K., and Nagarajaiah, S. (2018). Bayesian structural identification of a

hysteretic negative stiffness earthquake protection system using unscented

Kalman filtering. J. Struct. Control Hlth. Monit. 25, 1–18. doi: 10.1002/

stc.2203

Foliente, G. C. (1995). Hysteresis modeling of wood joints and structural systems. J.

Struct. Eng. 121, 1013–1022. doi: 10.1061/(ASCE)0733-9445(1995)121:6(1013)

Green, P. L. (2015). Bayesian system identification of dynamical systems using

large sets of training data: a MCMC solution. J. Probabilist. Eng. Mech. 42,

54–63. doi: 10.1016/j.probengmech.2015.09.010

Green, P. L., Cross, E. J., and Worden, K. (2015). Bayesian system identification of

dynamical systems using highly informative training data. J. Mech. Syst. Signal

PR 56, 109–122. doi: 10.1016/j.ymssp.2014.10.003

Hornig, K. H., and Flowers, G. T. (2005). Parameter characterization of

the Bouc-Wen mechanical hysteresis model for sandwich composite

materials using real coded genetic algorithms. Int. J. Acoust. Vib. 10:7381.

doi: 10.20855/ijav.2005.10.2176

Hossain, M. R. (1995). OpenSees Structural Design Software Command Manual for

BWBN Material Model. Avaialble online at: http://opensees.berkeley.edu/wiki/

index.php/BWBN_Material

Ikhouane, F., and Gomis-Bellmunt, O. (2008). A limit cycle approach for the

parametric identification of hysteretic systems. J. Syst. Control Lett. 57, 663–669.

doi: 10.1016/j.sysconle.2008.01.003

Ikhouane, F., Mañosa, V., and Rodellar, J. (2007). Dynamic properties

of the hysteretic Bouc-Wen model. J. Syst. Control Lett. 56, 197–205.

doi: 10.1016/j.sysconle.2006.09.001

Ikhouane, F., and Rodellar, J. (2007). Systems With Hysteresis: Analysis,

Identification and Control Using the Bouc-Wen Model. Hong Kong: John Wiley

& Sons.

Jeen-Shang, L., and Yigong, Z. (1994). Nonlinear structural identification using

extended Kalman filter. J. Comput. Struct. 52, 757–764.

Kontoroupi, T., and Smyth, A.W. (2017). Online Bayesianmodel assessment using

nonlinear filters. J. Struct. Control Hlth. Monit. 24, 1–15. doi: 10.1002/stc.1880

Lei, Y., and Jiang, Y. Q. (2011). “A two-stage Kalman estimation approach for the

identification of structural parameters under unknown inputs,” in The Twelfth

East Asia-Pacific Conference on Structural Engineering and Construction,

3088–3094.

Ljung, L. (2010). Perspectives on system identification. Annu. Rev. Control 34, 1–5.

doi: 10.1016/j.arcontrol.2009.12.001

Lu, S., and Basar, T. (1998). Robust nonlinear system identification using neural-

network models. IEEE T. Neural Netw. 9, 407–429. doi: 10.1109/72.668883

Ma, F., Zhang, H., Bockstedte, A., Foliente, G. C., and Paevere, P. (2004). Parameter

analysis of the differential model of hysteresis. J. Appl. Mech. 71, 342–349.

doi: 10.1115/1.1668082

Masri, S. F., Chassiakos, A. G., and Caughey, T. K. (1992). Structure-unknown

non-linear dynamic systems: identification through neural networks. J. Smart

Mater. Struct. 1, 45–56. doi: 10.1088/0964-1726/1/1/007

Monti, G., Quaranta, G., and Marano, G. C. (2009). Genetic-algorithm-

based strategies for dynamic identification of nonlinear systems

with noise-corrupted response. J. Comput. Civil Eng. 24, 173–187.

doi: 10.1061/(ASCE)CP.1943-5487.0000024

Mu, T., Zhou, L., and Yang, J. N. (2013). Comparison of adaptive structural damage

identification techniques in nonlinear hysteretic vibration isolation systems. J.

Earthq. Eng. Eng. Vib. 12, 659–667. doi: 10.1007/s11803-013-0204-y

Muller, O., Savino, F., Rubinstein, M., and Foschi, R. O. (2012). “Performance-

based seismic design: a search-based cost optimization with minimum

reliability constraints,” in Structural Seismic Design Optimization

and Earthquake Engineering: Formulations and Applications 23–50.

doi: 10.4018/978-1-4666-1640-0.ch002

Muto, M., and Beck, J. L. (2008). Bayesian updating and model class selection

for hysteretic structural models using stochastic simulation. J. Vib. Control 14,

7–34. doi: 10.1177/1077546307079400

Muto, M. M. (2007). Application of Stochastic Simulation Methods to System

Identification. Ph.D., California Institute of Technology.

Frontiers in Built Environment | www.frontiersin.org 18 January 2019 | Volume 4 | Article 80161

https://doi.org/10.21595/jve.2017.18209
https://doi.org/10.12989/aas.2017.4.5.515
https://doi.org/10.12989/smm.2017.4.1.069
https://doi.org/10.21595/jve.2017.18456
https://doi.org/10.1088/1742-6596/842/1/012079
https://doi.org/10.1504/IJSMSS.2017.092252
https://doi.org/10.12989/aas.2018.5.4.499
https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010)
https://doi.org/10.1115/1.3269364
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:4(380)
https://doi.org/10.1002/stc.1684
https://doi.org/10.1061/(ASCE)EM.1943-7889.0001170
https://doi.org/10.1016/j.engstruct.2014.12.007
https://doi.org/10.1016/j.compstruc.2010.06.009
https://doi.org/10.1016/j.jsv.2008.01.018
https://doi.org/10.1016/j.jsv.2007.07.080
https://doi.org/10.1002/stc.290
https://doi.org/10.1016/j.strusafe.2010.03.008
https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816)
https://sourceforge.net/projects/boucwenbabernoo/
https://doi.org/10.1109/4235.996017
https://doi.org/10.1002/stc.2203
https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(1013)
https://doi.org/10.1016/j.probengmech.2015.09.010
https://doi.org/10.1016/j.ymssp.2014.10.003
https://doi.org/10.20855/ijav.2005.10.2176
http://opensees.berkeley.edu/wiki/index.php/BWBN_Material
http://opensees.berkeley.edu/wiki/index.php/BWBN_Material
https://doi.org/10.1016/j.sysconle.2008.01.003
https://doi.org/10.1016/j.sysconle.2006.09.001
https://doi.org/10.1002/stc.1880
https://doi.org/10.1016/j.arcontrol.2009.12.001
https://doi.org/10.1109/72.668883
https://doi.org/10.1115/1.1668082
https://doi.org/10.1088/0964-1726/1/1/007
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000024
https://doi.org/10.1007/s11803-013-0204-y
https://doi.org/10.4018/978-1-4666-1640-0.ch002
https://doi.org/10.1177/1077546307079400
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Zhao et al. Identification of Hysterically Degrading Structures

Narendra, K. S., and Parthasarathy, K. (1990). Identification and control of

dynamical systems using neural networks. IEEE T. Neural Netw. 1, 4–27.

doi: 10.1109/72.80202

Noori, M. (1984). Random Vibration of Degrading Systems With General Hysteretic

Behavior. Ph.D., University of Virginia.

Noori, M., Wang, H., Altabey, W. A., and Silik, A. I. H. (2018). A modified wavelet

energy rate based damage identification method for steel bridges. Int. J. Sci.

Technol. doi: 10.24200/sci.2018.20736

Ortiz, G. A., Alvarez, D. A., and Bedoya-Ruíz, D. (2013). Identification of Bouc-

Wen type models using multi-objective optimization algorithms. J. Comput.

Struct. 114, 121–132. doi: 10.1016/j.compstruc.2012.10.016

Ortiz, G. A., Alvarez, D. A., and Bedoya-Ruíz, D. (2015). Identification of

Bouc–Wen type models using the Transitional Markov Chain Monte Carlo

method. J. Comput. Struct. 146, 252–269. doi: 10.1016/j.compstruc.2014.

10.012

Park, Y. J., Wen, Y. K., and Ang, A. (1986). Random vibration of hysteretic systems

under bi-directional ground motions. Earthq. Eng. Struct. D 14, 543–557.

doi: 10.1002/eqe.4290140405

Peng, G. R., Li, W. H., Du, H., Dengc, H. X., and Alicia, G. (2014).

Modelling and identifying the parameters of a magneto-rheological damper

with a force-lag phenomenon. J. Appl. Math. Model. 38, 3763–3773.

doi: 10.1016/j.apm.2013.12.006

Puttige, V. R., and Anavatti, S. G. (2007). “Comparison of real-time online

and offline neural network models for a UAV,” in IEEE International Joint

Conference on Neural Networks (Hungary), 412–417.

Saadat, S., Buckner, G. D., Furukawa, T., and Noori, M. N. (2003). “Nonlinear

system identification of base-excited structures using an intelligent parameter

varying (IPV) modeling approach,” in Proceedings of Smart Structures and

Materials, International Society for Optics and Photonics (San Diego, CA),

555–564.

Saadat, S., Buckner, G. D., Furukawa, T., and Noori, M. N. (2004a).

An intelligent parameter varying (IPV) approach for non-linear system

identification of base excited structures. Int. J. Nonlin. Mech. 39, 993–1004.

doi: 10.1016/S0020-7462(03)00091-X

Saadat, S., Buckner, G. D., and Noori, M. N. (2007). Structural system

identification and damage detection using the intelligent parameter varying

technique: an experimental study. J. Struct. Health Monit. 6, 231–243.

doi: 10.1177/1475921707081980

Saadat, S., Noori, M. N., Buckner, G. D., Furukawa, T., and Suzuki, Y. (2004b).

Structural health monitoring and damage detection using an intelligent

parameter varying (IPV) technique. Int. J. Nonlin. Mech. 39, 1687–1697.

doi: 10.1016/j.ijnonlinmec.2004.03.001

Sohn, H. (1998). A Bayesian Probabilistic Approach to Damage Detection for Civil

Structures. Ph.D., Stanford university.

Soong, T. T., and Spencer, B. F. (2002). Supplemental energy dissipation:

state-of-the-art and state-of-the-practice. Eng. Struct. 24, 243–259.

doi: 10.1016/S0141-0296(01)00092-X

Spencer, B. F. Jr, and Nagarajaiah, S. (2003). State of the art of structural

control. J. Struct. Eng. 129, 845–856. doi: 10.1061/(ASCE)0733-9445(2003)

129:7(845)

Wen, Y. K. (1975). Approximate method for nonlinear random vibration. J. Eng.

Mech. 101, 389–401.

Wen, Y. K. (1976). Method for random vibration of hysteretic systems. J. Eng.

Mech. 102, 249–263.

Wen, Y. K. (1980). Equivalent linearization for hysteretic systems under random

excitation. J. Appl. Mech. 47, 150–154. doi: 10.1115/1.3153594

Wen, Y. K. (1986). Stochastic response and damage analysis of inelastic structures.

Probabilist. Eng. Mech. 1, 49–57. doi: 10.1016/0266-8920(86)90009-3

Wen, Y. K. (1989). Methods of random vibration for inelastic structures. J. Appl.

Mech. Rev. 42, 39–52. doi: 10.1115/1.3152420

Wen, Y. K., and Yeh, C. H. (1989). Biaxial and torsional response of

inelastic structures under random excitation. J. Struct. Saf. 6, 137–152.

doi: 10.1016/0167-4730(89)90016-7

Worden, K., and Hensman, J. J. (2012). Parameter estimation and model selection

for a class of hysteretic systems using Bayesian inference.Mech. Syst. Signal PR

32, 153–169. doi: 10.1016/j.ymssp.2012.03.019

Wu, M., and Smyth, A. W. (2007). Application of the unscented Kalman filter

for real-time nonlinear structural system identification. J. Struct. Control Hlth.

Monit. 14, 971–990. doi: 10.1002/stc.186

Wu, M., and Smyth, A. W. (2008). Real-time parameter estimation for

degrading and pinching hysteretic models. Int. J. Nonl. Mech. 43, 822–833.

doi: 10.1016/j.ijnonlinmec.2008.05.010

Yang, J. N., Lin, S., Huang, H., and Zhou, L. (2006). An adaptive extended Kalman

filter for structural damage identification. J. Struct. Control Hlth. Monit. 13,

849–867. doi: 10.1002/stc.84

Yuen, K. V., and Katafygiotis, L. S. (2001). Bayesian time–domain approach

for modal updating using ambient data. Probabilist. Eng. Mech. 16, 219–231.

doi: 10.1016/S0266-8920(01)00004-2

Zadeh, L. (1956). On the identification problem. IRE Trans Circ. Theory 3,

277–281. doi: 10.1109/TCT.1956.1086328

Zhang, B. T., and Cho, D. Y. (2001). System identification using

evolutionary Markov Chain Monte Carlo. J. Syst. Architect. 47, 587–599.

doi: 10.1016/S1383-7621(01)00017-0

Zhao, Y., Noori, M., and Altabey, W. A. (2017a). Damage detection for a beam

under transient excitation via three different algorithms. J. Struct. Eng. Mech.

63, 803–817.

Zhao, Y., Noori, M., Altabey, W. A., and Bahram Beheshti-Aval, B. (2017b). Mode

shape based damage identification for a reinforced concrete beam using wavelet

coefficient differences and multi-resolution analysis. J. Struct. Control Health

Monitor. 25, 1–41. doi: 10.1002/stc.2041

Zhao, Y., Noori, M., Altabey, W. A., and Wu, Z. (2018). Fatigue damage

identification for composite pipeline systems using electrical capacitance

sensors. J. Smart Mater. Struct. 27:8. doi: 10.1088/1361-665X/aacc99

Zheng, W., and Yu, Y. (2013). Bayesian probabilistic framework for damage

identification of steel truss bridges under joint uncertainties. Adv. Civil Eng.

2013:307171. doi: 10.1155/2013/307171

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Zhao, Noori, Altabey and Awad. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Built Environment | www.frontiersin.org 19 January 2019 | Volume 4 | Article 80162

https://doi.org/10.1109/72.80202
https://doi.org/10.24200/sci.2018.20736
https://doi.org/10.1016/j.compstruc.2012.10.016
https://doi.org/10.1016/j.compstruc.2014.10.012
https://doi.org/10.1002/eqe.4290140405
https://doi.org/10.1016/j.apm.2013.12.006
https://doi.org/10.1016/S0020-7462(03)00091-X
https://doi.org/10.1177/1475921707081980
https://doi.org/10.1016/j.ijnonlinmec.2004.03.001
https://doi.org/10.1016/S0141-0296(01)00092-X
https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
https://doi.org/10.1115/1.3153594
https://doi.org/10.1016/0266-8920(86)90009-3
https://doi.org/10.1115/1.3152420
https://doi.org/10.1016/0167-4730(89)90016-7
https://doi.org/10.1016/j.ymssp.2012.03.019
https://doi.org/10.1002/stc.186
https://doi.org/10.1016/j.ijnonlinmec.2008.05.010
https://doi.org/10.1002/stc.84
https://doi.org/10.1016/S0266-8920(01)00004-2
https://doi.org/10.1109/TCT.1956.1086328
https://doi.org/10.1016/S1383-7621(01)00017-0
https://doi.org/10.1002/stc.2041
https://doi.org/10.1088/1361-665X/aacc99
https://doi.org/10.1155/2013/307171
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


ORIGINAL RESEARCH
published: 10 January 2019

doi: 10.3389/fbuil.2018.00087

Frontiers in Built Environment | www.frontiersin.org 1 January 2019 | Volume 4 | Article 87

Edited by:

Vagelis Plevris,

OsloMet–Oslo Metropolitan University,

Norway

Reviewed by:

Sameh Samir F. Mehanny,

Cairo University, Egypt

Constantinos Repapis,

University of West Attica, Greece

*Correspondence:

Francesco Clementi

francesco.clementi@univpm.it

Specialty section:

This article was submitted to

Computational Methods in Structural

Engineering,

a section of the journal

Frontiers in Built Environment

Received: 25 August 2018

Accepted: 19 December 2018

Published: 10 January 2019

Citation:

Giordano E, Clementi F, Nespeca A

and Lenci S (2019) Damage

Assessment by Numerical Modeling of

Sant’Agostino’s Sanctuary in Offida

During the Central Italy 2016–2017

Seismic Sequence.

Front. Built Environ. 4:87.

doi: 10.3389/fbuil.2018.00087

Damage Assessment by Numerical
Modeling of Sant’Agostino’s
Sanctuary in Offida During the
Central Italy 2016–2017 Seismic
Sequence
Ersilia Giordano, Francesco Clementi*, Andrea Nespeca and Stefano Lenci

Department of Civil and Building Engineering, and Architecture, Polytechnic University of Marche, Ancona, Italy

The subject of this work is the Sant’Agostino Sanctuary in Offida (Italy); we investigated

both the dynamic behavior and the seismic vulnerability of the complex, used nowadays

in its parts as school building, oratory, and church. Offida is in central Italy; the village

has been severely damaged by the last seismic events of 2016. The sanctuary was

heavily damaged by the earthquake of 24 August 2016. We recurred to finite elements

to estimate the vulnerability of the sanctuary and its dynamic response, considering

masonry’s non-linear behavior by means of proper constitutive assumptions. To estimate

how the monastery bears the lateral loads related to the expected demands resulting

from seismic actions (N2method) using non-linear static analysis (Pushover), we recurred

to a homogenized material and smeared cracking and crushing constitutive law. As may

be remarked by observing buildings that share the same features of the sanctuary and,

moreover, by comparing seismic demand vs. capacity, the structure is prone to massive

damage leading to collapse. The paper underlines how advanced numerical analysis

grants fundamental data on how historical masonry buildings behave under seismic

action, providing a method that may easily be implemented at historic monasteries in

Europe.

Keywords: FE modeling, solid elements, earthquake loading, non-linear static analysis, seismic vulnerability,

damage assessment

INTRODUCTION

The intense seismic activity that affected many areas of Italy over the last decades clearly showed
howmuch care should be taken of architectural heritage and its preservation. Assessing the seismic
vulnerability of a monumental masonry building may be a difficult task to accomplish, considering
how peculiar these structures usually are, requiring sophisticated and computationally heavy
numerical models to have a proper estimation of their dynamical response under seismic action.
Most recent Italian earthquakes (Umbria-Marche 1997–1998, Abruzzo 2009, Emilia-Romagna
2012, Central Italy 2016), caused irreparable damages to many elements of the architectural
heritage, such as monumental buildings, churches and steeples (Ceci et al., 2010; Acito et al., 2014;
Milani and Valente, 2015).
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Protecting historical buildings from seismic activity plays
a significant role on public safety, considering how European
countries, moreover Italy, have such a various architectural
heritage that is still in use, most of the times hosting strategic
public functions (Asteris et al., 2014). However, such buildings
obviously do not grant proper safety against seismic actions,
since their design criteria do not take into account lateral
resistance and ductility in favor of efficiently bearing gravity
loads; housing significant functions in those structures, especially
during emergencies of any kind, involves the attainment of the
required safety levels (Clementi et al., 2015).

The features that all monumental masonry buildings share,
such as being so complex, irregular, mainly designed to bear
gravity loads and way more massive than modern architecture,
make structural behavior uneasy to estimate, especially when
it comes to evaluating it under seismic action. Despite its
being challenging, proper modeling of masonry buildings is
fundamental to seismic resistant design or to assess earthquake
vulnerability. While contemporary structures are basically made
of industrial based components, such as RC or steel, which
make their structural behavior uniform and certain (Pierdicca
et al., 2016b, 2018), ancient masonry structures require the
acknowledgment of more parameters to be modeled, like floors’
stiffness (diaphragm effect) or connections between orthogonal
walls and structural and non-structural elements (Betti and
Vignoli, 2008a, 2011; Bartoli et al., 2013; Clementi et al., 2018a).

Masonry macro elements are made of bricks bonded by
mortar, so they can be seen as a composite system whose

FIGURE 1 | General view of Sant’ Agostino’s Sanctuary.

parts are characterized by a very different mechanical behavior,
making structural modeling a challenging activity, as the wide
range of designs available at the state of the art seems to prove
(Asteris et al., 2015). No-Tension Material models and their
mechanical characterization derive from the obvious fact that
masonry does not offer a significant resistance to tensile stresses.
To take into proper account how masonry is characterized by
a non-linear response, starting from the lowest deformation
levels, the hypothesis of unilateral mechanical behavior may
be applied to the theories of limit analysis, leading to models
able to estimate the collapse loads of masonry structures
(Del Piero, 1998; Milani et al., 2007; Milani, 2011). Inelastic
phenomena that affect masonry buildings under seismic action
leading to local phenomena of softening, failure and strain
localization, such as sliding, cracking, crushing at the mortar
joints, tensile fracture of bricks, may be analyzed by means of
micro-mechanical models, characterized by elasto-plastic laws
(Lotfi and Shing, 1994; Lourenço and Rots, 1997) or damage
theories (Luciano and Sacco, 1998). At the state of the art, many
homogenization techniques are available to obtain continuum
models, since representing bricks and joints would not be
possible when modeling monumental buildings, leading to way
too computationally heavy FEM (Zucchini and Lourenço, 2002;
Lourenço, 2009; Addessi et al., 2010); these various approaches
traced the path to the related macro-mechanical models,
moving from the rigorous application of the homogenization
theory for periodic media (Anthoine, 1995) to two-steps
approximated strategies (Pande et al., 1989). Acary (2001) gives
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a complete review of the homogenization techniques described
above, while (Luciano and Sacco, 1997; Zucchini and Lourenço,
2002, 2004; Addessi et al., 2010) focus on historical masonry
walls.

Although simplified models may be the reference to
represent the structural behavior of masonry buildings and
all their peculiarities, it appears challenging to apply proper
simplifications while keeping the requested level of modeling
accuracy. At the state of the art, we may identify three different
modeling strategies. The most recurrent modeling approach we
find nowadays is the Equivalent FrameMethod (Caliò et al., 2012;
Lagomarsino et al., 2013; Quagliarini et al., 2017), which designs
the walls as an idealized frame where the non-linear response is
concentrated on deformable elements connected by rigid nodes
representing not usually damage prone structural components.
Starting from a careful seismic phenomena observation that leads
to pointing out how cracks and failure modes mostly concentrate
in recurrent elements, piers and spandrels may be seen as the
two main structural components, especially when it comes to
analyzing the in-plane response of complex masonry walls with
openings. Another frequently used approach provides for the use
of finite elements schemes to model masonry structures as they
were continuous; current literatures offers recurrent examples
of how this modeling strategy may be applied with ease to
historical buildings, such as monasteries (Lourenço et al., 2007;
Betti and Vignoli, 2008a), churches (Betti and Vignoli, 2008b;
Milani and Valente, 2015; Clementi et al., 2017a; Formisano et al.,
2018), bridges (Betti et al., 2008), steeples or towers (D’Ambrisi

et al., 2012; Minghini et al., 2014; Carpinteri et al., 2015),
ancient city centers (Formisano et al., 2015). To gain exhaustive
comprehension of seismic phenomena, analysis output usually
comes from combining the results given by different sets of
parameters, since the models are progressively refined, especially
in terms of fracture and plasticity. In the two methods described
above, dynamical problems are reduced to elementary static
issues (equivalent pushover schemes), since equivalent horizontal
static forces make up for seismic loadings. As an alternative to the
Equivalent FrameMethod,masonry buildingsmay bemodeled as
distinct elements in an assembly of blocks affected by unilateral
frictional contacts (Jean, 1999; Clementi et al., 2018b; Poiani et al.,
2018).

After carefully analyzing masonry’s peculiarities, it seems
clear how turning to continuous material leads to the most
representative structural models, especially when those are
related to irregular complexes. Many non-linear mechanisms
proper of concrete structures, such as damage deriving, friction-
plasticity, crushing or cohesion, are already implemented in
many structural software, yet there is a blatant lack of effective
instruments when it comes to design 2D and 3D non-linear
models of masonry buildings.

This work aims to clearly show how delicate yet crucial it is
to properly take into account the three-dimensional behavior of
the complex, underlining its structural weaknesses. To obtain
a representative numerical model, a preliminary survey was
performed in order to get all the required parameters, such as
the geometry of the structure and the mechanical properties of

FIGURE 2 | Technological characterizations of materials of “Sant‘Agostino’s Sanctuary” in Offida (AP).
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TABLE 1 | Mechanical characteristics of the main elements.

Knowledge level fc [MPa] ft [MPa] γ [kN/m3] E [MPa] ν Gc [N/mm] Gf [N/mm] Confidence Factor (CF)

NORMAL SOLID BRICK AND LIME MORTAR—MATERIAL 1

KL1 1.78 0.18 18 1500 0.4 1.731 0.017 1.35

GOOD SOLID BRICK AND LIME MORTAR—MATERIAL 2

KL1 2.67 0.26 18 2250 0.4 2.299 0.023 1.35

FIGURE 3 | External cracks on façade, north wall of the nave and north front of the annex (A) Internal cracks of the church (B).

masonrymaterial, combined with a careful historical and archival
research. Once all the requested data were collected, the designed
3D finite element model, endowed with an elastic plastic (with
softening) constitutive damage law, was used to perform a wide

number of non-linear static analysis (Clementi et al., 2017b). To
make this model and its design features useful to many other
historical masonry complexes, we opted for a smeared fracture
energy approach.
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The paper is organized as follows. In sections Historical
Developments and Description of the Building in its Current
Configuration, we described the historical developments, the
characteristics of the material and the geometry of the
case study situated in Offida (Central Italy), which are
the starting point for subsequent developments. In section
Damage After Seismic Sequence of 2016 the actual damage
is described. In section Structural Analysis Methodology is
illustrated the modeling strategy. In section Global Seismic
Behavior sensitivity analyses of the case study are described
to assess the global condition of the structure. In this
section also the procedure defined for isolated churches in
Brandonisio et al. (2013) is applied to the monastery, constituting
de facto an extension of the method to more complex
structures. The paper ends with some conclusions (section
Conclusions).

HISTORICAL DEVELOPMENTS

To have proper understanding of how each part composing the
sanctuary developed over the centuries, a preliminary historical
analysis was carried out.

The foundation of themonastery’s early nucleus is dated to the
XIV century, when the relics related to the Eucharistic Miracle

of Lanciano arrived in Offida leading to the replacement of the
original church of St. Mary Magdalene by a greater one that the
Augustinians decided to name their own to St. Augustine. Its
construction lasted from 1338 to 1441. The works of enlargement,
from the basements, were completed during the priory of a friar
Jacopo in 1441. The cloister with quadrilateral closed shape is
realized during 1574 using a long line of octagonal columns,
whose basements are stone capitals, and surmounted by round
arches.

At the center of the abbey, we find the usual well; the cloister
led to the refectory. The convent was amended several times
(from 1609 to 1618) and even renewed its foundations in 1625.
The façade is Baroque (1686). The interior was modified and
extended in the XVIII century with a Latin cross, with a dome
inside a tambour and it was decorated with late baroque stucco
and valuable wooden furniture (e.g., chorus and confessionals
walnut of the cabinetmaker Alessio Donati from Offida). The
interiors also preserve a precious reliquary cross (the “holy cross”
that protects the relic of that miracle), it operates in silver
gilt made in Venice in the XIV century and another reliquary
of the art of Marche region of XV century. Other significant
modifications were made between 1933 and 1937.

The monastery was firstly hit by L’Aquila earthquake (April 6,
2009) with a magnitude MW = 6.3. After this seismic event, the

FIGURE 4 | Finite elements model of “Sant‘Agostino’s Sanctuary” in Offida (Central Italy) (A), stress–strain constitutive relations used for the simulation for masonry

uniaxial compression (B), masonry uniaxial tension (C).
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FIGURE 5 | Distribution of modal shapes in the longitudinal and transversal directions and comparison with the pseudo-acceleration response spectra (three main

shocks of Central Italy 2016–2017 seismic sequence), and the Italian code elastic response spectrum for the Model CS (A), Model DF (B).
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school building area was damaged, and other superficial cracks
appeared in the main façade of the church. For this reason, in
the 2010 a series of structural restorations was carried out on
the buildings, except for the area of the church, which remained
unchanged. A reconstruction/improvement on the three floors of
the school building and an extensive re-roofing was done. Steel
bracings or concrete slabs were inserted in some parts. The actual
configuration is reported in Figure 1.

Currently, the refectory no longer exists since the rooms were
turned into school classrooms, as indeed all the premises nearby
the cloister. Such use began as early as 1870, after the law of
confiscation of the Church’s properties in 1866. The current
division of the building is shown in Figure 1.

The church’s walls linked, i.e., themasonry walls are connected
from a structural point of view, to other parts of the oratory
(annex) and school building, as proved by a few in situ tests
performed on it. This means that a global analysis is appropriated
for this case study.

DESCRIPTION OF THE BUILDING IN ITS
CURRENT CONFIGURATION

Geometrical Survey
To ensure the preliminary data required by the study, an
accurate in situ survey was performed on the complex, leading
to a full geometry relief, focusing on structural details, such as
connections between all the macro elements, characterization
of masonry texture and its irregularities. As reported in section
Historical Developments, the survey is completed by a historical
report on how the complex developed over the centuries.

The entire area measures ∼2600 m2 for the floor where at
least three elevations are present in all parts of the structure. The
main dimensions of the nave are∼45.68m of length,∼14.71m of
width and a lateral-wall height (mean value) of about∼18m. The
masonry walls’ thickness is ranged between 2.55m (nave walls)
and 0.8m (apse walls) (Figure 1). The church roof ’s structure
is made of timber (nave). The masonry is composed of solid
brick and lime mortar (Figure 2). However, the remaining parts
of the monastery are also made of solid brick and lime mortar
yet in a better state of preservation due to recent restorations
as said in section Historical Developments. This leads to better
elastic-mechanical parameters (Table 1).

The other portions of the building are an assemblage of
horizontal rectangular zones, with a length of ∼45m (East part)
and a mean width of about ∼32m (South and West parts). This
area has three floors with a maximum height of 11m. In the
center, there is the “Portico” with square columns on solid brick
with a width of 0.45m and cross-vault at the upper sides. All
these areas contain classrooms and offices of the school.

Material Characterization
We choose not to perform a complete characterization of the
materials, since the annex and the monastery do not reveal
any significant damage or issue nowadays, and we were on a
budget. According to the current Italian Seismic Code (Ministro
dei Lavori Pubblici e dei Trasporti., 2008; Circolare Ministeriale
n. 617, 2009; Ministero delle Infrastrutture e dei Trasporti.,

2018) this lead to the lowest Knowledge level KL1, related to
a Confidence Factor (CF) equal to 1.35, as also requested by
Eurocode 8 (EN 1998-3, 2010) for concrete structures.

The Italian regulation (Ministro dei Lavori Pubblici e dei
Trasporti., 2008; Circolare Ministeriale n. 617, 2009; Ministero
delle Infrastrutture e dei Trasporti., 2018) and its Annex C8A.2
was the reference to define the material’s compressive strength,
based on Table C8A.2.1 of (Circolare Ministeriale n. 617, 2009).
With a Knowledge Level KL1, the related confidence factor CF=
1.35 is applied to obtain a final design compressive strength. The
tensile strength of the masonry may be estimated as the 10% of
the compressive resistance as reported inTable 1, as it is generally
negligible.

DAMAGE AFTER SEISMIC SEQUENCE OF
2016

After the seismic events of 2016, the church has been seriously
damaged, and it is currently being made safe to prevent collapses.
The existing cracks have worsted, especially on the façade and
on the transept, and new cracks have appeared on the dome and
the church’s roof. On the façade, two long cracks pass through the
wall (Figure 3). The octagonal dome has cracks on all corners due
to an interaction with the pushing beams of the roof; this led to a
structural failure of common rafters. The transept shows vertical
and diagonal cracks on north and south sides under the windows.
After the seismic sequence, many cracks also appeared inside the
church, especially on the nave (Figure 3B). The square, in front
of the church, has been closed owing to the possibility of façade
overturn.

STRUCTURAL ANALYSIS METHODOLOGY

Seismic assessments of monumental masonry buildings may
be considered challenging, taking into account the not so
obvious numerical modeling of non-linear behavior of such a
no tension material itself, the complex geometrical configuration
and the merely experimental characterization of its components
(Pierdicca et al., 2016a). In accordance with the state of the art,
we find nowadays different mechanical models and their related
parameters to assess the highly non-linear behavior of masonry
both in tension (low tensile capacity and consequent cracking
phenomena) and compression.

The macro-modeling technique described in this paper leads
to an exhaustive comprehension of all the non-linear phenomena
that may affect masonry buildings under seismic action, even
though its computing is still difficult to apply on a complex 3D
structural system because of all the requested degrees of freedom.
According to the chosen modeling technique and its features,
the development of the cracks modifies the stiffness of the solid
elements composing the model.

The smeared crack concept, and its FE implementation,
offers a variety of possibilities, ranging from fixed single to
fixed multidirectional and rotating crack approaches. Here, the
distinction lies in the orientation of the crack, which is either kept
constant, updated in a stepwise manner, or updated continuously
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(Rots, 1991; Lourenço, 2009). Since smeared crack approaches
do not require re-meshing of the model after the occurrence of
cracks or a priori definition of possible locations of cracks, it is
very convenient for FE models. Differently, the direct modeling
of the crack into the mesh, with Linear and Non-linear Fracture
mechanics models, is always accessible when the engineers deal
with a small model, also for masonry or masonry-like materials
(Clementi et al., 2008; Lenci et al., 2011, 2012).

Authors like (da Porto et al., 2010) used the isotropic rotating
crack model to design panels composed by vertically perforated
clay units and various types of joints, while (Manfredi et al.,
2013) adopted a smeared crack model, to properly simulate

how macro-models of brick masonry and adobe walls behave.
Multi-directional fixed or rotating crack models also proved
their great use in terms of debonding problems, e.g., (Ghiassi
et al., 2013; Gattulli et al., 2014). Current practice shows how
smeared crack models are versatile and require few preliminary
data.

The non-linear behavior of the masonry panels that constitute
the sanctuary is modeled by means of a Total Strain Crack
Model based on fixed stress-strain law concepts provided by
MIDAS FEA (Midas FEA, 2016), thus the cracking path is fixed
to the direction of the principal strain vectors and kept constant
during structure’s loading; the panels were modeled with solid

TABLE 2 | Characteristics of main earthquakes recorded in Ascoli Piceno (ASP) station during the Central Italy seismic sequence in 2016–2017.

Seismic

event

ML Depth (km) Station Class EC8 R_jb [km] R_rup [km] R_epi [km] Channel NS

PGA (m/s2)

Channel EW

PGA (m/s2)

24/08/2016 6.0 8.1 Ascoli Piceno

ASP

C* 31.35 31.36 37.77 0.088 g 0.087 g

26/10/2016 5.9 7.5 Ascoli Piceno

ASP

C* 35.78 35.79 42.94 0.058 g 0.069 g

30/10/2016 6.1 9.2 Ascoli Piceno

ASP

C* 30.18 30.18 43.95 0.12 g 0.119 g

*Indicates that site classification is not based on a direct Vs, 30 measurement.

FIGURE 6 | Base shear (V) normalized to the total weight (Wtot) for Model DF: comparison between NTC2018 and the main shocks recorded during the 24th August

2016, 26th and 30th October 2016 for the Model CS (A), Model DF (B).
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tetrahedron elements with 4 nodes, discretized with an optimized
regular mesh (see Figure 4A).

The selected constitutive laws take into account the complex
behavior of masonry, compression behavior is modeled by means
of a parabolic hardening rule and a parabolic softening branch
following the peak of resistance (Figure 4B) while the tension
behavior is modeled by a linear hardening branch followed by a
non-linear softening branch (Figure 4C). Table 1 shows a report
of fracture energies in compression (Gc) and tension (Gf), where
h is the mean dimension of the mesh (Rots, 1991).

The shear retention factor (β) provides the rate of shear
stiffness after cracking, which can be related to the progressive
opening of the cracks or kept constant (low), in a range between
0 and 1. For the assessment described in this paper, we opted for
a constant value of 0.05 as requested (Rots and de Borst, 1987;
Rots, 1991).

Finite Element Model for the Global
Response
The purpose of the designed numerical models was to

represent all the significant features of the sanctuary, such
as the geometry of the structural components with all their

peculiarities and openings, the connections between all the

macro elements. We also modeled the timber elements on the
roofs.

One of the major focuses of the modeling phase was to

choose the correct floors’ in-plane stiffness, as this aspect is
fundamental to comprehend structural response. According to

the current Italian Standards (Ministero delle Infrastrutture e
dei Trasporti., 2018), some floors which were recently restored

can be considered as rigid for two coexisting reasons: solid
concrete plates (i) have the minimum thickness (40mm) and
(ii) the necessary reinforcements to assure a rigid behavior
(Ministero delle Infrastrutture e dei Trasporti., 2018). In other
areas, differently, this assumption may not be in safe, mainly
because the slabs are made of poor quality concrete or not
well-connected to the peripheral walls. For this reason, two
different models were analyzed, also to check the variability of
the structural response due to slabs rigidity, namely:

• The model of the Current State, namely Model CS, where the
slabs are modeled by the actual schemes;

• The model with totally Deformable Floor, namely Model DF,
where slabs although adequately stiffened are supposed not to
be connected to the peripheral walls or, the wooden slabs do
not have a correct capacity design of the connector with the
concrete.

After meshing, the final 3D numerical models are reported in
Figure 4A with 94348 nodes, 454829 solid elements and a d.o.f.
number of 372219 forModel CS and of 379062 forModel DF.

GLOBAL SEISMIC BEHAVIOR

According to the Italian code, the building analyzed in this paper
is a “Class IV,” i.e., a strategic structure, because it is currently use
as school in some parts. The recurrence period (TR,D) associated

to the Limit State of Significant Damage (SLSD, or SLV in Italian)
is of 1898 years, related to an expected Peak Ground Acceleration
(PGA) equal to 0.283 g. The elastic response spectrum (soil type
T1 and category of subsoil C are considered) is characterized by
the following parameters: S = 1.272; TB = 0.175 s; TC = 0.525 s;
TD = 2.733 s (Figure 5).

The analyses were carried out using the horizontal
components of different natural response spectra obtained
from the time histories recorded near the city of Offida, with the
objective of both assessing the damage caused to the sanctuary
by the intense seismic activity affecting central Italy from
august 2016 and evaluating the horizontal strength capacity.
Unfortunately, the nearest station is the one in Ascoli Piceno
[APS station in Italian Accelerometric Archive (ITACA)], as
Offida has not been equipped with an accelerometric station. The
two components responses spectrum (North direction coincide
with X-direction, East direction coincides with Y-direction)
used arise from the three main shocks recorded during the
2016 seismic events in that station: (i) 24/08/2016 with Mw =

6.0 and ML = 6.0, (ii) 26/10/2016 Mw = 5.9 and ML = 5.9,
and (iii) 30/10/2016 with Mw = 6.5 and ML = 6.1. In Table 2

are reported the main characteristics of the main shocks, the
time histories used, the class of the site of the station, the main
distance between the ASP station and the epicenter zone where
(Kadas et al., 2011):

• R_jb, is the Joyner-Boore distance, known as the smallest
spacing from the site to the surface projection of the rupture
surface;

• R_rup, is the shortest distance between the site and the rupture
surface;

• R_epi, is the distance estimated by geometric swap.

The comparison of the recorded spectrum and the elastic
spectrum of building code previously defined is reported in
Figure 5.

Linear Dynamic Analysis
Firstly, modal analysis is performed on the FEM models to
identify the main frequencies, the related modal shapes and the
effective modal masses (%Meff) of each mode of the Sanctuary
in percentage respect to the total: at this moment the models
are not calibrated with Ambient Vibration Surveys like those
reported in Pierdicca et al. (2016a). We resorted to the Block
Lanczos method to estimate the modal shapes, taking into
proper account the quantum of d.o.f. of the numerical models.
The monastery is affected by many local modes, and for this
reason, 300 modes are considered to have more than 85% of
excited mass.

In the upper part of Figure 5A the main modes and the

associated participating masses are reported for the Model CS.
Generally, for this model, the modal shapes distribution clearly

shows how the monastery is affected by substantial out-of-

plane deformations. The 34th mode has the highest participating
mass in the longitudinal direction (Meff = 29.24%, T = 0.188 s)

involving the timber, the bell tower, and the tambour. The 9th

mode is characterized by a Meff = 17.99% and a period T =
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0.334 s, since it affects crosswise both the aisle’s lateral walls and

the steeple.
To understand the influence of rigid floors modal analysis

was also performed for the Model DF. In this case, 300 modes
involve only the 82% of the total mass due to a higher dispersion
of local modes, e.g., of the walls of the porch of school, and
they are reported in the upper part of Figure 5B. The condition
without rigid floors drags more the complex of the school (see
upper parts of Figures 5A,B) which is further stressed with small
translations in the out-of-plane directions of the walls. In fact,
the participating masses involved by the principal modes of CS
and DF Models, i.e., the 34th and 29th, are respectively of Meff =

24.4% longitudinally and Meff = 15.22% transversely, including
both the walls of the school. Apparently, in both Models CS
and DF, the 1st mode involves the bell tower in the transversal
direction.

In the lower part of Figures 5A,B the elastic response

spectra obtained from the ASP_station are reported to have a
direct correlation with the attained accelerations. Modes with

significant participating masses are characterized by periods in
the range 0.18–0.38 s, where the response spectra have big values
of accelerations. It is clearly remarkable that the masonry of the

church’s central aisle is always related to the high acceleration

which to some extent may explain, albeit marginally, the presence
of the damage observed on the structure at the end of the

seismic sequence, considering that the spectral content of the
ASP_station records would have been the same as that of the
earthquake motion in Offida.

The Demand on the Macro-Elements
It is useful to provide the seismic demand on the entire building.
In Figure 6, the ratio between the base shear (V) obtained in
section Linear Dynamic Analysis for different response spectra
[i.e., ASP_station and Italian code spectra (Ministero delle
Infrastrutture e dei Trasporti., 2018)] and the total weight of
the building (Wtot) are plotted for the transversal (X-direction)
and longitudinal (Y-direction) directions for bothModels CS and
DF. The base shear V has been obtained using the Complete
Quadratic Combination (CQC) method.

Form Figure 6 is clear that the ratios V/Wtot obtained with
the elastic spectrum of NTC2018 are always greater than the
natural one of ASP_station, that are always in the range 22÷58%.
The main observation emerging is the impossibility of being
able to guarantee a high level of seismic safety, especially in
comparison to the level required by the new seismic Italian law
for strategic structures, for which the request of demand (and

FIGURE 7 | Seismic base shear absorbed by the church (CH), the school (SC), and the annex (AN) for the Model CS (A), Model DF (B).
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FIGURE 8 | Transversal (red) and longitudinal (blue) macro-elements.

then capacity) became very high. Additionally, the school is
connected to the church which, for conservation reasons, can
never undergo extensive consolidation interventions. Finally, a
little reduction (∼10%) on the seismic demand in both directions
is observable, and it is a direct consequence of the retrofitting
interventions on the school zone, SC (Figure 1).

Once the seismic demand for the entire aggregate is known,
to have a better perception on the real distribution of the seismic
demand on the various parts of the building, we have evaluated
the ratio between the base shear under each portion of the
complex (Vi) and the total base shear (V), Vi/V (in percentage).
The Sanctuary is divided into three main portions (see Figure 1):
the church (CH), the school (SC) and the annex (AN). The
main results, for both Model CS and DF, are displayed in
Figure 7, showing that in longitudinal direction the shear forces
are basically centered on the school building (∼70%), while in

the transversal direction there is an equal behavior since both the
church and the school get almost the same shear force (∼40%),
Furthermore, Figure 7 shows that the presence of rigid floors
gives a better distribution of the shear force between the church
and the school both in longitudinal and transversal direction. It
is also evident that, in the same case, the distribution of shear
is not proportional to the acceleration and the main parts of the
building with higher seismic forces are the church and the school.

To evaluate the horizontal demand of each macro-element,
the Sanctuary was divided into longitudinal and transversal
elements as reported in Figure 8, with the final aim to find
the most stressed wall. The ratio Vi/V (in percentage) for each
macro-element in both longitudinal and transversal directions is
reported in Figure 9 forModel CS and DF.

It can be observed that, when the seismic action is applied
in the transversal direction for both the models, shear forces are
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FIGURE 9 | Distribution of base shear among macro-elements in longitudinal and transversal direction for the Model CS (A) Model DF (B).

mainly concentrated on lateral walls of the nave, namely L1, with
a Vi/V ratio between 22÷30%, the presbytery (PB) ∼8÷7% and
the south walls of the school with a Vi/V∼5%. On the contrary,
lower forces act on internal walls, e.g., L3–L4 and T6–T7, with a
ratio of <3%.

When the seismic force acts in the longitudinal direction,

there are fewer differences of shear forces on the macro-elements.
Major Vi/V ratios are mainly concentrated in peripheral walls
with a variation concerning the transverse case of the elements

most stressed (actually T4–T5 and T8–T9with a ratio in the range
5÷10%) less of L1 which is still the one with the higher demand.
This result incidentally confirms what has been observed during
the recent seismic sequence of Central Italy 2016–2017 that saw

in the wall L1 the one with more significant damage compared
to the rest of the construction (see Figure 3A), an area already
lightly damaged by the L’Aquila earthquake in 2009 (see section
Historical Developments).

Non-linear Static Analysis: Preliminary
Considerations
The non-linear static analysis method also known as pushover
has been used to properly analyze the complex’s seismic behavior,
bymonotonically increasing horizontal loads and keeping gravity
loads constant. Two systems of perpendicular horizontal forces,
acting at different times, were used to take into account seismic
loads. These systems lead to two load distributions that may be
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FIGURE 10 | Capacity curves at varying of control points for Model CS and Model DF in X and Y-directions.

considered two limit states of the building capacity, one related
to the masses on each floor by direct proportion (PushMass)
and one equivalent to the consideration of main modes
involving the 85% of participating masses in both directions
(PushMode).

As can be clearly remarked by considering the load
distributions described above, the pushover analysis performed
is merely conventional, i.e., loads applied to the building are
kept constant while the structure progressively degrades during
the loading, so gradual changes in modal frequencies caused
by yielding and cracking on the structure during loading are
not considered. Even though the invariance of static loads may
lead to an overestimation in assessing masonry buildings’ seismic
capacity, mostly on structures affected by a high or non-uniform
impairment, a conventional pushover analysis ensures a less
computationally expensive alternative to non-linear dynamic
analyses. It also provides substantial data on the progressive
damage occurring to buildings under seismic loads, such as the
cracking.

Considering the extension of the Sanctuary, the non-linear
behavior has been analyzed by varying the control point

(Figure 4A). To have a proper understanding of how the seismic
response develops by modifying the floors stiffness, we used the
same control points.

Pushover Analysis: First Results
To ensure clarity and brevity, the capacity curves reported in
this paper are those in positive X (i.e., north-direction) and Y
directions (i.e., east-direction) for PushMass load distribution
Figure 10.

The critical load distribution for the complex, both for
Model CS and Model DF, is in X-direction, transversal to
the aisle. On that X-direction, most of the selected control
points display a ductile behavior, while on Y-direction we
mostly find a brittle aberrance. In X-direction, the condition
of rigid floors produces an increase of resistance compared to
the Model DF. In Y-direction, instead, the presence of rigid
floors produces a little reduction of resistance leaving intact
the stiffness and, for almost all control points, provokes a
decrease of ductility. This reduction is due to an increase
in the torsional effect that is going to urge the areas not
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FIGURE 11 | Crack evolution for Model CS and Model DF for uniform loads in X-direction (A) Y-direction (B).

affected by the 2010 intervention, such as the church and the
oratory.

Figure 11 shows the development of the cracking in the
Model CS and Model DF, due to horizontal loads. In both
main directions, the first cracks appear on the walls of the
nave and in the bell tower (top figures in each quarter). In
X-Direction, the cracking distribution is more huge respect to
Y-Direction (down figures in each quarter). Comparing Model
DF and Model CS it is evident that the presence of rigid floors
reduces the development of cracks, especially in X-direction
where the Model CS shows less cracking in the upper section

of the nave’s walls sited next to the belfry (down figures in each
quarter).

The Capacity of the Macro-Elements
Once the seismic demand Vi, namely the strength demand,
is known for different portions and macro-elements of
Sant’Agostino’s Sanctuary (see section Pushover Analysis: First
Results), it is possible to compare the ultimate lateral strength
Vu evaluated with the pushover analysis obtaining a new ratio
Vi/Vu giving us the safety levels of the analyzed portion like in
Brandonisio et al. (2013). For brevity issue only the results of
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FIGURE 12 | Horizontal seismic demand (Vi) to horizontal strength capacity (Vu) ratio of the different areas of the building for the Model CS for transversal (A), and

longitudinal directions (B).

FIGURE 13 | Horizontal seismic demand (Vi) to horizontal strength capacity (Vu) ratio for different macro-elements of the church for the Model CS for transversal (A),

and longitudinal directions (B).

Model CS, i.e., actual state, considering elastic spectra of the ASP_
station are described in order to have a clear assessment of the
damage caused by the last seismic events that stroke Central Italy.

In Figure 12, there is a first general consideration on what
part of the Sanctuary is more vulnerable, confirming that
the major problems are in the transversal direction, i.e., X-
direction, and the church (CH) is the most problematic part of
the Sanctuary. In the same Figure 12 two horizontal lines are
reported corresponding to a ratio Vi/Vu = 1, i.e., the elastic
limit condition, and Vi/Vu = 2 corresponding—with a good
approximation—to a given level of acceptable damage, according
to the behavior factor q = 2, as defined for masonry structure in
Italian Code (Ministro dei Lavori Pubblici e dei Trasporti., 2008;
Circolare Ministeriale n. 617, 2009; Ministero delle Infrastrutture
e dei Trasporti., 2018).

Based on these considerations, the single macro-elements
of the church have been analyzed, and the primary results

are reported in Figure 13. After plotting Vi/Vu, limited to
the value of 10 for a better comprehension, the vulnerability
of the house of worship was clearly remarkable in the
transversal direction, since the North wall of the nave (L1)
shows the most significant values of Vi/Vu, major than 10.
L1 is characterized by small stiffness due to a height of
18m, without internal orthogonal walls and intermediate floors,
and a thickness of 2.55m. In the longitudinal direction, the
ratio of Vi/Vu shows that elements more problematic are the
façade (T1) and the presbytery (PB). Again, this result agrees
with the appeared damage during the Central Italy 2016–2017
seismic sequence (section Damage After Seismic Sequence of
2016).

Further analyses will have to be conducted for higher
knowledge levels (i.e., KL2 and KL3), which leads to greater
resistance and a different spread of the damage, but this
constitutes the topic of future works.

Frontiers in Built Environment | www.frontiersin.org 15 January 2019 | Volume 4 | Article 87177

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Giordano et al. Seismic Damage of Sant’Agostino’s Sanctuary

CONCLUSIONS

The paper approaches the seismic vulnerability of Sant’Agostino’s
Sanctuary in Offida (Ascoli Piceno), a small town in Central
Italy. The complex is placed in a highly seismic region; the
church portion has been considered unsafe after the earthquakes
occurred with epicenters in Accumoli and Norcia, respectively on
24th August and 30th October 2016, and is now closed.

The 3D non-linear solid numerical model (NM) described in
this paper gave the chance to investigate the seismic behavior
of the complex using sensitivity analysis performed by varying
control points and stiffness of the floors. First, the linear dynamic
behavior is analyzed confirming the high presence of local
modes slightly reduced by rigid floors introduced as a result of
consolidation. To gain a proper understanding of the seismic
demand, a linear dynamic analysis (obtained by natural and
Italian code spectra) was performed not only on the entire

complex but also on its main components and some macro-
elements identified within the building.

Subsequently, the seismic demand has been compared with
the seismic capacity, directly derived by pushover analyses,
providing a goodmatch with themost damaged parts andmacro-
elements of the complex after the seismic sequence of Central
Italy in 2016–2017. This confirms that the procedure defined in
Brandonisio et al. (2013) can offer an efficient tool to understand
the safety of a whole complex and not only of isolated churches,
also identifying themost vulnerable elements that are used as well
to design local and global retrofitting interventions.
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The seismic performance of existing non-conforming reinforced concrete (RC) buildings

is numerically investigated, taking into account the presence of clay brick masonry infill

walls. The effect of infill walls on the seismic response of RC frames is widely recognised

and has been a subject of numerous analytical and experimental investigations. In this

context, Static Pushover analyses of typical existing RC infilled frames have established

these structures’ inelastic characteristics, focusing on the significant contribution of

infill walls to their dynamic characteristics, overstrength, form irregularity and damage.

Furthermore, more comprehensive studies of inelastic static response considered the

typical variability among different generations of constructed buildings in Greece since

the 60s in the form, the seismic design and detailing practice and the structural materials,

with different masonry infill configurations and properties. In the present study, the results

from such Static Pushover analyses are extended with Incremental Dynamic Analysis

predictions using a large number of recorded base excitation from recent destructive

earthquakes in Greece and abroad. Evaluation of the time history predictions and

comparisons with the Static Pushover analysis findings corroborate that the presence

of regular arrangements of perimeter infill walls increase considerably the stiffness and

resistance to lateral loads of the infilled RC structures, while at the same time, reducing

their global ductility and deformability. Fully or partially infilled RC frames can perform well,

while frames with an open floor usually have the worst performance due to the formation

of an unintentional soft storey. The analyses further prove that lower strength masonry

provides the building with lower overstrength but higher ductility.

Keywords: non-conforming infilled RC buildings, unreinforced masonry infill walls, incremental dynamic analysis,

seismic assessment, nonlinear analysis

INTRODUCTION

Reinforced concrete frame structures constructed in Greece and other countries around the
Mediterranean up until the 1980s, comprise a significant portion of their entire building inventory;
these structures have been designed either without any seismic design considerations (primarily
before the 50s), or with past generations of seismic design codes. In Greece, according to recent
records, 78% of the RC buildings are designed and constructed before 1985, when there was the
first modification of the seismic code towards a relatively higher conformance to currently enforced
seismic standards. The first seismic design code in effect, RD59 (1959), was based on allowable stress
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design procedures, prescribed relatively low service level
base shear seismic coefficients, included inadequate detailing
requirements and had no provisions for ductile failure response,
such as weak beam vs. strong column, shear capacity design
and critical region confinement in columns and shear walls.
Moreover, the design method used was simplified and the quality
of the structural materials was low. All these parameters, together
with the loading history of the buildings (past earthquakes and/or
changes in occupancy loads) introduce significant uncertainties
in the expected seismic behaviour of those buildings.

Consequently, the assessment of the seismic performance of
these buildings is very important, both for social and economic
reasons. One common characteristic of these frames is that
they are typically infilled with unreinforced clay brick masonry
infill walls of different infill quality and configuration. They are
relatively thicker in the perimeter frames, while they may be
punctured (for openings) or discontinuous, depending on the
building use; being, therefore, in full deformation compatibility
with the RC frame, they contribute to its seismic response,
in a manner not controlled in the seismic design. It is
widely recognised, however, that the infill wall geometry and
characteristics significantly influence the seismic response of
infilled frames, as also observed in recent earthquakes and proven
by numerous experimental and analytical studies (Fardis and
Calvi, 1995; Dolšek and Fajfar, 2002; Repapis et al., 2006b).

During the past 60 years there have been extensive
experimental laboratory test studies of infilled frame structures
under gravity and lateral load, aiming at the identification of
the infill contribution to the frame stiffness and resistance
(Smith, 1966; Page et al., 1985; Prakash et al., 1993; Mehrabi
et al., 1996; Negro and Verzeletti, 1996; Buonopane and White,
1999; Fardis et al., 1999; Žarnić et al., 2001; Pinto et al.,
2002; Cavaleri et al., 2005; Santhi et al., 2005a; Hashemi and
Mosalam, 2006; Kakaletsis and Karayannis, 2008; Basha and
Kaushik, 2012; Stavridis et al., 2012; Stylianidis, 2012; Cavaleri
and Di Trapani, 2014; Chiou and Hwang, 2015; Lourenço et al.,
2016; Vintzileou et al., 2017; Palieraki et al., 2018). At the
same time, a large number of analytical investigations of the
behaviour of masonry infilled RC building structures have been
pursued, at different modelling scales and levels of complexity,
in order to predict the effect of masonry infills on infilled frame
response and failure (Smith and Carter, 1969; Dhanasekar and
Page, 1986; Fardis and Calvi, 1995; Crisafulli, 1997; Kappos
and Ellul, 2000; Chrysostomou et al., 2002; Dolšek and Fajfar,
2002, 2008a,b; Repapis et al., 2006b; Borzi et al., 2008; Bakas
et al., 2009; Asteris and Cotsovos, 2012; Chrysostomou and
Asteris, 2012; Ellul and D’Ayala, 2012; Haldar and Singh, 2012;
Lagaros, 2012; Vougioukas, 2012; Sarhosis et al., 2014; Zeris,
2014; Jeon et al., 2015; Bolea, 2016; Dumaru et al., 2016; Furtado
et al., 2016; Morfidis and Kostinakis, 2017). More recently,
with the advancement of testing and data acquisition hardware,
together with the evolution of fast and efficient algorithms
for data handling techniques, these two approaches above are
jointly pursued in full scale field testing vis-à-vis the dynamic
model identification (OMA) in order to establish the dynamic
characteristics of full scale structures under excitation (Rainieri,
2008; Yu et al., 2017).

The effects of infills may be either beneficiary or detrimental
to the seismic performance. In most cases, the presence of
unreinforced masonry infills has been proved to significantly
improve the seismic performance of those buildings and
increase their lateral strength and stiffness. However, the positive
contribution of infills may be reversed in cases of irregular
distribution of the infill walls (Santhi et al., 2005b; Karayannis
et al., 2011; Favvata et al., 2013). The experience gained
from recent earthquakes shows that some cases of irregular
distributions of infills in plan or elevation, which have not been
taken into account during design, may even induce collapse of
the entire building. Moreover, damage to these non-structural
elements usually represents a large portion of the earthquake
induced economic losses (Chiozzi and Miranda, 2017). Despite
this fact, in conventional structural design of the buildings, infills
are still usually treated as non-structural elements and are not
taken into account or taken into account indirectly in current
codes.

A number of factors are responsible for the neglect of infill
walls, related to the uncertainty and difficulty in simulating the
behaviour of infilled walls and an attempt to simplify calculations.
Main factors are the significant uncertainties related to the large
variety of infill walls and their dependence on local construction
practices, the incomplete knowledge of their material properties
and performance, the interaction between the surrounding frame
and the infill wall and the possible failure mechanisms. Moreover,
during the lifetime of a building, it is not rare that some heavy
infill walls may be removed or substituted with light partitions,
something that may totally change the nonlinear behaviour of
the structure. Finally, another factor for ignoring the infills in
order to simplify the analysis is the misleading assumption that,
since infill walls provide additional strength and stiffness, they
always influence positively and improve the performance of the
structure.

Therefore, in seismic areas, the practice of ignoring the infill
walls (apart from their weight contribution) is not always safe.
Infill walls significantly increase the stiffness and strength of the
frames, which could result to a possible change of the seismic
demand due to the significant reduction in the fundamental
period of the composite structural system, compared to the bare
frame (Smith, 1966; Paulay and Priestley, 1992; Asteris et al.,
2015, 2017). On the other hand, the contribution of infill walls
to the lateral stiffness of the frame is significantly reduced when
the structure is subjected to cyclic loading, like an earthquake,
and undergoes large nonlinear cycles due to the brittle damage
of infill walls (Vintzeleou and Tassios, 1989; Paulay and Priestley,
1992; Cavaleri et al., 2005; Asteris et al., 2011; Cavaleri and Di
Trapani, 2014), while, furthermore, changing the entire manner
that the seismic forces are taken and redistributed among the RC
elements (Zeris, 2014).

Modelling of the infill walls poses many uncertainties because
of the different materials involved and the many possible
failure modes that need to be evaluated, with a high degree
of uncertainty. In the literature several different modelling
techniques have been proposed and tested for the simulation
of the infills (Crisafulli, 1997; Chrysostomou et al., 2002; such
as among others, Asteris et al., 2011, 2013; Chrysostomou
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and Asteris, 2012; Sarhosis et al., 2014; Zeris, 2014; Furtado
et al., 2016). Modelling follows an increasing level of detail
and complexity, from micro to meso and macro-models. Micro
and meso-scale models are based on small region finite element
modelling or discrete element modelling of the infill panel brick
and mortar, and are able to capture the behaviour of the infill
frame with higher accuracy accounting the local infill-frame
interaction (Lemos, 2007; Haldar and Singh, 2012; Sarhosis et al.,
2012; Asteris et al., 2013; Zeris, 2014).

Lourenco (1996) and Attard et al. (2007) modelled masonry
using continuum and interface line elements to simulate the
possible fracture of bricks and mortar joints. Stavridis and Shing
(2010) proposed a modelling technique combining smeared
and discrete crack approaches to capture the different failure
modes, including flexural and shear failure of concrete and tensile
and shear fracture of mortar joints, using triangular smeared-
crack elements connected with zero-thickness cohesive interface
elements. Sarhosis et al. (2012) and Sarhosis and Lemos (2018)
modelled the bricks as distinct blocks while the mortar joints
were modelled as zero thickness interfaces. For the establishment
of both in plane and out-of-plane effects, Anić et al. (2017)
developed a three-dimensional computational model based on
the finite element method (FEM) able to predict the in-plane and
out-of-plane behaviour of masonry infilled RC frames containing
openings.

More recently, the discrete element method (DEM) or the
combined finite-discrete element method (DFEM) approach
is being pursued, since they can address problems involving
discontinuous kinematic fields, such as fracture and dislocation,
sliding, large displacements, detachment of the elements, or the
formation of new contacts (Yuen and Kuang, 2015; Hazay and
Munjiza, 2016; Mohebkhah and Sarhosis, 2016). Smoljanovic
et al. (2017) analysed confined masonry structures using the
DFEM method, using a model that simulated initiation and
propagation of cracks: the model, in addition to modelling
masonry and confining concrete members using discrete
elements, adopted zero thickness interface elements, simulating
the behaviour of mortar, and through contact, cracking and
masonry confinement by the RC members.

However, these models are complex, time consuming, require
high computational effort and are difficult to apply for practical
problems of real structures, especially in cyclic response analysis.
On the other hand, macro-models are simplified models of
the entire infill panels, which require less computational effort
and have sufficient accuracy for entire building performance
evaluation under earthquake. These models simulate the infill
walls with diagonal struts acting only in compression, with a
variety of macro models having been proposed based on different
empirical and phenomenological formulations, which use single
strut, double strut or three struts in each diagonal. Asteris et al.
(2011) presented a review of the differentmacromodels proposed
in the literature.

Magenes and Pampanin (2004) performed Static Pushover
(SPO) and time history analyses on frame structures designed
for gravity loads and studied the influence of the infills on the
seismic performance and their interaction with the joint damage
mechanism. They showed that the presence of infills reduces

the interstorey drift demand, while increasing the maximum
floor accelerations. Moreover, the column interstorey shear
contribution is consistently lower in the infilled frames, in spite
of the higher interstorey shear demand and the formation of
a soft-storey mechanism is delayed. However, when the infills
are damaged, thereby causing a sudden reduction of the storey
stiffness, a soft storey mechanism can be formed, not necessarily
at the ground storey due to the interaction with joint damage.
Kakaletsis and Karayannis (2008) tested seven 1/3 scaled, single
storey, single bay frame specimens under cyclic horizontal
loading with two qualities of infills, in order to investigate their
influence; they showed that infills with openings can significantly
improve the performance of RC frames, while specimens with
strong infills exhibited better performance than those with weak
infills.

Karayannis et al. (2011) investigated the seismic behaviour
of fully and open ground storey infilled frames with beam–
column joint degradation effects under nonlinear static and time
history analyses, demonstrating that neglecting the possible local
damage of the exterior joints may lead to erroneous conclusions
and unsafe design. Furthermore, the influence of exterior joints
degradation was shown to be significant for the overall behaviour
of open ground frames. Basha and Kaushik (2012) tested eight
half-scale specimens of masonry infilled RC frames designed in
accordance with current codes and showed that the shear force of
the RC columns was increased due to the infills.

Chrysostomou and Asteris (2012) proposed analytical
expressions for quantifying the in-plane stiffness, strength and
deformation capacity of infills, as well as simplified methods
for predicting the in-plane failure mode of mainly solid panels.
They further performed a parametric study to compare these
methods against experimental results. Sanij and Alaghebandiyan
(2012) performed SPO analysis in a three-storey infilled RC
frame with three different infill arrangements, comparing three
macro models for the simulation of masonry and showing that
the three strut model obtained a smaller initial stiffness and
increased axial forces in columns relative to the single diagonal
strut model. Burton and Deierlein (2014) performed Incremental
Dynamic Analysis to nonductile infilled RC frames using dual
compression struts to capture the column-infill interaction that
may cause shear failure of the columns. Their results indicated
that it is critical to include the infill strut-column interaction and
the shear degradation of columns for the accurate prediction of
the collapse capacity of nonductile infill frames, otherwise the
predictions are not conservative.

Zeris (2014) demonstrated the various failure types of
infilled RC frames during earthquakes and reviewed the
modelling conventions of infilled RC frames. He subsequently
investigated their seismic response comparing nonlinear analyses
using meso and macro infill models. Morfidis and Kostinakis
(2017) performed nonlinear time history analysis on fifty four
RC buildings with different heights, structural systems and
distribution of masonry infills, for 80 bidirectional seismic
sequences at different angles of incidence. They concluded that
the influence of the successive earthquake phenomenon on
the structural damage was higher for the infilled buildings,
compared to the bare structures, while for buildings with
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masonry infills, the effect of the orientation of the seismic
motion was significant. Recently, Choudhury and Kaushik (2018)
investigated the seismic response sensitivity to the uncertainties
in different input parameters and concluded that for bare or open
ground storey frames, the concrete compressive strength and
column dimensions are the most important parameters affecting
the response. On the other hand, for uniform infilled frames the
most important parameters are the infill properties, such as the
diagonal strut width and the masonry strength.

Despite the extensive analytical and experimental studies
on the performance of infilled RC buildings, there is still
not enough knowledge of the performance under earthquake
excitation of typically encountered existing infill RC buildings,
which have been designed and built according to past generation
of codes with various arrangements of the infills and of the
variability of their nonlinear response under actually recorded
seismic base input. The aim of the present study is the
assessment of the seismic performance of such non-conforming
infilled RC buildings, designed according to past generations
of structural design codes and construction practices, using
nonlinear Incremental Dynamic Analyses (IDA) procedures
(Vamvatsikos and Cornell, 2004). The influence of infill walls in
the seismic performance of these buildings is quantified and the
reliability of previous static pushover (SPO) predictions on these
buildings designs, previously reported in Repapis et al. (2006b)
is investigated. For this purpose, a set of recorded earthquake
accelerograms is selected and a set of non-conforming bare
and infilled RC frames is analysed in IDA, and their seismic
performance is assessed, using the same limit state criteria (LC)
also used previously under SPO by Repapis et al. (2006a,b), for
comparison. In this way, these two assessment methodologies are
compared while, furthermore, the presence of the infills in these
different building types is established, based on actual earthquake
excitation response.

Both global (deformation ductility, behaviour factor,
overstrength, collapse mechanism formation) and local (member
or infill) indices, quantifying damage of the building, are
defined and are being monitored, while alternative expected
failure modes, are considered in this study. Consequently,
the research contribution of the present work is, to provide
additional information on the vulnerability under seismic
excitation of such non-conforming infilled RC structures, in
order to develop possible rehabilitation and/or strengthening
schemes for these structures. Furthermore, the reliability of time
history predictions using IDA to establish the dependence of the
monitored LCs on cyclic history and the excitation input content
is demonstrated, as compared with those from inelastic static
analysis predictions, which are unable to account for these.

MASONRY INFILLED RC BUILDING
FORMS

All buildings considered in the present study are cast-in-situ
RC frames with column supported beams, which are cast
monolithically with the slabs. Out of a larger set of structural
forms considered and analysed using SPO procedures by Repapis

et al. (2006b), 13 bare and infilled RC buildings are selected in
the present study in order to investigate the influence of infill
walls in the seismic performance of RC buildings, using the
IDA method. Three bare frames, regular in plan and elevation,
comprising one typical building of the 60s (denoted K60A59),
one of the 70s (denoted K70A59) and one of the 90s (denoted
K60AEC8) are selected. Moreover, infilled frames of the above
bare frame configurations are also examined. Letter “K” denotes
a bare frame structure, while letter “T” denotes an infilled frame.
“60” or “70” denotes the period of construction (frame geometry).
“A” denotes a regular frame, out of a larger set of structural forms
with irregularities considered in other studies (Repapis et al.,
2006b; Repapis and Zeris, 2018; Zeris and Repapis, 2018) and
“59” or “EC8” denotes the earthquake resistant design code in
effect during construction. Both buildings of the 60 and 70s were
designed according to past generation of codes (RD59, 1959),
while building of the 90s according to modern codes (EC8, 2004).

Frame Characteristics
All the buildings considered consist of a plan layout four by three
bays wide and they are analysed as plane frames, with four bays
in the direction of the earthquake. The typical building of the 60s
is five storeys high. The storey height is 3.00m and the building
has regular 3.50m bay sizes in the two orthogonal directions. In
line with the evolution of building shapes, the building of the 70s
is seven storeys high, again with a storey height of 3.00m but bay
sizes equal to 6.00m in the two orthogonal directions. Finally,
the building of the 90s has the same geometry as the building of
the 60s for comparison reasons. The layouts of the buildings are
shown in Figure 1.

Influence of Masonry Infill Walls
In order to examine the influence of the layout of the perimeter
frame masonry infill panels to the seismic response of the
structure, fully and partially unreinforced masonry frame bays
are also considered herein, assumed symmetric in plan in the
response direction considered. Out of the different topological
possibilities previously considered (Repapis et al., 2006b), three
different arrangements of unreinforced masonry infilled frames
are studied, denoted as T1–T3, as shown in Figure 2, since
they represent the cases most commonly encountered in RC
construction:

T1: Perimeter frames fully infilled over the entire height
(Figure 2A).
T2: Perimeter frames infilled but with completely open ground
storey (called pilotis) (Figure 2B).
T3: Perimeter frames partially infilled, with a vertically
continuous window opening (Figure 2C).

The perimeter infill panels are 25 cm thick irrespective of
the building generation, in accordance with the conventional
practice of using exterior double leaf infill panels constructed of
clay bricks with longitudinal holes and plaster. Single leaf interior
partition walls (also denoted as moveable partitions), normally
0.10m thick, are only included in the mass of the building and
are not considered to contribute to the system that resists the
earthquake forces.
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FIGURE 1 | Selected building forms of the 60 and 70s.

FIGURE 2 | Distribution of masonry infilled walls. (A) T1, (B) T2, (C) T3.

Design Characteristics
The buildings of the 60 and 70s were designed in accordance
with the requirements of the first Greek Earthquake Resistant
Design Code whichwas established in 1959 (RD59, 1959) andwas
based on the allowable stress design methodology. Loads were
unfactored, strict requirements for detailing of the reinforcement
were not specified and structural elements of the buildings
of that period were characterized by widely spaced transverse
reinforcement and, therefore, very little confinement. Moreover,
no capacity design provisions were specified. Structural analysis
methods for the buildings made use of simplifying assumptions,
e.g., the beams and columns of the interior frames were designed
for vertical loads and only the members of the exterior frames
were designed for frame actions under both seismic and vertical
loads, with the corner columns being, in addition, designed for
biaxial response of the floor plans due to their mass and stiffness
eccentricity.

For the definition of the seismic load a seismicity classification
system that adopted three seismic zones was used, with

the corresponding base shear coefficients being set equal
to 4, 6, and 8% of the vertical loads (namely, dead and
live loads without any reduction factors), for buildings on
hard ground. The buildings of the 60 and 70s examined
in this study were designed for a seismic coefficient of 4%,
corresponding to seismicity Zone I. Furthermore, when seismic
loading demands were verified in the design process, the
allowable stresses specified in the code for vertical loads
were increased to 120% of these values, as also considered
herein.

Building of the 90s had the same geometry and loads as the
building of the 60s (K60A59) and was designed according to EC8
(2004), as the conforming frame benchmark case. This structure
was again considered to be located in the same seismicity area
as the other two, characterised by an effective peak ground
acceleration of 0.16 g (EC8, 2004). The commercial software
package Fespa (Logismiki, 2013) capable of designing following
the past and current seismic code was used for the design of all
the buildings.
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The design loads adopted remain the same for all buildings
from the 60s through the 90s, and included: the dead loads,
namely the structural self-weight and an additional uniformly
distributed load equal to 1.50 kN/m2 for floorings and the live
load, which is equal to 2.00 kN/m2, similar to the values specified
in EC1 (2002). The interior masonry moveable partitions are
taken into account as an additional uniform load of 1.00 kN/m2

over the plan. The weight of the 25 cm thick perimeter infills
(double wythe construction) was expressed as a uniform dead
load of 3.60 kN per square meter of wall façade, imposed on the
outer frame beams only.

The 60s building had a uniform slab thickness of 12 cm, beam
dimensions of 20 cm by 50 and 35cm square columns at the
first (ground) storey, 30 cm square columns at the second storey
and 25 cm square columns from the third storey up. Building
of the 70s, due to its wider spans, had a uniform slab thickness
of 16 cm. Column dimensions were: 60 cm square (interior) and
90/25 cm2 rectangular (exterior), at the first two storeys, being
subsequently reduced by 10 cm (interior) and 20 cm (exterior)
for every two storeys, respectively, up to the seventh storey,
where the columns were 30 cm square (interior) and 35/25 cm2

rectangular (exterior). Similarly, the dimensions of the beams
were 20/60 cm2 along the interior frames and 25/50 cm2 along
the perimeter frames. Finally, the building of the 90s has similar
geometry with the building of the 60s for comparison reasons.
Slab thickness is again 12 cm and beam dimensions remain 20 cm
by 50 cm, but with increased reinforcement. Column dimensions
increase to 40 cm square at the three lower storeys, 35 cm square
at the next floor and 30 cm square at the top.

Materials of Construction
The materials of construction for building of the 60s were:
(i) DIN B160 concrete having an average (cube) compressive
strength of 16MPa [this material would be classified as C10/12, in
accordance with EC2 (2004)]; (ii) smooth mild steel reinforcing
bars, grade DIN StI (grade S220). The allowable stress in
compression of the concrete, for design under bending with axial
load ranged between 6.0 and 8.4 MPa, with higher larger values
specified for columns and beams, as opposed to lower allowable

FIGURE 3 | Hysteretic behaviour of infill walls.

stresses for the slabs. Accordingly, the allowable stress in tension
of the reinforcement was 140 MPa. For building of the 70s, the
materials of construction were: (i) DIN B225 having an average
(cube) compressive strength of 22.5 MPa [this would be classified
as C12/16 per EC2 (2004)]; and (ii) ribbed high strength steel
reinforcing bars, grade DIN StIII (grade S400). For this concrete
grade, the allowable stress in compression of the concrete (for
bending and axial load designs) ranged between 8.0 and 10.8MPa
(for columns and beams, and slabs, respectively). The allowable
stress in tension of the reinforcement was, in this case, 220 MPa.
Building of the 90s had materials similar to the one used in
building of the 60s for comparison reasons.

ANALYTICAL MODELLING

Nonlinear static and dynamic analyses were performed using the
computer program Drain-2DX by Prakash et al. (1993) for the
static and dynamic inelastic analysis of two-dimensional systems.
The code was extended with additional finite element modelling
capability in order to account for the infills. Furthermore,
DrainExplorer (Repapis, 2002), a post-processing program, was
developed, for processing the results of all the frame analyses.
The selected buildings were regular in-plan and the frames were
modelled as plane frames with rigid diaphragms in each floor.
The structural mass in all cases was assumed to be lumped at
the nodes and was considered, during the time history analysis,
to be equal to the inertia mass due to the dead loads plus
a portion only of the live load, equal to 30%. For dynamic
analysis, mass proportional damping was used, with the damping
coefficient determined assuming 5% critical damping in the first
fundamental mode response of the cracked structure.

Structural Members Modelling
All the beams and columns of the structures were modelled
using a two component concentrated plasticity line element,
having bilinear hardening flexural characteristics at the end
hinges. Beams were modelled as T-section beams. For the
estimation of beam flexural capacities, effective slab widths equal
to 1.0 and 0.5m were assumed for internal and external frame
beams respectively, for the buildings with 3.5m bay length.
For the buildings with 6.0m bay length, these values increased
to 1.30 and 0.65m, respectively. For the estimation of the
flexural characteristics of the beams in negative bending, the
reinforcement in the effective width of the slab was included.

The nonlinear moment curvature characteristics were
developed for all the end critical regions of beams and columns,
using average material properties. Furthermore, in the columns,
the dependence of these with axial load was considered.
According to standard practice of construction at the 60s
and 70s, top steel at the critical end sections of the beams
included half plus one bent up bars from the two neighbouring
midspan sections plus any top additional steel. Moreover, the
reinforcement within the slab effective width was also taken into
account. The bottom steel at the ends included the remaining
unbent midsection bars anchored within the joint.

The average concrete strength was taken to be equal to 16
MPa for concrete grade B160, and 22.5 MPa, for concrete grade
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TABLE 1 | SPO analyses results for uniform and triangular distribution of lateral loads.

Building Prof fm [MPa] T1 [sec] Vmax [KN] Ω µ q δu [cm] δN2 [cm] LC

K60A59 unif. – 0.84 1012.4 1.86 1.85 2.57 6.0 6.5 θpl

tr. – 876.6 1.61 1.63 2.03 5.3 7.3 θpl

T160A59 unif. 2.5 0.44 2485.7 4.57 1.83 3.37 4.5 2.9 θpl

tr. 2.5 2159 3.97 1.63 2.87 4.1 3.4 θpl

T260A59 unif. 2.5 0.51 1349 2.48 1.72 2.35 2.5 3.5 θpl

tr. 2.5 1332 2.45 1.76 2.38 3.0 3.9 θpl

T360A59 unif. 2.5 0.52 1824 3.36 1.76 2.85 4.2 3.7 θpl

tr. 2.5 1616 2.97 1.57 2.42 3.9 4.2 θpl

T160A59-05 unif. 0.5 0.65 1367 2.51 2.03 3.07 5.7 5 θpl

tr. 0.5 1243 2.29 2.04 2.91 6.3 5.8 θpl

T260A59-05 unif. 0.5 0.67 1166 2.14 1.78 2.48 4.4 5.2 θpl

tr. 0.5 1105 2.03 1.91 2.56 5.5 5.9 θpl

T360A59-05 unif. 0.5 0.69 1225 2.25 1.89 2.75 5.3 5.4 θpl

tr. 0.5 1132 2.08 2.06 2.84 6.5 6.1 θpl

K70A59 unif. – 1.38 2772 1.47 1.25 1.44 7.1 12.4 θpl

tr. – 2436 1.30 1.40 1.55 8.9 14.7 θpl

T170A59 unif. 2.5 0.72 4281 2.27 1.28 1.84 3.5 6.3 θpl

tr. 2.5 4109 2.19 1.35 1.92 4.5 7.6 θpl

K60AEC8 unif. – 0.63 1807 1.37 5.83 4.80 19.4 4.6 dr

tr. – 1608 1.22 7.63 5.44 27.2 5.2 dr

T160AEC8 unif. 2.5 0.40 3495 2.57 2.04 2.70 5.7 2.1 Infill

tr. 2.5 3284 2.41 2.14 2.71 6.7 2.6 Infill

T260AEC8 unif. 2.5 0.45 2360 1.74 2.75 2.72 6.0 2.6 θpl

tr. 2.5 2340 1.72 2.61 2.62 6.5 3.1 θpl

T360AEC8 unif. 2.5 0.45 2775 2.04 2.01 2.38 5.5 2.7 Infill

tr. 2.5 2617 1.92 2.1 2.38 6.4 3.2 Infill

B225, respectively. For the reinforcing steel, the mean yield
stress was assumed to be 310 MPa and 420 MPa for StI and
StIII, respectively, and the average ultimate strength in tension
was taken as 430 MPa and 630 MPa, respectively, with these
values being measured from tests on smooth steel bars. In all
cases, trilinear behaviour for the reinforcement and different
constitutive models for the confined concrete core and the cover
concrete were considered, in separate section analyses, performed
for each member critical region prior to developing the inelastic
building models. Beam-column joints were assumed to be rigid.

Infill Walls Modelling
The perimeter infill walls were modelled with equivalent
pin-jointed diagonal truss elements (struts) resisting only
compressive loads, with out-of-plane effects ignored. An unequal
compression–tension truss finite element was used to model the
infills, with a trilinear behaviour that is able to model softening
with a residual strength. The trilinear envelope comprised of
an initial elastic portion, a post-cracking region with positive
stiffness and a softening portion, beyond the point of peak axial
resistance, with negative stiffness, as shown in Figure 3.

The global inelastic characteristics and failure pattern of
infilling masonry exhibit large uncertainty and vary significantly
with the quality of construction. For the building of the 60s
(K60A59) two types of masonry were selected: (i) a strong
and stiff good construction quality masonry with a compressive

strength fm equal to 2.5 MPa and (ii) a weak and soft poor
construction masonry with an infill compressive strength fm
equal to 0.5 MPa (buildings denoted as “−05” herein). For the
buildings of the 70 and 90s, only good workmanship quality
masonry with a compressive strength fm equal to 2.5 MPa was
selected. The thickness of the equivalent diagonal struts is the
same as the thickness of the infill panel.Mainstone’s approachwas
used to determine both the initial stiffness K in = K1 in Figure 3

and the effective width Wef of the diagonal strut (Mainstone,
1971):

Wef = 0.175 (λh H)−0.4
√

H2 + L2 (1)

with,

λh =
4

√

Ew tw sin(2θ)

4 Ec Ic Hw
(2)

where Ew and Ec are the uncracked secant moduli of elasticity
of the infill wall and the RC frame members, respectively, θ

= arctan(Hw/Lw) is the diagonal strut’s inclination, tw is the
thickness of the infill wall, Ic is the moment of inertia of the
frame columns, whereasHw andH are the height of the infill wall
(clear from slab to beam soffit) and the storey height, respectively,
while Lw and L are the clear length of the infill from column to
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column and the bay width, respectively. Following a proposal by
Paulay and Priestley (1992) it was assumed that Ew = 750 fm for
clay bricks. The initial lateral stiffnessK1, according toMainstone
(1971), is equal to

K1 =
Ew Wef tw
√
H2 + L2

cos2θ (3)

The simplified expression by Žarnić and Gostić (1997) as given
bellow, extended from an initial suggestion by Dolšek and Fajfar
(2002) , was used for the evaluation of the peak resistance of the
infills Fmax in Figure 3. Fmax was assumed to occur at an axial
deformation of the strut u2 equal to 0.5% of the storey height H:

Fmax = 0.818
Lw tw ftp

CI

(

1+

√

C2
I + 1

)

(4)

and

CI = 1.925
Lw

Hw
(5)

where f tp is the cracking strength of the infill, obtained from
a diagonal compression test, and θ , Lw and Hw as previously
defined. Compressive cracking forces were assumed to be equal
to approximately half of the corresponding ultimate resistance, F1
= Fmax/2, following (Dolšek and Fajfar, 2002) , while the tensile
strength of the infill (Ft , Figure 3) was assumed to be zero. The
stiffness of the softening branch was taken as 10% of the initial
stiffness K1 while the residual strength F4 was set equal to 15% of
Fmax, primarily for numerical stability.

In the results reported herein, two different levels of infill
resistance Fmax are considered only for building K60A59. For
all the other case study buildings, infilled frames with relatively
good quality masonry were considered only, representative of
the construction pattern, the quality of the materials and the
workmanship of that period.

SEISMIC ASSESSMENT USING IDA
PROCEDURES

The seismic assessment of the non-conforming infilled RC
buildings considered herein has been previously investigated
using an SPO procedure analysis methodology described in
Repapis et al. (2006a). The results of an extensive study for the
seismic assessment of a wide range of regular and irregular, bare
and infilled, existing RC buildings of the 60 till the 90s, using SPO,
were presented in Repapis et al. (2006b). Inelastic SPO analyses
were performed with both uniform and inverted triangular load
profiles. Both global and local limiting performance criteria
(LC) were considered (Repapis et al., 2006a,b) for performance
assessment and nominal failure of the building was defined at
the minimum deformation over all monitored criteria. From
these analyses, the overstrength, the global ductility capacity and
behaviour factor were evaluated and the failure mechanism and
the critical LC were identified. Moreover, upon determination of
the buildings’ capacity curve, their target displacement demand

was determined in accordance with theN2methodology by Fajfar
(1999) which is adopted by EC8-3 (2005), and was compared with
the peak lateral deformation of the building.

In the present study, the seismic performance obtained using
the IDA procedure is compared with the performance obtained
from SPO procedures above, considering similar LC. For this
purpose, 14 recorded base accelerograms were selected and used
and, inelastic time history analyses were executed for each base
excitation record and for increasing values of the recorded
peak ground acceleration (PGA), until yield was exceeded and
any failure LC considered was imminently reached, signifying
nominal collapse. For each time history analysis, the maximum
base shear and the corresponding spectral acceleration or PGA
(the Intensity) are plotted against the maximum displacement or
interstorey drift (the damage index), in order to establish the IDA
curve for global response. Moreover, for meaningful comparison
with the vulnerability predictions obtained with SPO analysis at
the target point for these buildings, the time history response
is also computed under all base excitations also being scaled to
the design response spectral intensity, currently in effect for each
building under the currently enforced regulations (EC8, 2004).
For selected base inputs (e.g., record KAL18601Long), the as

TABLE 2 | Ground motion characteristics of the fourteen acceleration records

used in IDA.

Record Location

and date

PGA PGV VSI AI td

g cm/sec cm cm/sec sec

A299-1Long Athens

1999

0.11 5.1 18.4 8.6 10.2

A299-1Tran Athens

1999

0.16 7.1 21.1 14.5 8.4

Aigio Long Aigio

1995

0.49 40.2 113.7 97.2 4.4

H-E06230 Imperial

1979

0.44 109.8 178.7 175.4 11.2

I-ELC-180 Imperial

1940

0.31 29.7 132.9 170.4 24.6

IZT090 Kocaeli

1999

0.22 29.8 112.3 81.3 16.6

KAL18601 Long Kalamata

1986

0.23 30.9 106.9 54.2 6.1

KAL18601 Tran Kalamata

1986

0.27 24.8 102.3 72.6 7.5

KOBE Kobe

1995

0.82 81.4 417.4 839.0 10.8

KORINTHOS Korinth

1981

0.29 23.5 123.6 85.3 16.4

KOZ19501 Long Kozani

1995

0.22 9.2 38.8 26.4 8.0

KOZ19501 Tran Kozani

1995

0.14 6.6 24.7 19.6 10.6

LOMA PRIETA Loma Prieta

1989

0.64 55.1 179.6 323.8 10.2

THESSALONIKI Thessaloniki

1978

0.14 11.4 51.8 17.2 8.7
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recorded unscaled PGA intensity is also considered, since it was
close to this design level intensity.

The quantification of the structural performance of the
buildings is made at both global and local levels. Some
response parameters of interest are the minimum elastic
response spectrum acceleration intensity inducing first yield in
any structural member, (Sa)ely , the minimum elastic response
spectrum acceleration intensity inducing conventional collapse,

(Sa)elc and the corresponding maximum absolute values of the
roof deformation δy and δu, respectively. The evolution of peak
local damage and demand indices, with record intensity, is also
monitored.

The available behaviour factor q and global ductility capacity
µ for the buildings are evaluated using IDA, in a similar approach
as in SPO, assuming that the spectral amplification remains
constant with increasing intensity. The behaviour factor q is
established as the ratio of the PGAs of the collapse and onset
of yield earthquakes (Salvitti and Elnashai, 1996), while global
ductility capacity µ as the ratio of the corresponding roof drifts,
as depicted in the following Equation 6:

q =
(Sa)elc

(Sa)ely
, µ =

δu

δy
(6)

The LC at both the local and global levels, which were adopted
in SPO analyses, for the estimation of conventional collapse, as
described in detail in Repapis et al. (2006a), are also adopted
herein for the IDA study. Consequently, during each inelastic
time history analysis, the following checks were performed
during step by step time history analysis:

i) Exceedance of the plastic rotation capacity of the columns at
the critical regions, equal to the section’s ultimate curvature
under the axial load of the member (for columns) at
the current time step, times the plastic hinge length (LC
designated as θpl). The length of the plastic hinge was taken
equal to (a) half the section effective depth or, (b) following
a more refined empirical expression proposed by Paulay and
Priestley (1992), whichever governed,

ii) exceedance of the member shear strength capacity under
current axial load (LC designated as V), according to current
design Code,

iii) local capacity of the masonry infill panels, assumed to be
exceeded when the axial load of the equivalent diagonal struts
representing the infill reaches its maximum strength (LC
designated as Infill) and

iv) exceedance of the maximum interstorey drift (LC designated
as dr). A limit of 1.25% was assumed for buildings of the 60
and 70s, designed for past generation of codes and 2.5% for
buildings of the 90s designed according to modern codes.

Beam-column joint shear capacity was only checked in SPO
analysis. It was shown that this limit criterion was not critical
because other failure modes preceded.

For the automatic performance of the required time history
analysis, for increasing peak ground acceleration intensity and
for the evaluation of all LC in a step by step manner, the
computer code DrainExplorer (Repapis, 2002) was used. The
analysis input parameters are the geometry of the building and
the structural materials, reinforcement detailing of all critical
regions of the members, base input excitation record and its
elastic response spectrum characteristics. The critical region
cross-section characteristics are calculated for all members. The
ground motion record is scaled automatically and Drain-2DX
(Prakash et al., 1993) is called by DrainExplorer to perform
the corresponding time history analysis. For each dynamic
analysis at a given PGA, DrainExplorer post processes the
results to check all LC at every step of the analysis, in order
to identify the critical excitation for all LC. Moreover, the
plastic hinge distribution, the deformed shape, the vertical
interstorey drift distribution, the energy absorption among
the beams, columns, and infills with height, the current state
of each member, the local plastic rotations and ductility
demands, the capacity check of the joints and the shear
capacity ratios for each member are some of the parameters
monitored in every step of the analysis and for each base input
intensity.

The procedure is repeated for another scale of the ground
motion, until all LC are exceeded and yield and conventional

FIGURE 4 | Inelastic pushover (SPO) characteristics of bare and infilled frame structures K60A59 and K60AEC8.
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FIGURE 5 | Earthquake record time histories used in IDA analysis.

failure are identified. The upper bound of the intensity of
the base excitation is reached when the predefined limiting
roof displacement is exceeded. Next, additional time history

analyses are performed in an iterative manner for scaled values
of the PGA around the values of yield and collapse PGA, in
order to evaluate with increased accuracy (Sa)ely and (Sa)elc and,
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FIGURE 6 | Elastic response spectra of the as recorded accelerograms and predominant periods of the case study buildings.

therefore, the available behaviour factor q and the ductility
capacity µ of the building. Finally, the entire IDA curve is
traced.

NONLINEAR ANALYSES RESULTS

The inelastic analysis results following IDA for the full set
of infilled plane frames, including, for comparison, their bare
frame counterparts, using the set of base excitations in Table 2,
are presented and discussed herein. For comparison, SPO
analyses, previously reported on these frames (Repapis et al.,
2006b), are also briefly described. The purpose of the analyses
is 2-fold, namely: (i) on one hand, to investigate the seismic
performance of these infilled frames, and, (ii) on the other
hand, to establish the reliability of performance prediction of
SPO methods to assess these structures’ seismic performance
under actual recorded excitations, compatible with the design
assumptions currently enforced.

The graphic results of the inelastic analyses are given in
Figure 4 for the SPO studies and in Figures 7–12 for the IDAs.
All SPO derived key performance indices are also given in
tabular form in Table 1 and include, for each structural case
study: (a) the assumed compressive strength of the masonry
infill walls fm strength (for the infilled frames), (b) the plane
frame fundamental period T1, obtained frommodal analysis (not
the effective stiffness), (c) the maximum base shear Vmax, the
corresponding overstrength Ω and the supplied behaviour factor
of the building q of the equivalent bilinearized single degree of
freedom (SDOF) system following the methodology proposed in
Repapis et al. (2006a). Furthermore, in terms of the kinematic
parameters, are given: (i) the analytically obtained peak global
roof drift prediction at failure, δu, (ii) the target point demand δt ,
determined according to the N2 methodology by Fajfar (1999),
and (iii) the corresponding ductility supply µ of the SDOF
system. Finally, the controlling LC on which δu was established

is also reported, in order to separate brittle from ductile nominal
failure forms in the response.

Response Prediction Based on SPO
Analyses
Prior to examining the IDA response, the SPO predictions are
briefly initially examined, while, further on, the reliability of SPO
to safeguard against actual earthquake response is considered by
comparing SPO with IDA results. The capacity curves following
inelastic plane frame SPO analyses under a triangular distribution
of the lateral loads are given in Figure 4 for the bare and infilled
frame configurations, for all frames considered. In all cases, the
first initiation of yield δy, the target point prediction using the
N2 method (Fajfar, 1999) and the roof deformation levels for
the different LCs are also depicted, with the minimum of which
establishing the roof deformation at nominal failure δu for each
frame (see also Table 1). Pushover curves for the bare and infilled
frame of the 70s is out of scale and is not shown in Figure 4,
however, they can be found in Repapis et al. (2006b) and Zeris
and Repapis (2018). The results are tabulated in Table 1 for
both uniform and triangular distribution of the lateral loads. For
a more detailed discussion of the use of these curves for the
evaluation of the design level at allowable stress and ultimate, the
overstrength and the supplied behaviour factor of each building,
(see Repapis et al., 2006a,b).

Considering the SPO capacity curves it is observed that the
governing LC for all bare and infilled frames is the exceedance of
the plastic rotation capacity in the critical regions (θpl), with the
exception of the conforming fully and partially infilled buildings
T160AEC8 and T360EC8, for which infill failure is the critical
LC, and for the conforming bare frame K60AEC8, for which
interstorey drift limit of 2.5% is critically exceeded first, prior to
all other LCs. Apart from these three buildings, infill or shear
failure and interstorey drift always occur at roof deformations
higher than the onset of the plastic rotation capacity LC. The
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FIGURE 7 | IDA curves for the bare and infill frames considered: median, 16 and 84% fractiles for all 14 records considered.

inclusion of the infills results in a considerable increase in the
initial stiffness, while also, the maximum displacement at failure
of the infilled structures is decreased compared to the bare

frames. Due to the interaction between the RC frame and the
infills the shear strength of columns is surpassed earlier than the
bare frame structures, with this LC, however, not being critical,
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FIGURE 8 | Behaviour factor q, ductility µ and top displacement at failure evaluated from SPO and IDA analyses. (Note that building K60AEC8 results are out of scale).

since it follows the aforementioned LC of θpl. Regarding the
performance of the structure, it is observed that the target point
demand following the N2 method exceeds nominal failure in
all non conforming frame cases, with the exception of the fully
or partially infilled frames, be it with a good or a low quality
infill material, whose nominal failure takes place after the target
demand. Expectedly, the conforming EC8 designs are by far
performing the best whether infilled or bare, and have ample
reserves of deformation beyond the target demand.

Response Prediction Based on IDA
The seismic performance predictions using SPO analyses, above,
are compared to the results of inelastic dynamic analyses using
the IDA methodology of Vamvatsikos and Cornell (2004). To
this purpose, the subject buildings were analysed in the time
domain using 14 actually recorded time history base excitations,
recorded during recent earthquakes in Greece and abroad. The
time history traces (as recorded) for these excitations are depicted
in Figure 5. In Figure 6, the linear elastic acceleration response

spectra of the record set for 5% damping, are compared to the
smoothed Elastic Design Response Spectrum (EDRS) prescribed
in EC8 (2004) for seismicity zone I (PGA equal to 0.16 g, in the
Greek National Annex of EC8), to which these building designs
correspond in currently enforced seismic regulations. In the same
plot are also depicted the linear elastic first mode periods of the
subject buildings (denoted T1, in Table 1).

For each recorded excitation, the base time history is obtained
for subsequent scaling in IDA, compatible with the design seismic
intensity currently enforced in the seismicity zone in which each
structure is located; this scaled record excitation is obtained from
the actual recording scaled so as to match the Velocity Spectrum
Intensity (VSI) of the zone I EDRS of EC8 (2004). The as recorded
record characteristics, namely: (i) PGA, (ii) the peak ground
velocity (PGV), (iii) the record duration td, defined as the time
elapsed between the times at the 3 and 97% limits of the Arias
Intensity, (iv) the Arias Intensity (AI), and (v) the parameter VSI
are also given in Table 2, for comparison of the characteristics of
the base excitation time history set.
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Dynamic Response Variability and Global Damage

Prediction
For each building and record considered, a typical IDA series
involved about 20 time history analyses, leading to a total of
more than 4,500 nonlinear dynamic analyses, for the entire
building and record set. The results of all records’ IDA analyses
for all buildings are initially compared in Figure 7, in terms
of the structures’ global response under each nonlinear time
history analysis, namely peak absolute interstorey drift vs. the
corresponding spectral acceleration. For statistical evaluation
purposes, in addition to the entire set of IDA curves the median
IDA of all 14 records together with the 16 and 84% fractile plots
are also depicted, together with the corresponding global LC
(previously designated dr), namely 1.25% for non conforming
frames and 2.5 % for conforming frames (off graph scale); one
should stress, however, that the actual controlling LC for nominal
failure, in each IDA analysis, differed for each structure and
record case, with the majority of cases governed by structural LCs
and followed by infill failure at higher intensities, as presented in
more detail later on.

The inclusion of infills over the entire height of the building
results in a considerable increase in the structure’s lateral
overstrength, in the case of the non conforming buildings as
this is manifested by comparing the spectral intensities to reach
a given storey drift, for the bare (and pilotis) frames and
their infilled counterparts for all building generations: while
the bare frames attain the critical drift limit of 1.25% at about
0.70 and 0.36 g (K60A59 and K70A59 frames, respectively),
the corresponding fully and partially infilled frames attain this
value at 2.00 g (T160A59), 0.85 g (T260A59), 1.4 g (T360A59),
and 1.15 g (T170A59) respectively, namely 285, 121, 199, and
319% of the bare frame counterpart, with the corresponding
ratios of peak resistance under SPO being 246, 152, 184, and
169%, respectively, for these buildings (Repapis et al., 2006b).
It is therefore concluded that IDA predictions with drift limit
criteria considerations generally predict higher overstrengths
than SPO, except the irregularly infilled frame with the open
ground storey (T2), whose performance is overly optimistic
under static inelastic analysis, with the pilotis having the
worst prediction errors. Fully infilled frame of the 70s has
the worst prediction errors. The opposite is observed to the
conforming frames, for which the IDA predictions with drift
limit criteria considerations generally predict lower overstrengths
than SPO.

Comparing the IDA response in Figure 7 among the bare
and infilled frames and concentrating in particular to the 84%
fractile and median peak storey drifts for given spectral intensity,
it is seen that the presence of the infills results in an overall
reduction of the scatter between the two, compared to the bare
frames; the latter structural forms (both 60 and 70s) invariably
exhibit higher deviations between the two IDA curves, with
increasing base input intensity–with building K70A59 being the
worst in performance at relatively lower intensities. The entirely
opposite holds true for the pilotis cases (the T260A59 and
T260AEC8 designs offscale), for which the difference between
the latter two curves is minimal at the LC dr level, with building
T260A59 exhibiting an initially relatively stronger resistance for

small storey drifts, quickly dropping, however, to the bare frame
spectral acceleration levels at higher drifts, due to the soft storey:
this expected response transition is actually corrected for by
infilling two bays at the open ground storey (the T360A59 and
T360AEC8 designs), following closer the spectral acceleration
levels of the fully infilled cases; it should be mentioned at this
point that infill configuration T360XX, with two infilled bays
at ground storey, is being used in Greece as a possible seismic
intervention scheme of existing pilotis RC buildings.

It is interesting to note further, that for each building type
there exist up to four records (∼30% of the sample) for
which the IDA demands increase disproportionately compared
to the remaining records in the set, and dynamic instability
is obtained at storey drifts over 0.5, 1.2, and 1.0% drifts for
pilotis, bare and infilled frames, respectively; these records
vary with building type and are consistently within the
subset of A299-1, Aigio, KOZ19501, and THESSALONIKI
(Figure 7).

Quantification of the Seismic Performance Indices
Further to the overall comparison of the IDA and SPO results
based on the LC dr only, and given that, as subsequently
discussed, the form of failure is not the same among
different records and structural forms (in fact the nominal
failure controlling LC varies even between IDA and the SPO
prediction), the actual seismic performance predictions are
subsequently considered in more detail. To that effect, the
basic performance parameters used for the equivalent SDOF
(re)design of RC structures, namely the provided behaviour
(q) factor and ductility capacity, and the corresponding global
damage index as expressed in terms of the roof displacement
at failure, are compared between the SPO and IDA in Figure 8,
with the corresponding values (and their statistics) given in
Table 3 for all the buildings and record analyses at hand. An
immediate comparison between the conforming (K60AEC8) and
non conforming bare frames of the 60 and 70s reveals the
influence of the conforming detailing and current seismic design
requirements in a resulting considerable increase in all their
performance indices: compared to the bare frame (K60A59)
which exhibits a median behaviour factor and global ductility of
2.4 and 2.2, the corresponding values for conforming building
K60AEC8 are 8.6 and 7.5, respectively. The inclusion of the
infills, however, in these frames, has the opposite effect in their
seismic performance indices. Considering the corresponding
median behaviour factor and global ductility values it is observed
that these remain or increase to 2.7 and 2.4 (T160A59), 2.5
and 2.0 (T260A59, pilotis), 2.4 and 2.2 (T360A59, upgraded
pilotis)–with even better performance of the weak infill wall
pilotis (T260A59-05), while they are reduced to 3.9 and 3.0
for the fully infilled conforming frame (T160AEC8). This
observation does not apply to the 70s group, which are relatively
taller and have larger spans, for which the poor bare frame
performance (median q and µ equal to 1.9 and 1.8, frame
K70A59) compares to even lower values of median q and µ

equal to 1.2 and 1.2 for the fully infilled frame T170A59. Equally
importantly, the scatter in the IDA results (see, e.g., the standard
deviation and coefficients of variation in Table 3) for fully infilled
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FIGURE 9 | Plastic hinge distribution, ductility rotation demands and energy absorption at the end of the analysis. KAL18601Long record (unscaled). Red plastic

hinges have failed. Infills are plotted in “dashed” line if cracked.

structures is reduced to half of the bare frame for T160A59 and
T160AEC8, while it increases for the corresponding 70s frames.
Similar observations hold true also for the peak global roof
deformations.

Compared to the SPO predictions, one again observes that
median IDA values are nearly equal (K60A59) or higher
(K70A59, K60AEC8) than the SPO predictions (uniform
distribution), which are therefore more conservative for use
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FIGURE 10 | Roof displacements from IDA analysis for the 14 records. Values for yield, failure, the scaled record to the design spectrum and the unscaled (raw)

record are shown.

in redesign, yet, in this case, IDA predictions systematically
are lower than the SPO predictions in the supplied behaviour
factor of the non conforming frames (T160A59 and T170A59),
implying that assessment and verification methods adopting the
SPO values not to be conservative in the frame performance
levels; again, unlike T160A59, for the 70s infilled frame

the ductility marginal difference between IDA and SPO
vanishes.

Local Resisting Mechanisms and Energy Absorption
This overall difference in performance of the bare and infilled
frames can be qualitatively related to the distribution of resting
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FIGURE 11 | Comparison of the median IDA intensity curves for the bare and infill frames considered in terms of the dr global LC.

mechanisms and their failure extent, considering in Figure 9 the
time history snapshot at the end of the analysis for the unscaled
KAL18601Long record. At this instant the hinge distributions
and their relative demands, the extent of cracking in the infills
and the energy absorption for all the infill configurations of
frame K60A59 (internal and external) are plotted. In this Figure
comparisons of (i) the plastic hinge distributions between the
members and the flexural ductility demands in the hinge, (ii)
the possible onset of failure in the corresponding hinge, (iii)
the extent of cracking in the infill struts, and (iv) the energy
absorption per storey, of the beams, the columns and the infill
struts, relative to the total energy absorbed, are shown. It is seen
that, while the bare frame attains the maximum drift through a
soft storey mechanism in the third and fourth storey and failure
of the columns, with very little energy contribution from the
beams, including a regular infill pattern results in the lower four
storeys contributing in the energy absorption with a complete
correction of the soft storey formation. Furthermore, the change
in the response profile results in this case in a failure at this instant
of the base column heads only, while the beams are in this case
mobilized fully with higher ductility demands and no failure. The
pilotis configuration follows the bare frame performance, with
the exception that the soft storey formation is in this case forced
to the ground storey, causing the columns to fail in this location.
Again, this type of response is corrected by partially infilling
two ground storey bays at the ends of the exterior frame only
(case T360A59).

The peak roof deformation demands at first onset of yield
and at nominal failure, is compared with the peak deformation
of the as recorded and scaled record inputs for all 14 records
and for each building, in Figure 10; furthermore, the entire

demand history with increasing base input is demonstrated for
these buildings considering the median IDA response in terms
of roof deformation and interstorey drift in Figure 11. In the
case of the 60s frame configurations characterised by a smaller
number of floors and relatively dense column spacing, the first
yield deformation does not differ among the different types of
structural systems (bare frames and infilled configurations with
good or weak infill masonry quality). This is not the case for
K70A59 and T170A59 for which the onset of yield varies with
the input content, albeit in the same manner for both building
forms. Considering the deformation at failure vis-a-vis the peak
deformation demand of the scaled input, one observes that: (i)
both the drift and the roof deformation at first yield are fairly
insensitive to the infill configuration or lack thereof, lying in the
0.2% range, (ii) in absolute value, roof or storey deformations
at failure of the bare frames are lower than the corresponding
deformation of the scaled earthquake record, (iii) inclusion of the
infills for building K60A59 (but not K70A59) results in correcting
for this deficiency in the infilled frames, with the exception of the
KAL18601Long, KOZ19501TRAN and Loma Prieta records; and
(iv) the infill configuration affects favourably and very strongly
the safetymargin between scaled input response and failure of the
conforming frames, which have the most favourable response.

Form of Nominal Failure and Target Point Prediction
Since the actual form of failure (the controlling LC) varies with
record and building type, the median IDA results of the peak
base shear and peak roof deformation are compared with the
SPO predictions for all the 60s frames (bare, infilled, pilotis,
weakly infilled) in Figure 12, with designation, in each case, of
the controlling LC. From the load resistance curve comparisons
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FIGURE 12 | SPO and median IDA predictions for the bare (K60A59) and infill (T160A59, T260A59 and T360A59) frames of the 60 s.

it is demonstrated clearly that the overstrength under IDA is
consistently higher than SPO estimation under the triangular
lateral force distribution (and closer, for K60A59 to the uniform
load distribution, see Repapis et al., 2006b); the scaled input
median IDA deformation demand is consistently less than
nominal failure for the infilled frames (T160A59), marginally
so for the partially or weakly infilled frames (T360A59 and
both T160A59-05 and T360A59-05) and exceeds the deformation
capacity for the bare frame and the pilotis. This difference in
overstrength also results in a consistent increase of the target
point prediction based on the N2 method (Fajfar, 1999) under
SPO, relative to the median IDA prediction under the scaled
record inputs. It should be noted, also, that the LC controlling
this nominal failure differs in each case and in no case (SPO
or IDA) is the infill controlling failure: in most cases flexural
plastic rotations are exceeded in columns, albeit at different axial

loads for the bare and infilled frames, due to the change in the
structural system. This is not the case for the conforming frames.
The critical LC for the conforming bare frame (K60AEC8) is the
interstorey drift, while for the fully infilled (T160AEC8) and the
partially infilled (T360AEC8) frames, the critical LC inmost cases
(SPO and IDA) is exceedance of the infill capacity. However, for
the open ground storey (T260AEC8) frame, energy absorption
concentrates at the open storey and critical LC is, in most cases,
the failure of the ground columns.

CONCLUSIONS

The present study aims at the vulnerability assessment of non-
conforming infilled RC structures of the 60 and 70s, which
represent a significant portion of the whole building estate
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in Greece and other seismically affected countries worldwide.
The seismic performance of typical bare and infilled structures
was evaluated using nonlinear pushover and time history
analyses. The results from Incremental Dynamic Analysis were
compared with previous analysis assessments on the same
structures, based on static inelastic prediction procedures.
Based on the findings of this study, the following can be
concluded regarding the expected inelastic performance of
typical non-conforming infilled RC buildings under seismic
excitation:

• The inclusion of infills regularly distributed over the entire
height of the building resulted in a considerable increase in
the structure’s lateral overstrength compared to the bare frame,
followed by a companion reduction in their deformability.
Furthermore, observed scatter of the IDA results was reduced
compared to the bare frames.

• IDA overstrength predictions were higher, compared to the
SPO predictions for the non conforming frames, with the
opposite being observed for the conforming case. Accordingly,
SPO methods overestimated the target displacement, as
compared to the median value obtained using IDA. Moreover,
deformation capacity was also overestimated by the SPO
methods.

• The form and criterion governing failure differed among
different records and structural forms. In the bare frame
of the 60s a soft storey mechanism occurred between the
third and fourth storeys due to the reduced dimensions of
the columns, while the fully infilled frame suffered extensive
damage at the lower storey infills, resulting to a soft storey
at the lower two storeys. In general fully infilled frames
presented a better distribution of damage along the height of
the structure. Infilled frames with an open storey concentrated
all the inelastic action at the base and exhibited the worst
performance; introducing a few infill bays at the soft storey
level provided these buildings with increased resistance,
similar to the infilled frames. The plastic hinge rotation
capacity of columns was the governing LC for all non-
conforming bare and infilled frames. On the contrary, the
critical LC was the interstorey drift for the conforming bare
frame, while the capacity of the infills governed for the fully or
partially infilled frames.

• IDA predictions of the basic performance parameters, such
as the available behaviour factor, ductility capacity and

deformation at failure exhibited high scatter, with SPO
predictions being within the range of the IDA predictions. One
important point regarding the building generation and form
is that overall, infilled buildings of the 60s exhibited a higher
ductility capacity and behaviour factor under IDA (q and µ

equal to 2.4 and 2.2 for the bare frame, and 2.7 and 2.4 for
the fully infilled frame, respectively) than SPO predictions, due
to their relatively dense column spacing. The opposite holds
true for the 70s buildings, with wider spans and more storeys,
which, under SPO, had relatively worse performance than the
60s; under IDA, their median performance indices were even
lower (q and µ equal to 1.9 and 1.8 for the bare frame, and 1.2
for both q and µ for the fully infilled frame, respectively) than
the SPO values.

• For non-conforming bare frames of the 60 and 70s, maximum
deformation capacity is smaller than the demand under the
scaled record inputs. On the contrary, for fully infilled frames
the deformation demand is less than nominal failure and
marginally so for the partially or weakly infilled frames
(T360A59 and both T160A59-05 and T360A59-05). The
open ground storey (pilotis) frame (T260A59) has the worst
performance, for which demand exceeds the deformation.

In view of the complexity and number of parameters involved
in the evaluation of the seismic vulnerability of existing RC
frame structures (both infilled and not), the findings of the
present study can further be refined by considering the following
modelling improvements, currently under investigation: (i)
three-dimensional response effects, under different plan infill
configurations, (ii) additional LCs involving, among others,
the lack of proper anchorage and the buckling of the
compression reinforcement, (iii) improved modelling techniques
to account for modelling of the joint behaviour and the pinched
cyclic characteristics of the members; and (iv) uncertainty in the
quality of the materials.
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FE Modeling of Circular, Elliptic, and
Triangular Isolated Slabs With a
Continuous Damage Model
Gelacio Juárez-Luna* and Omar Caballero-Garatachea

Departamento de Materiales, Universidad Autónoma Metropolitana, México City, Mexico

The non-linear behavior of reinforced concrete circular, elliptic, and triangular isolated

slabs was studied using computational mechanics. Concrete was modeled with a

damage model which includes softening, while the behavior of the reinforcing steel

was modeled with a 1D bilinear plasticity model. The constitutive models and the finite

element method were validated by comparing the computed numerical results with

the experimental results of a rectangular slab reported in the scientific literature. The

coefficient method is proposed for its simplicity to calculate design bending moments in

slabs with circular, elliptic, and triangular geometries. These coefficients were computed

from the FE analysis. The layout of steel reinforcement is proposed, particularly lengths

of zones for positive and negative moments, respectively. The crack paths are showed,

which are depending on the boundary conditions, acting loads, and geometry of

the slabs.

Keywords: slabs, damage model, finite elements, cracking, coefficient method, moment design

INTRODUCTION

A floor is a flat structural member whose primary function is to support transverse and in plane
loads and carry them to its supports. Generally, floor systems are an arrangement of panels
with rectangular geometries; however, some architectural designs need slabs with other kinds of
geometries. In the current provisions of the design codes, there are detailedmethods for the analysis
and design of slabs with rectangular geometries, including methods such as: equivalent frame,
direct, coefficient method, among others. However, slabs without rectangular geometry do not
have common forms of structuration neither analysis methodologies in the current design codes.
Although, there are slabs with other geometries, this paper only considers circular, elliptic and
triangular isolated reinforced concrete slabs.

There are mainly three models for modeling cracking: (1) fracture mechanics, which localizes
the cracks, either in a line or a surface, the disadvantages of this model is that it is mainly
applicable for brittle materials, where initial cracks as well as a costly re-meshing process are
necessary; (2) smeared crack model, cracks occur in any point of a finite element; in this model
initial cracks and re-meshing are no needed, but it may show problems of stress locking or spurious
kinematic modes; (3) the embedded discontinuities model, which takes the advantages of the first
two models, since it introduces the discontinuities (cracks) at any place and direction within the
finite elements. These discontinuities (cracks) are not observed, but there are zones with high
displacement gradients where damage is concentrated.
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In the modeling of the reinforced concrete slabs, de Borst
and Nauta (1985) applied the smeared crack model to study
an axisymmetric slab under shear penetration, showing that
cracking initiated at the bottom face of the slab and the
corresponding cracking paths. Then, Kwak and Filippou (1990)
modeled a square slab supported on its corners with a
concentrated load at the center of the span, obtained the load
vs. displacement curve, which was congruent with experimental
results reported by Jofriet and McNeice (1971) and McNeice
(1967); in the reported results by Kwak and Filippou (1990),
neither the first crack load nor the cracking pattern was given.
There were other proposals for modeling reinforced concrete
slabs, such as Gilbert and Warner (1978), Hand et al. (1973),
Hinton et al. (1981), Lin and Scordelis (1975), Wang et al. (2013)
among others, most of them used the smeared crack model.
Juárez-Luna and Caballero-Garatachea (2014) provides flexural
design moments and cracking paths in circular, triangular and
elliptic slabs, but they also used the smeared crack model for
modeling cracking in concrete in the academic version of the
software ANSYS (2010). Shu et al. (2015) studied the response
of slabs subjected to bending with non-linear finite element
analysis in the software DIANA, modeling the concrete with
3D elements and the steel reinforcement with bar elements.
Juárez-Luna et al. (2015) investigates the cracking process of
reinforced concrete slabs subject to vertical load. Concrete
was modeled with hexahedral finite elements with embedded
discontinuities; whereas steel reinforcement was modeled by
3D bar elements, placed along the edges of the solid elements.
Genikomsou and Polak (2015) investigated the failures modes
of reinforced concrete slab-column connections under static
and pseudo-dynamic loadings by 3D non-linear finite element
analyses. The comparison between experimental and numerical
results, computed in ABAQUS, shows that the calibrated model
properly predicts the punching shear response of the slabs.
Wosatko et al. (2015) carried out numerical simulations of
punching shear in a reinforced concrete slab-column, loaded as
monotonically increasing imposed displacement at the column.
Two regularized plastic-damage models were applied. The first
model, implemented in FEAP, was refined by an additional
averaging equation where gradient enhancement involves an
internal length scale. In the second model, from ABAQUS, a
viscoplastic strain rate was introduced. These models properly
predicted punching shear behavior. Genikomsou and Polak
(2017) performed finite element analyses to investigate the effect
of the compressive membrane action in flat concrete slabs.
Numerical results showed that the punching shear capacity of
a continuous slab is higher than the capacity of a conventional
isolated slab. Navarro et al. (2018) carried out a parametric
study of the punching shear phenomenon in a reinforced
concrete slab by non-linear numerical models based on finite
elements. The slab was simulated in ABAQUS software and
the model was calibrated with experimental results reported
in literature. The studied parameters were: yield strength of
steel reinforcement, compressive strength of concrete, flexural
reinforcement, relationship between column width and slab
width and slab thickness.

In this paper, reinforced concrete slabs with circular, elliptic
and triangular geometries are studied by means of computer

simulations to make predictions of these slabs under vertical
loading and different support conditions. As it is well-known,
computational methods are computer-based methods used to
numerically solve mathematical models that describe physical
phenomena (Plevris and Tsiatas, 2018). Firstly, linear elastic
analyses of slabs with these three geometries were carried out to
know the negative and positive moment zones and, consequently,
the placement of negative and positive reinforcement. Then,
non-linear analyses were carried out to obtain the load-
displacement capacity curve as well as cracking paths. The
linear elastic analyses were carried out with the software for
structural analysis and design SAP2000 (CSI, 2009) and the
non-linear analyses were carried out with the finite element
analysis program (FEAP), developed by Taylor (2008). In the
former software, the slabs were modeled with 2D shell finite
elements, but in the latter software, the slabs were modeled with
solid and bar finite elements in 3D. The concrete constitutive
behavior was modeled with a continuous damage model, which
includes different threshold values in tension and compression
and also includes strain softening. The steel reinforcement
constitutive behavior is modeled with a 1D rate independent
plasticity model, including isotropic hardening model. It is
important to point out that this damage model with different
failure surface in tension and compression was formulated
and validated by Juárez-Luna et al. (2014), which was also
implemented by these authors in FEAP. The developed damage
model does not exhibit the problem of stress locking as the
smeared cracking model does; this guaranties an adequate
energy release as the material fails. An experimental test of
a rectangular slab, reported in the literature, was modeled
to validate both constitutive models. The computed force
vs. displacement curves at the midspan of the slab as well
as cracking paths seem to be in good agreement with the
experimental results. Taking avantage of the computed FE
results, design suggestions for circular, elliptic and triangular
slabs were included. The coefficient method is proposed for
its simplicity to calculate design bending moments in these
slabs. These coefficients were computed from the FE models.
Steel reinforcement layout is proposed, particularly lengths of
zones with only bottom reinforcement for positive moments
and lengths of zones with top and bottom reinforcement for
negative moments.

The outline of this paper is as follows. Section Finite
Element Model gives a description of the specimens and
shows the concrete and steel constitutive models used in the
non-linear analyses. The section Validation shows a validation
between the finite element method and the constitutive models
through numerical modeling based on a laboratory experiment
reported in the literature. Section Results shows linear elastic
analyses with finite element method to compute the the steel
reinforcement layout and non-linear analyses to compute
the force-displacement curves at the midspan of the slabs;
additionally, this section shows the grown of cracking on the
surfaces of the slabs with simple and clamped supports. Section
Design Recommendations provides design recommendations
for circular, elliptic and triangular slabs. Finally, in
section Conclusions, conclusions derived from this work
are given.
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FINITE ELEMENT MODEL

Description of the Specimens
The modeled reinforced concrete slabs with circular geometry
has a diameter d = 4.0m. Elliptic slab models had values of ratio
of minor axis to major axis, b/a, equal to 0.5, 0.6, 0.7, 0.8, and 0.9,
respectively, considering a constant value a = 4 m for the major
axis. The triangular slab model has a height h = 4m and base
2h/

√
3. The studied slabs with three different geometries have a

thickness of 10 cm, which satisfied the minimum thickness of the
Mexican guidelines for concrete structures NTCC-17 (2017).

Initially, elastic analyses were carried out for the study of
the slabs in the software SAP2000 (CSI, 2009). These models
were modeled with plate finite elements, which have three
degrees of freedom in each node: one translational and two
rotational. Subsequently, non-linear analyses were carried out
in FEAP, but these models were modeled with hexahedral solid
elements and bar elements, which have three degrees of freedom
in each one of their nodes. The moment distributions were
computed with elastic analyses, which were used to place the steel
reinforcement at the top and at the bottom zones of the slabs. On
the other hand, cracking and propagation were computed with
non-linear analyses.

Constitutive Models
A continuous damage model, developed by Juárez-Luna et al.
(2014), was used for modeling the constitutive behavior of
concrete, congruent with the experimental behavior reported
in the literature, e.g., Kupfer and Gerstle (1973), as shown
in Figure 1A. The proposed damage model uses the failure
surface proposed by Oliver et al. (1990). Nevertheless, the
tangent constitutive tensor developed by Juárez-Luna et al.
(2014) is different to the one developed by Linero (2006).
This concrete constitutive model considers strain softening after
reaching the ultimate stress strength. On the other hand, the steel
reinforcement was modeled with a 1D rate independent plasticity
model, which has an elastic bounded space shown in Figure 1B,
considering a bilinear curve with isotropic hardening.

The continuous damage model, developed by Juárez-Luna
et al. (2014), has different failure surface in tension and
compression, which is defined by the following equations:

a) Free energy density 9 (ǫ, r) =
(

1− d(r)
)

90

b) Constitutive equation σ = ∂9

∂ε
= (1− d)C : ε

c) Damage variable d (r) = 1−
q
r ; q ∈ [r0, 0] d ∈ [0, 1]

d) Evolution law ṙ = γ

{

r ∈ [r0,∞]

r0 = r|t=0 =
σy
√
E

e) Damage criterion f (τσ , q) = χτσ − q

= χ

√

σ :C
−1

: σ − r;

{

q ∈ [0, r0]
q
∣

∣

t=0
= r0

(1)

f) Hardening rule q̇ = Hd
(r) ṙ; Hd

(r) = q
′
(r) ≤ 0

g)
Loading-unloading
conditions

f < 0; γ ≥ 0; γ f = 0;

γ ḟ = 0 (consistency)

where Ψ is the free energy density, ε is the strain tensor, σ is the
stress tensor and C is the elastic tensor. The damage variable, d,
is defined in terms of hardening/softening variable q, which is

dependent on the hardening/softening parameter,H. The damage
multiplier γ determine the loading-unloading condition, the
function, f(τσ ,q), bounds the elastic domain defining the damage
surface in the stress space. The value, ro, is the threshold that
determines the limit of the initial elastic domain, i.e, q = ro. In
this damage surface, any stress state is transformed to a norm,
bounded by ro, where every stress state outside of this surface is
inelastic as shown in Figure 2.

The tangent constitutive equation, in terms of rates, from the
model in Equation (1) is:

σ̇ = C
T
: ε̇ (2)

Where CT is the continuum tangent constitutive operator,
relating the stress and the strains rates, of the non-linear loading
interval, which is defined by

CT = (1− d)C−
q−Hr

r3
χ
2(C : ε ⊗ ε :C) (3)

and for the elastic loading and unloading interval (ḋ = 0):

CT =
(

1− d
)

C (4)

The parameter χ in Equation (3)

χ = φ + (
1− φ

n
) (5)

where ϕ a is weight factor, depending on the principal stresses, σi,
given by:

φ =

3
∑

i=1

〈σi〉

3
∑

i=1

|σi|

(6)

where the Maclauy operator <> and the symbol || consider,
respectively, the positive and the absolute magnitudes of the
principal stresses. The interval of φ is [0,1], bounded by 0 for a
triaxial compression (σ3 ≤ σ2 ≤ σ1 ≤ 0) and 1 for triaxial tension
(0 ≤ σ3 ≤ σ2 ≤ σ1). Consequently, the corresponding interval of
χ is [1/n,1], bounded by 1/n for a triaxial compression and 1 for
triaxial tension.

The parameter χ scales down 1/n times the norm, as shown in
Figure 2, in such a way it is compared with the elastic interval
[0, ro]. The value of ro = σut/

√
E depends on the threshold

value of σut and the Young’s modulus E. Note that the initial
elastic interval is the same for 1D, 2D, and 3D problems, all
with a limit point ro, and that for a 2D principal stress state,
the parameter χ takes the value of 1 in the first quadrant, 1/n
in the third quadrant and the interval [1/n,1] in the second and
fourth quadrants.

The non-linear analyses were carried out with the software
FEAP. The concrete was modeled with hexahedral elements,
using the constitutive continuous damage model with
different threshold value in tension and compression. The
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FIGURE 1 | Constitutive behavior of (A) plain concrete and (B) steel reinforcement (adapted from Juárez-Luna et al., 2014).

FIGURE 2 | Transformation of the stresses to a norm. (adapted from

Juárez-Luna et al., 2014).

steel reinforcement was modeled with the one-dimensional
bar element, which was assigned with a 1D constitutive rate
independent plasticity model. Both elements have three degree of
freedom per node and large deformations. The 1D elements were
placed along the edges of the solid elements and joined at the
same nodes to guarantee continuity. In the presented examples
hereafter, modeled with bar and solid elements, perfect bond
between both elements was considered.

VALIDATION

One of the six specimens tested by Girolami et al. (1970)
was modeled to validate the constitutive models of concrete
and steel reinforcement. The test slab was 1.829m square and
0.044m deep, as shown in Figure 3A. Vertical loads were
applied on the top surface through 16 plates, which were
0.2038m square and 0.0254m thick, as shown in Figure 3B.
Additionally, eight loads were applied at cantilever extensions
of the beams to maintain a certain amount of restraint at
the corners. The mechanical properties of the concrete are:
Young’s modulus Ec = 19.90 GPa and ultimate compressive
strength σuc= 31.026MPa. Themechanical properties of the steel
reinforcement are: Young’s modulus Ea= 206 GPa, Poisson ratio
υ = 0.3, yield stress σy= 330.95 MPa and hardening modulus
H = 2.871 GPa.

The steel reinforcement was placed at top and at the bottom
of the slab to support a uniform design load of 7.182 kPa. The

top and bottom reinforcement used in the slab consisted of
3.66mm diameter steel bars cut from No.7 gage wire, which
were spaced 10.954 cm in both orthogonal directions, as shown
in Figure 3C. Also, the stirrups were bent from the No.7 gage
steel wire as shown in Figure 3D. The edge beams have over-
reinforced bars because other five of six specimens tested by
Girolami et al. (1970) were also loaded in-plane, in addition to
vertical load, perpendicular to the surface slab; the reason of the
shear reinforcing in the beams is to avoid damage and to transfer
the loads to the slab.

The slab geometry and the load have two axes of symmetry,
so only a quarter of the slab specimen was modeled, which saves
computational cost in the non-linear analysis. In the model,
the degrees of freedom perpendicular to the respectively axis
of symmetry were restrained. The slab was modeled with two
kinds of element, the steel reinforcement was modeled with bar
elements as shown in Figure 4A; whereas the plain concrete was
modeled with hexahedral solid elements as shown in Figure 4B.

The experimental and numerical load-displacement curves at
the midspan of the slab are compared, as shown in Figure 5. It is
seen that both curves in the a-b trajectory are the same; however,
in the b-c trajectory a backward motion in the experimental
displacement curve was reported, attributed to the loads applied
at the ends of the beams to provide restraint. Finally, both curves
have the same path in the trajectory d-e. On the other hand, the
cracking grown is shown in Figure 6, where cracks started at the
corner on the top of the slab. Subsequently, cracking propagates
overall the edges to the center, which is in agreement with the
experimental results reported by Girolami et al. (1970). This
example was also modeled with finite elements with embedded
discontinuities by Juárez-Luna et al. (2015), where damage is
localized on a surface discontinuity placed at the geometrical
center of a solid element.

RESULTS

Linear Elastic Analyses for Steel
Reinforcement Distribution
The computed moments of circular, elliptic and triangular slabs
were carried out with linear elastic analyses using plate finite
elements, as shown respectively in Figure 7. In these models,
the reinforced concrete was modeled as an isotropic material
with a Young’s modulus of E = 21.673 GPa and Poisson’s
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FIGURE 3 | Experimental test: (A) geometry in cm, (B) applied loads, (C) reinforcement of one quarter of the slab and (D) reinforcement of one half of a beam

(adapted from Girolami et al., 1970).

FIGURE 4 | Meshing: (A) steel reinforcement and (B) reinforced concrete.

ratio ν = 0.25. In the analyses of these models, only clamped
supports were considered, yielding negative moments at the
edges and positive moments at the center; simple support slabs
were not analyzed because this condition provides only positive
moments, which needs only steel reinforcement at the bottom of
the slab.

Flexural moments in the circular geometry was computed
from a slab modeled with quadrilateral plate elements, avoiding
triangular elements at the center of the model, which could
generate numerical instability for the large element aspect ratio.
According to Figure 7A, negative moments occurred from the
edge to the dotted line, in an external ring with an approximated
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FIGURE 5 | Load vs. displacement curves.

width of one quarter of the diameter, i.e., Lneg= d/4. This length,
where negative moments occurs, is analogous to the width of the
external band in rectangular slabs, where the steel reinforcement
is mainly placed at the top. The steel reinforcement layout was
proposed as shown in Figure 8A, where the steel reinforcement
is placed at top and bottom faces for negative and positive
moments, respectively.

Flexural moments in elliptic slabs were computed from
numerical models with ratio of minor axis to major axis, b/a,
equal to 0.5, 0.6, 0.7, 0.8, and 0.9, respectively, but the major
axis length was kept constant, a = 4m. Quadrilateral plate
elements were used for modeling the elliptic slab. According to
the moment distribution in Figures 7B,C, the negative moment
zones were identified from the edge to the center, having a length
of lneg= a/3 for the major axis and a length of lneg= b/3 for
the minor axis. A typical the steel reinforcement layout was
proposed as shown in Figure 8B, in which the central zone has
steel reinforcement only at the bottom, but at the edges, there is
steel reinforcement at the top and at the bottom of the slab.

Flexural moments in the triangular geometry were computed
from a slab modeled with quadrilateral plate elements, which
has a height h = 4m and base 2h/

√
3. Figures 7D,E shows the

lengths, which mark out the zones of negative moment at both
directions: horizontal with a length of h/3 and vertical with a
length h/7 at the bottom and h/2 at the top. The proposed steel
reinforcement layout is shown in Figure 8C, in which the central
zone has steel reinforcement only at the bottom, but at the edges,
there is steel reinforcement at the top and bottom of the slab.

Non-linear Analyses
In the non-linear analyses of the slabs with FEAP, 3D solid
elements were used for modeling the concrete, which has the
following mechanical properties: Young’s modulus Ec= 17 GPa,
Poisson ratio ν = 0.20, ultimate tensile strength σut= 5 MPa
and an ultimate compressive strength σuc= 25 MPa. The steel
reinforcement has the following mechanical properties: Young’s

modulus of Ea= 2.05 × 105 MPa, Poisson’s ratio of ν = 0.30 and
yield strength σy= 410MPa. Top and bottom steel reinforcement
have 0.025m of covering. The models were analyzed under two
support conditions at the edges: simply supported and clamped,
loaded on the surface under distributed load increments. To save
computational cost in the analyses, only a quarter of the slabs
were modeled, considering the two symmetry axes. The load-
displacement curves computed with FEAP are compared with
the curves computed in the software ANSYS (2010) reported by
Juárez-Luna and Caballero-Garatachea (2014).

In the non-linear analysis of the circular slab, a model with
diameter d = 4m was carried out. The slab was reinforced with
number 3 bars, which were spaced 0.20m in both orthogonal
directions. The steel reinforcement meshing was embedded into
the solid elements as shown in Figure 9A, where the nodes of
both kinds of elements were joined. Figure 10 shows the load-
displacement curves at the center of the span, where distributed
loads of 17 and 98 kPa were needed on the slabs with simple and
clamped supports, respectively, to reach a displacement of 5 cm.

The non-linear analyses of elliptic slabs were carried out
considering minor axis to major axis ratios b/a = 0.5, 0.6,
0.7, 0.8, and 0.9. The steel reinforcement consisted of 3/8 in
diameter steel bars placed at the top and at the bottom, which
were spaced 0.20m in both orthogonal directions. The steel
reinforcement was modeled with bar elements. The meshing of
both concrete and the embedded steel reinforcement is shown
in Figure 9B, which were joined at the nodes. The distributed
load-displacement at the center of the span curves is shown in
Figure 11, where it is observed that the needed loading to develop
a displacement at the center of the span is in inverse proportion
to the ratio, b/a, for both support conditions. Furthermore, it
is observed that the applied distributed load magnitude in the
simple supported slab is∼20% of the distributed load magnitude
in the clamped supported slab to reach the same displacement.

Concerning to the non-linear analysis of the triangular slab,
the steel reinforcement consisted of bar size of number 3 placed
at the top and at the bottom and spaced 0.20m in both orthogonal
directions, which was modeled with bar elements. The concrete
meshing with the embedded steel reinforcement is shown in
Figure 9C. Taking advantage of the symmetry, only one half of
the model was analyzed. The distributed load vs. displacement
at the center of the span curves are shown in Figure 12, where
it is observed again that the support conditions have influence
in the global behavior, in such a way that the simple supported
triangular slab only needs ∼20% of the distributed load in
the clamped supported slab to reach the same displacement at
the center.

Cracking Paths
Cracking paths are important to identify the tension stress
concentration zones, which qualitatively point out the zone
where the steel reinforcement must be placed. In this paper,
cracking was modeled with a damage model, associated to
a stresses state at the Gaussian integration points of each
element, where the material reaches a failure surface. Therefore,
large displacements and as consequence, strain concentration
are observed where the material is damaged. In this section,
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FIGURE 6 | Cracking propagation on the top surface at the: (A) beginning and (B) end.

FIGURE 7 | Moment distribution in: (A) circular slab, (B) elliptic slab along horizontal strip (C) elliptic slab along vertical strip, (D) triangular slab along horizontal strip,

and (E) triangular slab along vertical strip.

the bottom and top surfaces of the slabs show those zones
where the integration points are damaged. The cracking
zones caused by tension stresses are shown in red color, but
crashing zones, dominated by compressive stresses, are shown in
blue color.

In the clamped circular reinforced concrete slabs, cracking
started along the edges on the top surface because of
his axisymmetric characteristic, as shown in Figure 13A.
Then, cracking occurs at the center of the slab on the
bottom surface, see Figure 13B. After that, cracking grows
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FIGURE 8 | Steel reinforcement layout in: (A) circular slab, (B) elliptic slab, and (C) triangular slab.

FIGURE 9 | Finite element meshing of steel reinforcement and plain concrete of: (A) circular slab, (B) elliptic slab, and (C) triangular slab.

FIGURE 10 | Load vs. displacement curve at the midspan of circular slab: (A) clamped and (B) simple supported.

from the edges to the center and crushing occurs at the
center on the top surface, while at the bottom surface,
cracking grows from the central zone to the edges. On the
other hand, in the simply supported circular slabs, cracking

starts at the central zone on the bottom surface and it
propagates to the edges as shown in Figure 13D. On the
top surface, neither cracking nor crushing occurs as shown
in Figure 13C.

Frontiers in Built Environment | www.frontiersin.org 8 February 2019 | Volume 5 | Article 9210

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Juárez-Luna and Caballero-Garatachea FE Modeling of Isolated Slabs

FIGURE 11 | Load vs. displacement curves at the midspan of elliptic slab: (A) clamped and (B) simple supported.

FIGURE 12 | Load vs. displacement curve at the midspan of triangular slab with a = 4 m: (A) clamped and (B) simple supported.

In the reinforced concrete clamped elliptic slab, cracking starts
along the edges on the top surface, which are approximately
perpendicular to the major axis, as shown in Figure 14A. Then,
cracking occurs at center of the slab on the bottom surface,
see Figure 14B. On the top surface, cracking propagation is
analogous to the circular slab, since it grows from the edges to
the central zone; however, at the center, crushing occurs, but on
the bottom surface, cracking grows from the central zone to the
edges. In the reinforced concrete simple supported elliptic slab,
cracking starts on the bottom surface, as shown in Figure 14D.
Then, it propagates from the central zone to the edges. On
the top surface, neither cracking nor crushing occurs as shown
in Figure 14C.

In the reinforced concrete clamped triangular slab, cracking
starts along the three edges on the top surface, as shown in
Figure 15A, where tension stresses are developed. Then, cracking
occurs on the bottom surface at the central zone, as shown in
Figure 15B. On the top surface, cracking propagation starts from
the center of the edges to the vertexes, but on the bottom surface,
it propagates from the central zone to the vertexes. On the
contrary, in the reinforce concrete simple supported triangular
slab, cracking starts on the bottom surface in the central zone and
it propagates to the vertexes as shown in Figure 15D. At the same
time, cracking occurs on the top surface as shown in Figure 15C.

In general, in reinforce concrete clamped slabs, cracking starts
along the edges on the top surface. Then, it occurs at center of
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FIGURE 13 | Cracking propagation of a circular slab on the: (A) top-clamped,

(B) bottom-clamped, (C) top-simple supported, and (D) bottom-simple

supported.

the slab on the bottom surface. On the other hand, in reinforced
concrete simple supported slabs, cracking occurs on the bottom
surface in the central zone and it propagates to the overall surface.
After that, an incipient cracking occurs at the central zone on
the top surface. The fact that cracking is larger than crushing in
the slab is due to the stress re-distributions and to the ultimate
tensile strength, which varies from 5 to 20% of the ultimate
compressive strength.

DESIGN RECOMMENDATIONS

The steel reinforcement layout for circular, elliptic and triangular
slabs is proposed as shown in Figures 7, 8, respectively. Top
and bottom reinforcement is placed outside of the dotted line
for negative moments, but only bottom reinforcement is placed
inside of the dotted line for positive moments.

In this paper, the coefficient method is proposed for its
simplicity to calculate design bending moments in slabs. This
method to design two-way slabs supported on all sides by walls
and deep beams was included in the ACI-318-63 (1963) code. The
coefficient method uses a moment coefficient table for a variety
of types of panels. In the coefficient method, moments for the
middle strips of the slab are computed by the general formula:

M = αwa21 (7)

FIGURE 14 | Cracking propagation of an elliptic slab on the: (A) top-clamped,

(B) bottom-clamped, (C) top-simple supported, and (D) bottom-simple

supported.

whereM is the design moment at the critical section considered,
w is the total uniform load per square meter acting on the panel
and a1 is the short span length. The slabs meshed with solid
and bar elements provided stresses at the nodes; however, the
design of reinforced concrete slabs is based on moments per
unit width, so moments were computed by integrating the stress
function along eight elements of the overall thickness, using a
linear interpolation, as shown in Supplementary Figure 1.

In Supplementary Tables 1–3, design coefficients are given
for circular, elliptic and triangular geometry, respectively. These
coefficients must be multiplied by 10−4 wl2 to obtain the flexural
design moments per unit width. l is the reference length (r,
b, and h for circular, elliptic and triangular slabs, respectively).
Two types of construction were considered: case I, slabs built
monolithically with their supports and case II, slabs not built
monolithically with their supports. In the last one, negative
coefficients have zero values at the edges because there are only
positive moments in the slab due to the support condition. These
coefficients are negative in the edges of the three geometries, but
they are positive in the centre of three geometries and in point B
of the triangular geometry, as shown in Supplementary Figure 2.
The variations of the computed coefficients in the circular, elliptic
and triangular slabs are shown in Supplementary Figures 3–9.
The variations of their magnitudes are attributed to cracking in
concrete and to hardening in steel reinforcement in the nonlinear
range at the zones with maximum stresses of the slabs.
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FIGURE 15 | Cracking propagation of a triangular slab on the:

(A) top-clamped, (B) bottom-clamped, (C) top-simple supported, and

(D) bottom-simple supported.

CONCLUSIONS

The load-displacement curves of the numerical and the
experimental test reported from literature, respectively, showed
a good agreement. Nevertheless, a backward motion in the
experimental displacement was reported, attributed to the loads
applied at the ends of the beams to provide restraint.

The yielding linemethodwas not considered in the calculation
of cracking paths or ultimate load because this method provides
only values of the ultimate load, but it does not provide the
cracking paths. Moreover, the aforementioned ultimate load
can be greater or smaller than the ultimate load. Therefore,
the computational mechanics was used because it provides the
starting and the growing of damage.

The steel reinforcement layout in each slab, based on linear
elastic analyses of homogenous plate elements, was adequate

because there was a good approximation in the moment
distribution as well as in the location and initiation of cracking
in the slabs. The lengths of the steel reinforcement (positive and
negative) are recommended to the design and construction of
slabs with the geometries presented in this paper.

The load-displacement curves at the central zone of the slabs
with the three studied geometries show that the distributed
loading in the simply supported slabs was ∼20% of the
distributed loading in the clamped slabs with the same
displacement. The load-displacement curves computed with
FEAP show good agreement with those curves computed with
ANSYS (2010) byJuárez-Luna and Caballero-Garatachea (2014).

The coefficient method is proposed for its simplicity to
calculate design bending moments in circular, elliptic and
triangular slabs, respectively. These coefficients are tabulated,
considering two types of construction: case I, slabs built
monolithically with their supports and case II, slabs not built
monolithically with their supports.

In general, cracking in clamped slabs occurs at the edges on the

bottom surface; subsequently, it is propagated from the central

zone to the edges. On the other hand, in the simply supported
slabs, cracking occurs in the central zone on the bottom surface

and it is propagated to the edges.
In general, the study of these complex slabs under

vertical loading by computer simulations does not
substitute experimental results, but it provides reasonably
good approximations.
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Beams, beam-columns, columns, and frames, are of major importance in structural

engineering, and especially buildings and infrastructures analysis and design. In some

cases, these structural members are subjected to static loadings, that though are

continuous with respect to the longitudinal axes, are available as digitized records. Finite

element analysis of assemblies of these members may be computationally expensive

when the loading is digitized densely. In order to reduce this computational effort,

attention is paid to a technique originally proposed in 2008 for reduction of the

computational effort in time integration analysis. In view of the convergence-based nature

of this technique, in this paper, the technique is adapted to static analysis of assemblies

of beam-columns subjected to digitized loadings. The good performance of the adapted

technique is demonstrated from different points of view, and is compared with the

performance of the technique in time integration analysis.

Keywords: accuracy, computational effort, finite elements, static analysis, beam-columns, digitized loading

INTRODUCTION

Structural systems are getting larger and behave more complicatedly day by day. Accordingly,
efficient analysis of structural systems is an important concern, in areas such as optimum structural
design, time history analysis, and structural control. In addition, when the structural analysis is
more efficient, the pre-processing and post-processing stagesmay become simpler and lead to easier
interpretation of the results. Some different model reduction methods are reviewed in (Besselink
et al., 2013). The objective of this paper is to extend the application area of a technique proposed
for more efficient time integration analysis (Soroushian, 2008) by adapting the technique to static
analysis of assemblies of beam-columns (the final goal of the research, including the presentation
in this paper, is to put together reductions based on the above technique in time and space).
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After discretization in space, the dynamic behavior of many
structural systems can be expressed as the initial value problem
below (Henrych, 1990; Argyris and Mlejnek, 1991; Bathe, 1996;
Belytschko et al., 2000):

Mü+ fint = f(t) 0 ≤ t ≤ tend
u (t = 0) = u0
u̇ (t = 0) = u̇0
fint (t = 0) = fint0
Q ≤ Ō

(1)

In Equation (1), M is the mass matrix, fint stands for the

vector of internal forces, f (t) implies the external force, Q

represents restrictions because of non-linearity, e.g., impact and
elastoplastic behavior (Hughes et al., 1979; Wriggers, 2002),
t, standing for the time, is the independent variable of the

initial value problem, u is the displacement vector, each top
dot implies once differentiation with respect to time, “0,” as the

right subscript, indicates that the argument is at its initial value,
tend is the total length of the time interval, and Ō stands for

a zero vector or matrix. The vector f (t) might be composed
of components continuous in time, but available as digitized

records (see Figure 1, where f1 t stands for the digitization
step). For these cases, a technique was proposed by Soroushian
(2008) to enlarge the digitization step, such that the analysis
efficiency is enhanced and the analysis accuracy is practically
unchanged. The technique has been implemented in analysis
of different structural systems against different earthquakes
by different time integration methods, considering linear and
non-linear behavior, and near- and far-field earthquakes. The
results evidence the good performance of the technique. Three
significant applications are reviewed in Table 1 (Nateghi and
Yakhchalian, 2011; Sabzei, 2013; Bastami, 2014; Garakaninezhad
and Moghadas, 2015; Hadad, 2015; Soroushian et al., 2016;
Zarabimanesh, 2017; Baiani, 2018; Ghondaghsaz, 2018). In
view of the convergence-based mathematics of the technique
(Soroushian, 2008), it seems applicable to structural systems
subjected to static loadings, that are continuous with respect
to the spatial coordinates, while available as digitized records.

FIGURE 1 | A typical digitized component of f (t).

This paper is an attempt to display the validity of this idea
for assemblies of beam-columns. A real example for such an
application is analysis of lengthy underground structural systems.
For these systems, the soil above the structural system defines a
static loading that though is actually continuous with respect to
the longitudinal axis, is available as a digitized record, because
of the nature of the geodetic surveys; see the last example in the
Numerical Study section.

In the next section, the technique proposed in Soroushian
(2008) is briefly reviewed and adapted to enlargement of the
beam-column elements in finite element analysis (Hughes, 1987;
Bathe, 1996; Cook et al., 2002; Zienkiewicz and Taylor, 2005;
Soroushian, 2008) of assemblies of beam-columns. Afterwards,
via several examples, it is shown that the adapted technique
might considerably reduce the analysis computational effort at
the price of negligible change of accuracy. The observations
are later discussed and compared with those reported from
the time integration analysis application. Eventually, the paper
is concluded with a brief set of the achievements and the
future perspective.

FROM STEP-ENLARGEMENT TO
ELEMENT-ENLARGEMENT

Convergence to exact solution is the main essentiality of
successful approximate computation (Henrici, 1962; Strikwerda,
1989). In a brief review on the technique proposed by Soroushian
(2008), the basis of the technique is proper convergence
(Soroushian, 2010) of the computed response to the exact
response. This consideration has led to the change of the f (t)
digitized in f1 t to the f̃ (t) digitized in f1 t̃ (= n f1 t , n ∈

{ 2, 3, ...}), according to Soroushian (2017):

f̃i = f̃ (ti) ti = 0, n f 1t, 2 n f 1t, ...

=



















g (ti) ti = 0

1
2 g (ti)+

1
4n′

n′
∑

k=1

[ g (t + k
n )+ g (t − k

n ) ] 0 ≤ ti < t′end

g (ti) ti = t′end

(2)
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TABLE 1 | A brief report of the tests carried out on the technique proposed by Soroushian (2008).

System Details Computational

effort reduced (%)

Change of

accuracy (%)

Residential buildings About 200 buildings structures with linear/non-linear behavior and

regularity/irregularity in plan/height subjected to different

earthquakes

50–90 <7

Power station, Cooling

tower, Space structure, Silo

One or two of each special structure, considering linear/non-linear

behavior and different near-field/far-filed earthquakes and different

integration schemes

>50 <7

Milad tele-communication

tower

Considering linear/non-linear behavior and different

near-field/far-filed earthquakes and different integration schemes

50–70 <7

where n′can be obtained from

n′ =















n− 1 when ti = n f 1t
{ n

2 n = 2j, j ∈ Z+

n−1
2 n = 2j+ 1, j ∈ Z+

when ti 6=n f 1t,ti 6= t′end−n f 1t

n− 1 when ti = t′end − n f 1t

(3)

t′end stands for the only number satisfying the two
relations below:

tend ≤ t′end < tend + n f1t (4)

t′end

n f1t
∈ { 1, 2, ...} (5)

and g (ti) is available from:

g (ti) =

{

f(ti) when 0 ≤ ti ≤ tend
0 when tend ≤ ti ≤ t′end

(6)

From the parameters in Equation (2), n is still undefined.
This parameter stands for the positive enlargement scale that
should be set such that the enlargement does not affect the
response accuracy. The broadly accepted comment for selection
of the integration step of a time integration analysis, mainly
based on accuracy considerations, is formulated as (McNamara,
1974; Clough and Penzien, 1993; Bathe, 1996; NZS 1170, 2004;
Soroushian, 2017):

1t ≤ Min (1tcr , 1tr ,
T

χ
, f1t) (7)

In Equation (7), 1tcr stands for the largest step providing
numerical stability, 1tr is the largest digitization step acceptable
for the response, T is the smallest period with worthwhile
contribution in the response, and χ is available from:

χ =















10 when the behavior is linear
100 when the behavior is nonlinear but not

involved in impact
1000 when the behavior is involved in impact

(8)

Consequently, the largest value that can be assigned to n, i.e.,
nmax, is obtainable from:

nmax f1t ≤ Min (1tcr , 1tr ,
T
χ
) < (nmax + 1) f1t

nmax ∈ { 2, 3, 4, ...}
(9)

and any positive integer larger than one and smaller than or equal
to nmax can be assigned to n, i.e.,

1 < n ≤ nmax (10)

Considering cases of the first relation in Equation (9), that lead
to nmax = 0 or nmax = 1, there is no guarantee to be able
to assign a value to n. In these cases, the technique proposed
by Soroushian (2008) is inapplicable. In view of Table 1, this
is a rare situation and the technique is successfully applicable
to many real analyses. In order to extend the application to
analysis of assemblies of beam-columns subjected to digitized
static loadings on longitudinal axes of the beam-columns, the
longitudinal axis of each beam-column is considered as the time
axis and the digitized static loading is considered as the f(t)
in Equations (2, 6). Considering these, the technique would
be applicable when the accuracy requirements (as stated in
Equation (9) for time integration) are satisfied and:

t′end = tend (11)

Equation (11) is taken into account, because of the essentiality
to preserve the geometry of the structural system. To satisfy
this restriction, attention is paid to the fact that, if without the
restriction, xend and x′end (defined in few lines), are sufficiently
close, i.e.,

0 <
x′end − xend

xend
<< 1, (12)

we might be able to eliminate this difference by shortening the
distance between each two sequential data of the static loading,
i.e., f1x, (corresponding to f1t) instead of increasing the length
of the beam-column. In Equation (12), x′end and xend are the
parameters corresponding to t′end and tend (in application of the
technique to time integration analysis, respectively). In view of
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Equation (4), for the validity of Equation (12) it is sufficient
to guarantee

nx f1x

xend
<< 1 (13)

where with attention to Equations (9, 10), nx (the parameter
corresponding to the n, defined for finite element analysis of
beam-column assemblies) can be obtained from

1 < nx ≤ (nx)max

(nx)maxf1x ≤ Min (OP,AC) < ((nx)max + 1) f1x

nx ∈ { 2, 3, 4, . . .} , (nx)max ∈ { 2, 3, 4, . . .}

(14)

and OP and AC are schematic representations of the restrictions
on (nx)max, respectively originated in the response digitization
and the response accuracy. Consequently, when Equation (13) is
satisfied, we can redefine f1x as:

f1x′ = f1x
xend

x′end
(15)

and consider implementation of Equation (15) as a reasonable
way for preserving lengths of the beam-columns in the
finite element model. A question in this stage is that under
Equation (13), the change of the members lengths will be
negligible even if we do not implement Equation (15). Why
cannot we accept the approximation because of the replacement
of xend with x′end? In response to this question, changes of the
structure’s geometry can considerably change the mathematical
model for the effects of geometric non-linearity (Gao and Strang,
1989; Bathe, 1996). This is true, especially when the structural
members’ lengths differ considerably. These changes should
be avoided. Another ambiguity is on the inequality sign in
Equation (13).What is the notion of the “very small”? In response
to this question, it seems to the authors that because of the second
order of convergence in many practical analyses, it is sufficient
to satisfy

nx f1x

xend
< 0.01 (16)

Furthermore, one may ask whether the above-mentioned change
in the element length can be used in time integration analysis
in order to avoid replacement of tend with t′end. The response is
negative. The reason is that different from static finite element
analysis, time integration analysis has a step-by-step nature,
where the error because of the change in the integration step can
be accumulated to some level. In addition, in time integration
analysis, the replacement of tend with t′end is not important.

Finally, it is worth noting that, even when Equations (13, 16)
are not satisfied, the technique proposed by Soroushian (2008) is
applicable by considering a small element in the end of the beam-
column. This will not affect the accuracy and will trivially affect
the computational effort. However, the pre-processing stage will
become slightly more complicated. In view of the rareness of this
condition, for the sake of brevity, the detailed discussion is left
for future studies.

Consequently, provided we can assign positive integers larger
than one to nx, we would be able to implement the technique
proposed by Soroushian (2008) in static finite element analysis
of assemblies of beam-columns subjected to digitized excitation.
The efficiency is studied next, and a complementary discussion
on efficiency and determination of nx is presented later.

NUMERICAL STUDY

Introduction
The objective of this paper is to respond to the question: Can
the technique proposed by Soroushian (2008) be successful
when implemented in analysis of assemblies of beam-columns
subjected to static loadings, originally continuous but available
as digitized records? This section presents a numerical study on
the response of this question. We examine the existence of a
value of nx causing negligible change of accuracy and sufficient
reduction of computational effort, regardless of Equation (14),
the resulting (nx)max, and the possibility of assigning fractional
numbers larger than one to nx (Soroushian et al., 2017). The
accuracy is studied by depicting the responses obtained from
finite element analysis and the computational effort is studied in
different ways.

A Simple Example
The system under consideration in this example is the beam
displayed in Figure 2. IPB 500 is used as the beam profile, with
a moment of inertia equal to 1.072 × 105 cm4 and a modulus of
elasticity equal to 210 GPa (Gaylord et al., 1997). The digitization

FIGURE 2 | Structural system under consideration in the first example (A) structural model and (B) digitized static loading.
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step of the static loading equals f1x = 0.02 m. The analysis
is carried out by two-node beam-column elements (with six
and twelve degrees of freedom in two- and three-dimensional
analyses, respectively) loaded uniformly along the element axis.
The intensity of loading on each element equals the average of
the actual loadings at the element’s nodes (see Figure 1). First, an

analysis is carried out with elements sized equal to the loading
digitization step. The displacement shear and moment diagrams
are depicted in Figure 3A. The analysis is then repeated with
4 times larger elements after implementation of the technique
proposed by Soroushian (2008), considering n = nx = 4, and the
results are reported in Figure 3B.

FIGURE 3 | Responses of the structural system in the first example obtained from finite element analysis using elements sized (A) 0.02m and (B) 0.08m.

FIGURE 4 | Structural system in the second example (A) structural model and (B) loading.

TABLE 2 | Properties of the structural members in Figure 4A.

Beam-column Length (m) Profile Modulus of Elasticity (GPa) Moment of Inertia (cm4) Area (cm2)

AB 20 IPB 500 210 1.072× 105 239

BC 30 IPB 500 210 1.072× 105 239
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FIGURE 5 | Responses of the second example obtained from analysis with elements sized (A) f1x and (B) 3f1x.
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FIGURE 6 | Responses of the second example considering large displacements and obtained from analysis with elements sized (A) f1x and (B) 3f1x.
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Apparently, the change of accuracy is trivial, while the

reduction of the computational effort is considerable.

The experience reported above clearly displays that the
technique proposed for more efficient time integration analysis

FIGURE 7 | Structural system in the third example (A) structural model and (B) loading.

FIGURE 8 | Responses of the third example obtained from analysis with elements sized (A) f1x and (B) 4f1x.
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(Soroushian, 2008) can also be effectual in enhancement of finite

element analysis.

Complicated Examples
Loading Non-perpendicular to the Member Axis in

Linear/Nonlinear Analysis
Consider the structural system introduced in Figure 4A and
Table 2. The finite element analysis is carried out using elements
similar to the previous example and sized f1x (see Figure 4B).
The results are displayed in Figure 5A. The analysis is repeated
with 3 times larger elements and has led to Figure 5B. The
two analyses are repeated, while considering the non-linearity
because of large displacements (Gao and Strang, 1989; Bathe,
1996), and the results are reported in Figure 6. In view of these

results, the change of accuracy is unrecognizable, regardless of the
non-linearity. The two examples in this section, and specifically
Figures 5 and 6, clearly reveal the possibility to expect good
performance from the technique proposed by Soroushian (2008),
when implemented in finite element analysis of static linear
and static non-linear behaviors of assemblies of beam-columns
subjected to digitized loadings, not necessarily perpendicular to
the beam-columns axes.

Curved Beam-Column in Linear/Non-linear Analysis
The structural system under consideration is introduced in
Figure 7, where the static loading is applied in the vertical
direction regardless of the position (see Figure 7B). Using the
element type addressed in the previous examples has led to the

FIGURE 9 | Responses of the third example taking into account large displacements and obtained from analysis with elements sized (A) f1x and (B) 4f1x.

FIGURE 10 | Structural system in the last example (A) structural model and (B) loading.
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TABLE 3 | Properties of the structural members in Figure 10A.

Beam-column Length (m) Profile Modulus of Elasticity (GPa) Moment of Inertia (cm4)* Area (cm2) Polar Moment of Inertia (cm4)

AB 30 IPB 500 210 1.072× 105 239 1.198× 105

BC 25 IPB 500 210 1.072× 105 239 1.198× 105

CD 5 IPB 500 210 1.072× 105 239 1.198× 105

EB 20 IPB 500 210 1.072× 105 239 1.198× 105

BF 20 IPB 500 210 1.072× 105 239 1.198× 105

GB 10 Box 400*400*40 210 1.259× 105 576 2.519× 105

*Each stated value is associated with the horizontal main axis of the cross-section perpendicular to the longitudinal axis of the member.

TABLE 4 | Complementary details of the supports of the structural system

displayed in Figure 10A.

Support Freedom of movement or rotation

A, D Free to rotate around the x, y, and z axes

E Free to rotate around the x and z axes

F Free to move along and rotate around the z axis

G No freedom for movement or rotation

responses reported in Figure 8. This is another evidence for the
applicability of the technique proposed by Soroushian (2008),
in analysis of assemblies of beam-columns (taking into account
the modification addressed in Section From Step-Enlargement
to Element-Enlargement). In view of the geometry of the
structure in this example, the study is repeated considering the
non-linearity because of large displacements. The consequence,
reported in Figure 9, is conceptually similar to the results of
the linear analysis reported in Figure 8. This implies that the
technique can display a good performance in different static
behaviors of beam-columns, even when the beam-columns
are curved.

A More Realistic Example
Consider the system introduced in Figure 10 and Tables 3, and
4, as a simplified model of a real structural system. Figure 10B
displays a loading originated in the longitudinal profile of
the Brenner Base tunnel, which is a part of the future TEN
No. 5 corridor Helsinki-Valleta (Bergmeister, 2012). Via this
assembly of beam-columns, and by finite element analysis with
the elements in the previous examples, the performance of
the technique proposed by Soroushian (2008) is tested. The
consequence is reported in Figure 11, once again evidencing the
good performance of the technique when applied to analysis of
assemblies of beam-columns. Compared to previous examples,
the contribution of lower frequencies is much more in this
example (see Figure 12). This implies versatility of the technique
with respect to the digitized loading. In this regard, Figures 13,
and 14, display a replacement of Figures 10B, and 11, as an
evidence for the versatility considering a specific assembly of
beam-columns. Furthermore, comparison between Figures 11

and 14 reveals that, as implied in the AC in Equation (14), the
enlargement of the element size corresponding to trivial change
of accuracy can also depend on the response.

More on the Efficiency
According to the almost perfect accuracy observed in Sections
A Simple Example, Complicated Examples, and A More
Realistic Example, the efficiency can be compared in view
of computational effort. Accordingly, less computational effort
implies more efficiency. Computational effort can be studied
in terms of the in-core storage involved in the computation
(Monro, 1982; Soroushian and Farjoodi, 2003; Zhou and Tamma,
2004). With attention to the details of finite element analysis
(Hughes, 1987; Bathe, 1996; Cook et al., 2002; Zienkiewicz and
Taylor, 2005), the storage changes with the α th power of the
number of the degrees of freedom, where 2 < α < 3 (Cook
et al., 2002). Consequently, the change of efficiency, E, because of
implementation of the technique proposed by Soroushian (2008)
can be addressed as

E2008

Etr
≈ nα

x (
TRtr

TR2008
), 2 < α < 3 (17)

whereTR stands for the run-time and the right subscripts “tr” and
“2008”, respectively indicate the traditional (ordinary) analysis
and the analysis after implementation of the technique proposed
by Soroushian (2008), considering nx as the enlargement scale
(n = nx). Equation (17), together with Figures 3, 5, 6, 8,
9, 11, and 14, and Table 5, clearly evidence the significantly
increased efficiency of the analysis after implementing the above-
mentioned technique, at the price of trivial change of accuracy.
Furthermore, the percentage of the enhancement of efficiency,
EE, can be expressed as

EE =

(

E2008

Etr
− 1

)

× 100% =

(

nα

x

TRtr

TR2008
− 1

)

× 100 (18)

which, in view of Equations (14, 17) and the fact that
TRtr > TR2008, is at least 300%, for the presented finite element
application (EEfemb ≥ 300%; the subscript “femb” stands for
finite element analysis of beam-columns). The smallest EE in
implementation of the technique proposed by Soroushian (2008)
in time integration analysis is 100% [both when disregarding the
fractional enlargement proposed by Soroushian et al. (2017)].

DISCUSSION

Static loadings addressed in Section Numerical Study vary from
the slow changing loading in the last example to the rapid
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FIGURE 11 | Responses of the fourth example obtained from finite element analysis using elements sized (A) f1x and (B) 4f1x.
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FIGURE 12 | Frequency contents of the static loadings in the (A) first example, (B) second example, (C) third example and (D) forth example.

FIGURE 13 | A replacement for Figure 10B for further study on the versatility.

changing loadings in the second and third examples (the rapid
case is rare). The technique proposed by Soroushian (2008) has
been significantly successful in implementation in analysis of
beam-column assemblies subjected to all of these loadings; see
Sections A Simple Example, Complicated Examples, A More
Realistic Example, andMore on the Efficiency, and Equation (18).
Even more, compared to time integration application, the
enhancement because of the technique is considerably more
in finite element analysis of beam-column assemblies; see
Equation (17) and the corresponding relation in time integration
application, i.e.,

E2008

Etr
= (

TRtr

TR2008
) ≈ n (19)

Meanwhile, it is worth noting that, as obvious in Equations (17)
and (19) and Table 5, different from time integration application,
in the finite element application, the enhancement of efficiency
is because of both faster analysis and less in-core storage.

Considering these, further study on the extension reported in this
paper is reasonable. In this regard, attention should be paid to the
fact that time integration and finite element analyses are different
in nature. As a main difference, while the former is a mean to
analyze ordinary initial value problems, the latter is a tool for
analysis of boundary value problems. Because of this difference,
the invalidity of Equation (11) does not impose additional errors
to time integration applications, while x′end 6= xend may lessen
the accuracy of the results in finite element analysis applications.
Another considerable difference is the amount of efficiency,
which can lead to:

(1) Sufficiency of upper-bounding nx by 4 [the upper-bound
for time integration analysis is 5 (Azad, 2015)], i.e.,

nx ≤ 4 (20)

Assigning larger values to nx enhances the efficiency trivially.
(2) Importance of fractional enlargement of digitization step

(Soroushian et al., 2017), especially when Equation (14) leads to

nx = 1 (21)

Therefore, further study on the extension of the technique
proposed by Soroushian (2008) to static analysis of structures by
finite elements is of high importance. It also sounds reasonable
to expect good performance, when applying the technique to
dynamic finite element analysis of different structural systems.
Even more, in continuation of the extension presented in this
paper, the enlargement of the digitization step (Soroushian,
2008) can be tested in other analyses, in the broad range
of science and engineering computation. In addition, it is
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FIGURE 14 | A consequence of the replacement addressed in Figure 13 (A) analysis with elements sizedf1x and (B) analysis with elements sized 2f1x.
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TABLE 5 | Values of nx ,TRtr, and TR2008 in the four examples studied in Sections A Simple Example, Complicated Examples, and A More Realistic Example*.

Example Section nx TRtr(s) TR2008(s) Minimum

enhancement of

efficiency (%)

1 A simple example 4 5 3 2567

2 (linear) Loading non-perpendicular to the member axis in linear/nonlinear analysis 3 16 7 1957

2 (nonlinear) Loading non-perpendicular to the member axis in linear/nonlinear analysis 3 16 6 2300

3 (linear) Curved beam-column in linear/nonlinear analysis 4 113 27 6596

3 (non-linear) Curved beam-column in linear/nonlinear analysis 4 125 30 6567

4 (first loading) A more realistic example 4 24 8 4700

4 (second loading) A more realistic example 2 13 8 550

*TRtr and TR2008 depend on the power of the computational facility.

essential to note that, similar to time integration application,
in implementation of the technique to finite element analysis,
determination of the adequate amount of enlargement is not easy.
The reason is the dependence of the AC in Equation (14) to
the response.

CONCLUSIONS

The technique proposed by Soroushian (2008) has been adapted
to finite element analysis of assemblies of beam-columns
subjected to continuous static loadings, available as digitized
records. As the main consequences,

1) The extension can be successful in linear and non-linear
analyses, for different target responses, when the beam-
columns are straight or curved, and the loadings are
perpendicular or non-perpendicular to the axes of the beam-
columns, and change gradually or sharply.

2) Implementation of the technique to static finite element
analysis of structural systems may suffer from an additional
source of error originated in the length of the structural
members. This can be obviated by satisfying Equations (13,
16) or assigning a slightly different size to one of the elements
in modeling the structural member.

3) For a specific digitization-step enlargement, enhancement
of efficiency because of the technique can be considerably
more in finite element analysis of beam-columns’ assemblies
compared to time integration analysis. A main reason is that,
in the finite element analysis application, the enhancement
of efficiency is via the decrease of the run-time as well as
the decrease of the in-core storage. In the time integration
application, only the run-time decreases.

4) The capability to enlarge the digitization step by fractional

scales is very important in the finite element analysis.

5) Practically, in application of the step-enlargement technique

to static finite element analysis, it is meaningless to enlarge
the digitization step more than 4 times.

6) Similar to the time integration application, ambiguities exist

in determination of nx in the finite element application.

As a perspective of future, more tests on larger and more
complicated assemblies of beam-columns is recommended.

Further study on improvement of the existing step-enlargement
technique in time integration, as well as finite element analysis,
especially on clearer determination of n and nx, is recommended.
Meanwhile, extension of the step-enlargement technique to other
problems and computational methods, specifically simultaneous
model reduction in space and time, is a reasonable area for
further research.
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In this paper, the current state of the art on shunt piezoelectric systems for noise and

vibration control is reviewed. The core idea behind the operation of electronic shunt

piezoelectric circuits is based on their capability of transforming the dynamic strain

energy of the host structure, i.e., a smart beam or plate, into electric energy, using

the properties of the direct piezoelectric phenomenon and sending this energy into the

electronic circuit where it can be partially consumed and transformed into heat. For

this purpose, transducers which are made by piezoelectric materials are used, since

such materials present excellent electromechanical coupling properties, along with very

good frequency response. Shunt piezoelectric systems consist of an electric impedance,

which in turn consists of a resistance, an inductance or a capacitance in every possible

combination. Several types of such systems have been proposed in the literature for

noise or vibration control for both single-mode and multi-mode systems. The different

types of shunt circuits provide results comparable to other types of control methods,

as for example with tuned mass-dampers, with certain viscoelastic materials, etc. As

for the hosting structure, several studies on beams and plates connected with shunt

circuits have been proposed in recent literature. The optimization of such systems can

be performed either on the design and placement of the piezoelectric transducers or on

the improvement and fine-tuning of the characteristics of the system, i.e., the values of

the resistance, the inductance, the capacitance and so on and so forth. There are several

applications of shunt systems including among others, structural noise control, vibration

control, application on hard drives, on smart panels etc. Last but not least, shunt circuits

can be also used for energy harvesting in order to collect the small amount of energy

which is necessary in order to make the system self-sustained.

Keywords: shunt circuits, piezoelectrics, vibrations, control, acoustics

INTRODUCTION

Smart materials, such as piezoelectrics, piezoceramics, shape memory alloys, fiber optics,
electrostrictive materials, magnetostrictive materials etc. can be integrated in structural models to
provide them with the smart behavior. In principle, the initial stress or strain produced by some
smart element can be controlled and leads to controlled, i.e., smart, behavior of the whole composite
structure. Piezoelectrics constitute a suitable technology for testing smart structure concepts, since
they have almost instantaneous reaction time without hysteresis and they work inmost cases within
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the linarity range. An important thing here is that both sensing
and actuation functions are possible due to the nature of
the piezoelectric effect. This specific characteristic leads many
investigators to deal with the passive control of vibrations by
using devices with shunted piezoelectric elements (Thomas et al.,
2009; Tairidis et al., 2018) in the form of an electric impedance.

This idea was first introduced in the innovative work
of Forward (1979) who suggested the use of piezoelectric
transducers in association with electric elements which he called
shunt circuits for passive vibration control. The main concept
consists of the transformation of the dynamic strain energy of the
host structure into electric energy. This is achieved by using the
direct piezoelectric effect and routing this energy into the shunt
circuit where it can be partially consumed (see Figure 1).

In fact, shunt piezoelectric systems with an electric impedance
can be very effective in structural vibration damping, thus they
have been extensively studied during the past decades. Several
shunting techniques have been developed based on different
shunting methods, (Hollkamp, 1994; Moheimani and Fleming,
2006; Tairidis, in press), in order to deal with the energy which
is produced by the structural vibrations. In these techniques, the
energy is usually expressed in terms of loss factor or more often
of a suitably defined damping ratio, depending on two distinct
matters; the contribution of the electromechanical coupling
and the design of the shunt system. Therefore, damping can
be accurately predicted if the generalized coupling coefficient
which describes completely the electromechanical coupling can
be described (Delpero et al., 2012).

At this point, it is worth mentioning that in terms of dynamic
behavior, certain types of shunt circuits present similarities with
several other types of vibration control methods, as for example
with tuned mass-dampers. Actually, as shown by Hagood and
von Flotow (1991) and Wu (1996), among others, if the shunt
circuit consists of a resistance R, i.e., it is a pure resistive shunt,
the dynamic behavior of the whole system is similar to the one of
a viscoelasticmaterial. In case of resonant, i.e., resistive–inductive
(RL) shunt circuit, the influence of the circuit is analogous to the
one of a viscously damped dynamic vibration absorber (Viana
and Steffen, 2006).

Some even more sophisticated electronic shunt circuits for
the increase of the damping capability of the system have
been also proposed recently, as it will be shown in the
following sections. Such systems include, among others, switched
shunts (Ducarne et al., 2010) and negative capacitance circuits
(Marneffe and de, 2008).

PIEZOELECTRIC MATERIALS

Piezoelectric materials are very attractive functional materials in
smart structures because they can directly convert mechanical
energy to electrical and via versa. In 1880, the piezoelectric
phenomenon discovered by Curie and Curie (1881) initially
discovered the direct piezoelectric effect in the tourmaline
crystals. They found that a mechanical deformation in specific
directions causes opposite electrical charges on opposite
crystalline faces, which are proportional to the magnitude of

the mechanical deformation. This phenomenon, which was
also observed in quartz and other crystals without a center
of symmetry, was called a piezoelectric phenomenon (from
the Greek words “πιέζειν-piezein” that means to squeeze or
press and “ηλεκτoν-ēlektron,” which means amber, an ancient
source of electric charge. This phenomenon is called the
direct piezoelectric effect (as shown in Figure 2A). However,
when an electric field is applied to the material a mechanical
stress or strain is induced; this phenomenon is called the
converse piezoelectric effect (see Figure 2B). However, the Curie
brothers did not predict the reverse piezoelectric effect, which
was mathematically deduced from fundamental thermodynamic
principles by Lippmann (1881).

Piezoelectric materials present very good electromechanical
coupling properties, as well as excellent frequency response,
due to their nature. Thus, such materials have been extensively
used in vibration control of smart structures, in structural
health monitoring, energy harvesting, optimal positioning,
etc. The direct phenomenon is mainly used in sensors
(detection of structural flaws, vibration suppression, etc.)
or for the harvesting of the energy which is produced by the
vibrations. On the other hand, the reverse phenomenon
is mainly used on actuators. Piezoelectric transducers
are available in many forms and shapes, usually in
thin sheets, and are capable of producing forces from
applied voltages.

Piezoelectric materials exhibit, also by their nature, a non-
linear behavior, which is reinforced by their complex grain and
domain structure. The understanding of the properties of such
materials over a large range of parameters (e.g., temperature,
frequency, stresses, etc.) is essential. The knowledge of the
electroelastic constitutive behavior is very important in order to
predict the response of a structure with embedded piezoelectric
sensors and actuators. The non-linear behavior of piezoelectric
ceramics is outlined among others in Mukherjee et al. (2001) and
Albareda and Pérez (2011). A focused, multidisciplinary review
on the field-dependent nonlinear piezoelectricity is provided
by Benjeddou (2018). The non-linear constitutive equations for
piezoceramic materials are given in detail in Joshi (1992). The
analytical modeling of non-linear piezoelectric transducers is
investigated, among others, in Mack (2003). According to Mack
(2003) a possible reason of the occurrence of non-linearities is
the interaction between isotropic elements and the anisotropic
piezoelectric sensor.

Optimal control of smart structures with the use of
piezoelectric sensors and actuators on vibration suppression was
presented in Stavroulakis et al. (2005). Two different control
schemes, i.e., LQR and H2 control, are compared. The results
have shown that sufficient vibration suppression can be achieved
in smarts structures with the use of piezoelectric materials.

In Buchacz et al. (2013) the control of the characteristics
of a piezoelectric mechatronic system is investigated. More
specifically, two examples of systems with piezoelectric
transducers are considered in order to examine the suppression
of vibrations; a single piezoelectric plate glued on a mechanical
subsystem surface, and a piezostack, i.e., a set of piezoelectric
plates vibrating in a thickness mode. In both cases, the
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FIGURE 1 | A beam model with a resonant shunt piezoelectric circuit.

FIGURE 2 | (A) Direct piezoelectric phenomenon, (B) Reverse piezoelectric phenomenon.

desired characteristics of the studied systems were generated
and presented.

DESCRIPTION OF SHUNT
PIEZOELECTRIC SYSTEMS

Shunt systems, also known as shunt piezoelectric systems, are
electric circuits connected with piezoelectric elements (e.g., PZT
patches, piezoelectric transducers, etc.). Such systems are mostly
passive, however, recently, also semi-passive or even active
systems have been proposed.

During passive shunt control, a piezoelectric actuator
is necessary in order to convert the mechanical energy,
which is produced by the vibrations of the structure,
into electrical energy. This energy is transferred to
the electric elements of the shunt circuit in order
to be destroyed, and thus to suppress the vibrations
(Corr and Clark, 2003; Fleming and Moheimani, 2004).

The use of piezoelectric patches connected with resistive shunt
circuits, i.e., circuits with only a resistance, was first proposed
by Hagood and von Flotow (1991). The proposed formulation
provided an equivalent vibration damper. Regarding structural
damping, resonant shunt circuits (resistive inductive) can also

be very useful for the control of single modes. These systems are
characterized by the need for specific inductance and resistance
values in order to reach the optimum values in terms of vibration
attenuation. This is due to the fact that the passive control
system uses the principle of dynamic absorbers by tuning the
resonance frequency of the shunt circuit to the natural frequency
of the structural system. These circuits are equivalent to vibration
absorbers within a narrow frequency range.

In general, shunt circuits can be roughly classified into passive
and active. Another categorization of these circuits can be
into linear and nonlinear. Several approaches with resonant,
resistive, capacitive, and switching shunts have been proposed
(Niederberger, 2005). The most common shunt circuits are
depicted in Figure 3.

Piezoelectric Shunt Damping
The basic principles of passive damping with shunted
piezoelectric elements are analytically presented in the very
recent book of Preumont (2018). Resistive, inductive and
resonant shunting are examined. Moreover, several ways of
tuning of such systems in terms of inductance are discussed,
along with the capabilities of synchronized switch damping. The
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FIGURE 3 | Categories of shunt circuits.

idea of active damping with shunted piezoelectric elements is
discussed, among others, in the book of Preumont (2006).

Semi-passive shunt electrical components are used for the
tuning of vibration controllers in McDaid and Mace (2016). The
system consists by an electromagnet with an adaptive synthetic
shunt impedance. The design of the system allows self-tuning
and maintenance, even when variations in excitation frequency,
environmental conditions or shape properties are present. The
control system consist of two different types of controllers

and many algorithms for each type are used. Experiments
demonstrate that the linear controller is not reliable, however,
some good results are obtained for polynomial and fuzzy
controllers. The proposed control system adjusts very well to
variable excitation frequencies, it is stable and performs efficiently
for different modifications of the system’s parameters. An RC
shunt, i.e., a circuit of a resistor and a capacitor, is developed,
and its parameters are adapted online in order to achieve optimal
tuning. The results are verified experimentally.
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A semi-passive damping technique is presented in Liu and
Vasic (2013). The proposed method is based on pulse-width
modulation and it can significantly increase the structural
damping of the system. With this method, the waveform of the
piezoelectric voltage accommodates to the vibration velocity,
the system has a stable voltage source and at the same time
the performance is increased. The theoretical part of the
investigation is also experimentally proved.

The synthesis of electromagnetic shunt impedances for
vibration control of structures is studied in Behrens et al.
(2004). Namely, a technique of sensor-less active shunt control
for application to a mechanical vibration system is proposed.
For the minimization of structural vibrations, an electrical
impedance was designed and connected to an electromagnetic
element. Common control tools were used to design the required
shunt impedance. The application of an active shunt impedance
reduced the vibration of the structure without the use of any
additional feedback sensors.

As an alternative to the above, negative capacitance shunt
systems have also been examined by many authors. Among
others, Marneffe and de (2008) study a scheme for vibration
damping with negative capacitance shunts both theoretically
and experimentally. Namely, the enhancement of piezoelectric
transducers by means of negative capacitive shunting is
considered. Two different implementations are investigated; one
in series and one in parallel. The results indicated the lack of
robustness of the parallel system. From the experimental results
on a truss structure it is shown that the damping which is
introduced by the negative capacitance shunt system is larger
than the damping which is obtained by the passive shunt circuits.

General Electromechanical Equations of Shunted

Piezoelectric Systems
The general electromechanical equations which describe the
behavior of piezoelectric materials are defined in the IEEE
Standard on Piezoelectricity (American National Standards
Institute et al., 1987):

{
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=
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cE −e
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After Hamilton’s principle and discretization with finite elements
for coupled electromechanical systems (Thomas et al., 2009)
one has:
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The equation of motion of the coupled piezoelectric
electromechanical system, as described in Equation (2), can
be rewritten as a set of two coupled equations (Jeon, 2009a,b):

[M]{ẅ} + [C]{ẇ} + [K]{w}]+ [Θ]{v} = { F} (3)

[Θ]t {w} −
[

Cp

]

{v} =
{

q
}

The first equation describes the equilibrium state of mechanical
forces, while the second one gives the electromechanical state of

the electric potential. These two equations are used to describe
the piezoelectric passive damping force from the piezoelectric
shunt damping system, which is connected with the electrodes,
to the host structure.

The electric voltage across the piezoelectric patches and the
shunt circuit can be represented by the current-voltage ratio in
the Laplace domain:

Vsh (s) = Zsh(s) · Ish(s) (4)

Substituting in Equation (4) the electric current Ish (s) with the
derivative of the electric charge q̇(s) from the second part of
Equations (3), one obtains the relation:

Vsh (s)=Zsh (s) · q̇ (s)=Zsh (s) · ([Θ]t {w} s−
[

Cp

]

V
sh

(s) s) (5)

Solving Equation (5) for Vsh(s), we have the relation:

Vsh (s) =
Zsh(s) [Θ]t {w} s

1+ Zsh(s)
[

Cp

]

s
(6)

where s is the Laplace operator.
Substituting the Equation (6) in the first equation of Equation

(3) we obtain the relationship of the shunted piezoelectric
system where the additional passive piezoelectric damping force
is considered:

[M] {ẅ} +
(

[C]+ Ztotal [Θ] [Θ]t
)

{ẇ} + [K] {w} = {F} (7)

where the inherent capacitance Ztotal of the system includes the
total electric impedance of the shunted piezoelectric Zsh as:

Ztotal =
Zsh

1+ Zsh
[

Cp

]

s
(8)

Equation (7) can be transformed into the modal domain using
the following modal coordinates:

{w} = [8]{ξ} (9)

Substituting Equation (9) into Equation (7) and transforming
into the frequency domain, one can obtain the uncoupled
equations of motion for harmonic vibrations in the
modal domain:

− ω
2[m]{ξ } + jω([c]+ Ztotal [Θ])+ [κ]{ξ} = {f } (10)

{ξ} = (−ω
2[m]+ jω([c]+ Ztotal[Θ])+ [κ])

−1
{f } (11)

Piezoelectric Shunt Acoustic Control
Piezoelectric shunt acoustic control is a more general term, i.e.,
a superset, of piezoelectric shunt damping, as it includes also
systems without damping. The core idea behind this concept for
vibration control of mechanical systems is depicted in Figure 4.

For the case of acoustic systems (see Figure 5), the
piezoelectric transducer is embedded into the system and
acoustic pressure is applied. The piezoelectric element is used
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FIGURE 4 | The concept of the piezoelectric shunt acoustic control for

vibration control of mechanical systems (shunt damping).

for the deterioration of acoustic signals in the same way it does
for the mechanical vibrations. This approach was suggested by
Forward (1979) and Forward and Swigert (1981). In these studies,
a single piezoelectric element is used between the host structure
and the electrical shunt circuit, in a form of a passive resistor or a
resonant circuit.

The greater part of the published studies in the field of
piezoelectric shunt acoustic control has mainly focused on
resonant shunt circuits for the control of vibration and more
specifically on vibration damping.

Shunted Piezoelectric Circuits
Single Mode Shunt Circuits
A finite element formulation, as well as, a reduced-order model
is proposed for the piezoelectric shunt vibration damping of
structural-acoustic systems (Deü et al., 2014). This model is
used for the approximation of a fully coupled electromechanical
system using modal projection techniques. The piezoelectric
patches, along with bonded resonant shunt circuits, are
considered for the suppression of the vibrations of the coupled
system. The numerical results illustrate the accuracy and the
adaptiveness of the proposed reduced-order model, regarding the
requested attenuation.

Another efficient finite element formulation, along with a
suitably defined set of electromechanical coupling coefficients
for an elastic structure with shunted piezoelectric circuits is
sought in Thomas et al. (2009). More specifically a numerical
simulation with application for control, sensing and vibration
reduction is conducted. In parallel, a reduced-order model
using modal techniques is proposed in order to show that the
electromechanical coupling coefficients are the main parameters
in coupling. The results are verified by an application on a
cantilever beam.

Numerical modeling of noise and vibration reduction of thin
radiating structures in the low frequency range is presented from
(Silva et al., 2014). Piezoelectric patches which connected with
two types of electrical shunted circuits (resonant and resistive) are

used for the analysis. The parameters of placement and size of the
piezoelectric patches are optimized with objective the adoption
of better results in terms of the reduction of structural vibrations
and acoustic radiation.

In Andreaus and Porfiri (2007) the problem of the effect
of variations of the electric impedance with respect to its
optimal selection in an electric network for resonant piezoelectric
shunting system is analyzed.

Two novel electromagnetic shunt damping vibration isolators
(EMSD-VIs) are proposed in Yan and Zhang (2012). The aim
of the work is the isolation of vibrations of a beam structure. A
pair of electromagnetic coils along with a box-shaped spring with
variable damping are used. The negative resistance is introduced
in order to improve the performance of the isolation system.
The design rules of the shunted negative resistance are obtained
by stability analysis. An experimental validation of the proposed
theoretical model is also carried out.

A detailed study which focuses on the optimization of
piezoelectric actuators which are shunted with LR Impedances
is presented in Berardengo et al. (2015). Namely various
algorithms are used to optimize the values of the electric
components of the shunt impedance in order to achieve better
performance and guarantee the robustness of the whole system.
The algorithms which are presented are in compliance with the
tuned mass dampers theory, which is used also for comparison.
Analytical and numerical results are confirmed by the ones of a
corresponding experiment.

The damping of structural vibrations with piezoelectric
materials and passive electrical networks is studied in the
work of Hagood and von Flotow (1991). The shunted
piezoelectric circuit add some frequency dependent stiffness
to the system. The general model is specialized for two
different circuits; one with only a resistor (resistive shunt)
and one with a resistor and inductor (resonant shunt). The
material presents viscoelastic behavior in the case of the
resistive shunt, however, when it comes for the resonant shunt
with a resistor and an inductor, an electrical resonance is
introduced to the system, which in turn can be tuned to
structural resonances. An experiment on a cantilevered beam
is conducted and the results validate the shunted piezoelectric
damping models.

Multimode Shunt Circuits
A new method regarding the use of shunted piezoelectric
transducer patches (PZT) for vibration reduction of multiple
modes is presented in Fleming et al. (2000). Namely, it is
proposed that the vibrational mechanical energy of a structure
can be consumed via an electrical impedance by the PZT patches.
This method used an arbitrary impedance using a current source
and a digital signal processor.

According to Viana and Steffen (2006) the analytical model
of passive vibration damping using piezoelectric patches with
resonant shunt circuits shows that the general behavior of
shunted piezoelectric systems is similar to the classical dynamic
vibration absorbers. The study presents interesting analytical and
experimental data concerning the design of the interlaced circuits
with synthetic inductors.
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FIGURE 5 | The concept of the piezoelectric shunt acoustic control for control

of noise (sound transmission) on a smart panel.

Moreover, Cheng et al. (2009) have employed a multiple
current flowing electromagnetic shunt damper for semi-
active vibration suppression of flexible structures. The system
was electromagnetically-mechanically coupled between the
electric circuit and mechanical beam vibration by using an
electromagnetic transducer.

A multi-mode passive piezoelectric shunt model is proposed
in Berardengo et al. (2017). The shunt damping is investigated
by means of matrix inequalities, while the involved impedance
is treated as a controller of the electro-mechanical system. The
paper focuses on passivemulti-mode vibration control in order to
find the optimal impedance. The proposed method successfully
overcomes the difficulties of multi-mode shunt control strategies.
The results of the investigation show the capability of the
matrix inequality method to provide sufficient damping. An
experimental verification is also carried out.

In the work of Goldstein (2011) a method for the design and
online adaptation of multimodal piezoelectric resonant shunts
is discussed. The difference between the proposed method and
other multi-modal shunting methods, such as current blocking
and current flowing, lies to the implementation of the shunting
network. Namely, a reduced number of discrete electrical
components is used for the online tuning of the parameters of
shunt system. The mathematical model provides the coupled
equations of motion of the structure with piezoelectric elements
and passive shunt networks. The design of the multimodal shunt
network is presented based on passive filter synthesis methods.
An experimental demonstration of the proposed multimodal
self-tuning damper is also presented.

An online tuned multi -mode resonant piezoelectric shunt
controller for vibration attenuation is proposed in Niederberger
et al. (2004). For the optimal adjustment of the shunt parameters,
the relative phase difference between a vibration reference signal
and the shunt current is minimized. The proposed technique is
validated by experiments. More specifically, it is demonstrated
that the damping of two structural modes can be achieved at

the same time. The convergence of the adjustment is quick
and optimal performance in the presence of uncertainties
is maintained.

In Nguyen and Pietrzko (2006) a finite element analysis of a
piezo-actuated adaptive aluminum beamwith vibration damping
which use an electric multiple-mode shunt system is considered.
Electric finite elements are used in order to simulate explicitly the
R-L shunt circuit. Calculations are also extended to a multiple-
mode shunt system, where each branch consists of a parallel R-L
shunt circuit in series with two C-L circuits in order to block two
different resonance frequencies. The results indicated that in the
modified system, only the half of the circuits are needed.

Multiple-mode structural vibration control using negative
capacitive shunt damping is studied in Park and Park (2003).
A novel shunt piezoelectric circuit, capable of attenuating
multimode vibration amplitudes by using a pair of piezoceramic
patches is presented. The damping mechanism is described
considering a voltage which is constrained by the impedance
of the shunt circuit. The presented numerical results indicate
that the piezoelectric beam model combined with a series
and a parallel resistor-negative capacitor branch circuit can
suppress multiple-mode vibration amplitudes over a frequency
range of interest with respect to the dynamic response of the
whole structure.

Multimodal passive vibration control of sandwich beams with
shunted shear piezoelectric materials is investigated in Trindade
and Maio (2008). The performance of a multimodal passive
vibration control scheme, based on independent resistive shunt
circuits, is studied. The shunt control scheme is applied on a
sandwich beam core using shear piezoelectric materials. The
numerical results indicate that modal damping factors of 1%-2%
can be obtained for three selected vibration modes.

An F-15 panel was tested in acoustic excitation in Wu et al.
(2000). The aim of proposed method was to examine the ability
of the system with bonded piezoelectric elements to control
and survive of high acoustic excitation levels, and to investigate
the piezoelectric shunt-damping technique at these excitations.
Single- and multiple-mode shunting systems were used in
order to suppress the first two modes. For this purpose, many
piezoelectric components, along with two shunt electric circuits
were used. Experimental results are also presented with details.

The use of piezoelectric transducers, shunted with a multi-
terminal network, in multimode vibration control is presented
in Giorgio et al. (2009). The reduction of vibrations for one- and
two-dimensional mechanical structures of shunted piezoelectric
transducers with electric networks is studied. Namely, a method
for controlling “n” structural modes by “n” piezoelectric
transducers shunted with an electric network system is presented.
The proposed technique can be classified as a virtual passive
damping method.

Lastly, a different approach for the control of several modes is
proposed by Tairidis (in press). According to this study, vibration
control of different modes can be achieved considering a set of
optimized resonant shunt piezoelectric circuits in combination
with an intelligent adaptive neuro-fuzzy control system. In this
approach, shunt circuits can be pre-tuned to the first four
eigenfrequencies and the control system can be used for the
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activation of the suitable shunt circuit, each time. This makes the
whole system not only adaptive, but effective as well.

Switching Shunt Systems
An autonomous piezoelectric shunt damping system is described
in Fleming et al. (2003a). More specifically, an efficient, light-
weight, and small-in-size technique for implementing switched-
mode piezoelectric shunt damping circuits is presented. The
experimental results demonstrate the effectiveness of the shunt
circuit implementation, as with the current-flowing shunt circuit,
twomodes of a simply supported beamwere successfully reduced
in amplitude by 21.6 and 21.3 dB, respectively. The development
of a device which connects research and practical application is
also discussed.

Another autonomous shunt circuit for vibration damping is
presented in Niederberger and Morari (2006). In this study,
an implementation of an autonomous switching resonant (R–
L) shunt circuit for the reduction of structural vibrations is
described. The resulting circuit does not require power for
its operation and is almost as effective as a classic shunt.
Moreover, experiments show that the damping performance is
robust against temperature variations which are caused due to
environmental conditions, whereas other shunt circuits lose their
damping performance. The proposed system requires only a
minimum number of electronic components; therefore, it can be
considered as an effective solution for the control of vibrations.

A third application on autonomous shunt circuits is
presented in Niederberger (2005), where a hybrid system for
the development of an optimal control system for vibrational
damping is studied. More specifically, the system obtains the
optimal laws for the switching of the circuits. Multi-parametric
programming allows to the calculation of the switching law
which is necessary for the partitioning of the state-space into
regions where the switch is either open or closed. The electronic
shunt circuit requires a small amount of power for its operation,
which in some cases can be neglected. From the experimental
results it is shown that the proposed autonomous damping circuit
could suppress vibrations, but it is not as effective as a standard
resonant shunt circuit.

In Ducarne et al. (2010), structural vibration reduction by
switch shunting of piezoelectric elements is discussed. More
specifically, the study deals with modeling and optimization
in terms of the reduction of structural vibrations by means
of synchronized switch damping techniques on piezoelectric
elements. The electrical impedance is selected either as a simple
resistance, which produces a synchronized switch damping on
short circuit or a resistance and an inductance in series, where
a synchronized switch damping occurs on the inductor. The
extra damping which is added by the piezoelectric device is
also estimated. From the results it is concluded that the only
parameter which needs to be optimized is the piezoelectric
coupling factor. In fact, if this parameter is maximized, the
damping which is added to the system is maximized as well.

In Collinger et al. (2009) a new vibration control method
on beams is presented. The controller is synchronized in every
change of the parameters of the system (mass, stiffness, and
excitation) and dissipates the maximum amount of energy.

The simulation takes into account the coupled dynamics of
the structure and piezoelectric circuit to obtain the general
coordinates between the sets of modes for the open- and closed-
switch modulation. With this method, the time instants of the
optimal switching procedure are recognized through a filtered
velocity signal. A fuzzy logic algorithm is used in order to
maximize depreciation. The efficacy of the method is confirmed
by laboratory tests on a headlamp driven by the stimulation of
the base and two piezoelectric elements attached to the beam for
vibration control.

In Chen et al. (2013) a self-powered damping system based
on zero-velocity crossing detection is presented. The control
signal is obtained from a velocity sensor which controls the
switches of the system. The system does not require any type of
external energy, except from the one which is harvested using the
synchronized switch damping on inductor (SSDI) technique. The
proposed technique has the advantage of no delay switching time,
in comparison with the one based on a voltage peak detector. The
self-powered technique has been also experimentally tested.

An aggregation of the advantages and disadvantages of the
several types of shunt systems which are reviewed in the present
paper is outlined in Table 1.

From the investigations which are reviewed in the present
paper, it is found that resonant shunts, i.e., circuits with inductors
and resistors which are tuned around natural frequencies, are
the most efficient, in terms of damping of several structures
and systems.

Shunt Systems on Composite Structures
Several investigations on beam structures with piezoelectric
materials connected with shunt circuits have been proposed in
literature. For example, in Lossouarn et al. (2017), a possible
design of inductors with high inductance values for resonant
piezoelectric damping, which takes into account practical
limitations which usually appear in the low frequency range
is presented. The electrical elements are integrated into a
piezoelectric shunt circuit which is dedicated to the control of
vibrations of a cantilever beam. From the results of the analysis,
it is shown that specific designs can extend the application of
passive resonant shunt strategies, especially for lower frequencies.

In Isola et al. (2004), the passive damping of beam
vibrations through distributed electric networks and piezoelectric
transducers is studied. The aim of the paper is to present a design
of a device for damping, along with experimental validation. For
this purpose, two different electric networks were used; a purely
resistive network and an inductive–resistive (resonant) one. The
feasibility and the effectiveness of the proposedmethods, in terms
of structural damping, were validated through an experiment,
presenting very good agreement with the numerical results.

A passive modal damping method using piezoelectric shunts
is presented in Granier et al. (2002). More specifically,
piezoelectric materials are used in conjunction with passive
inductance-resistance-capacitance (RLC) shunt circuits in order
to provide vibration damping in specificmodes. The piezoelectric
transducers are used for the conversion of mechanical energy
into electrical, which, in turn, is consumed in the shunt
circuit as heating. In order to test the circuits, an impulse
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TABLE 1 | Comparison of shunt systems and methods.

Shunt systems Advantages Disadvantages

Single-mode Easy to implement and tune Limited capabilities and applicability in real-life

applications, medium efficiency

Multi-mode Wide range of applicability, easy to implement, increased

efficiency

Increased complexity, hard to tune

Switching Wide range of applicability, increased efficiency Delay of response, increased complexity

Resistive (R) Easy to implement and tune Very limited capabilities and real-life applications, poor

efficiency

Resonant (RL) Easy to implement, wide range of applicability, increased

efficiency

Not always easy to tune

Resistive-Inductive-Capacitive (RLC) Wide range of applicability, increased efficiency Not always easy to implement and tune

Negative capacitance Increased efficiency, applicability in specialized real-life

applications

Increased complexity, hard to tune

Synthetic impedance Applicability in specialized real-life applications Increased complexity, not always easy to tune

is applied to a simple cantilever beam and the parameters
of the RLC circuit are tuned in order to provide the
desired damping.

Piezoelectric RL shunt damping of flexible structures, and
more specifically of piezoelectric beams, is discussed in Høgsberg
and Krenk (2015b). The calibration of the involved parameters
is based on the equal damping of the two eigen modes which
are associated with the resonant vibration of the structure. A
quasi-static contribution from the non-resonant vibration modes
of the structure is also included in the analysis, which leads
to explicit calibration expressions for the circuit components.
A simple numerical example indicates the effectiveness of the
proposed scheme.

Resonant shunt circuits with piezoelectric elements bonded
on a thin beam are studied in Hassan et al. (2011). Resonant
RL shunt circuits, both in series and in parallel are considered.
An iterative process based on finite elements is used in order to
find the optimum values of the resistance and the inductance of
the system.

A piezoceramic shunted damping concept regarding
testing, modeling and correlation on cantilever long beams,
which are bonded with single pairs of small piezoceramic
patches symmetrically on both surfaces, upper and lower, is
presented in Chevallier et al. (2009). Experimental results are
used for the evaluation and the assessment of the shunted
damping concept of the host structure. The efficiency of
the proposed technique is measured by the modal effective
electromechanical coupling coefficient, which is calculated
from free-vibrations analyses under short- and open-circuit
formulations. ABAQUS commercial software is used for the finite
element analysis.

In Fleming and Moheimani (2005), a method for the design
and the implementation of high-performance piezoelectric
shunt impedances in order to control mechanical vibrations is
presented. The shunt impedance design can be accomplished
by solving a common control problem with parameters the
transducer voltage inputs and charge outputs. The impedance
which occurs from the proposed method has been compared
experimentally with a resonant shunt system on a cantilever
beam. The results of the experiment have shown significant

reduction of vibrations of the structure in the first mode of
the cantilever.

In Buchacz and Płaczek (2011) a one-dimensional flexural
vibrating mechatronic system is studied. The system includes
a cantilever beam with piezoelectric elements connected with
an electric circuit for the damping of vibrations. The Galerkin
method was used to analyze the system. The damping of
the structure was taken into account. Kelvin-Voigt model of
materials was used for the introduction of Rheological properties.
The results of the proposed method were presented in 3D graphs.

In the work of Schoeftner and Irschik (2009), passive damping
and vibration suppression of beams using shaped piezoelectric
layers and tuned inductive networks is studied. More specifically,
the study is focused on the development of an extended
Bernoulli–Euler beam theory for passive piezoelectric composite
structures which considers also the presence of electric networks.
From the results it is shown that control of vibrations for
a cantilever beam is possible, under certain conditions for
the electric elements. In another work of the same group
(Schoeftner and Irschik, 2011), a comparative study of smart
passive piezoelectric structures interacting with electric networks
is carried out. The results from Timoshenko’s beam theory are
compared with finite element calculations of plane stress.

During the last three decades, several investigations on the
use of piezoelectric transducers for the vibration control of thin
plate-like structures have been carried out by many authors.
In the work of Saravanos (1999), the damping of vibrations of
composite plates with passive piezoelectric-resistor elements is
studied. It is shown that, for each mode, there is an optimal value
of the resistance which adds significant modal damping. Away
from this optimal value the damping gradually reduces to zero.

Vibration control of plates with passive electrical dampers
made of shunted piezoelectric materials is studied in Park et al.
(2005). The electrical absorber, which is proposed in this paper,
consists of piezoelectric patches connected with a resistor and an
inductor in series and can be considered as an equivalent to the
damped mechanical vibration absorber. In order to estimate the
effectiveness of the absorber, the equations of motion are derived
by the classical laminate plate theory and Hamilton’s principle.
The theoretical analysis is also experimentally validated for the
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simply supported plates and the performance of the passive
electrical damper is demonstrated. The resulted model can be
used in many engineering applications.

Electrical tuned vibration absorbers are studied by Tondreau
et al. (2014). Namely, an application of the equal-peak method
to linear and non-linear RL piezoelectric shunts is presented.
The major contribution of this study to the current state of
the art is to propose a new optimum design of a series RL
piezoelectric shunt, and at the same time to apply it on a
realistic example. For this purpose, a clamped-free steel plate
with piezoelectric layers is considered. The laminate structure
is excited by using two piezoelectric actuators and it is shunted
with two piezoelectric elements. The improvement of damping
performance in the presence of structural non-linearities using a
non-linear piezoelectric tuned vibration absorber is presented.

Another application of shunt circuits on smart plates is
presented in Kim et al. (2000). The measured electrical
impedance is the basic parameter for tuning the parameters of
passive piezoelectric damping. Unlike the usual tuning method
related to a mechanical vibration absorber, the proposed method
uses the electrical impedance model of which parameters are
found from measured impedance data. Maximization of the
amount of dissipated energy at the electrical components is the
basic criterion for optimization. Experiments with cantilever
beams and plates shows good accordance of the proposedmethod
with the commonmethods of tuning. Themethod can be used for
structures of any shape and it is also applicable for multiple-mode
piezoelectric damping with the same piezoelectric patch.

Last, but not least, in the work of Saravanos (2000)
composite beams with piezoceramic patches, piezoelectric plates
and laminated piezoelectric shell structures with integrated
electric circuits are studied in terms of passive damping. More
specifically, numerical and experimental results are presented for
several structural formulations. Form the results, the dependence
of piezoelectric damping on shunting resistance, structural shape,
and curvature is demonstrated. An important outcome, which
occurred by both the analytical and experimental studies, was
that regardless of the configuration of the structure, the concept
of passive piezoelectric damping is feasible and moreover, the
values of the electric components can be easily tuned.

OPTIMIZATION OF SHUNT
PIEZOELECTRIC SYSTEMS

Optimization of the Design and of
Placement of PZT
Optimal placement and dimension optimization of shunted
piezoelectric patches for vibration reduction is the object of
study in Ducarne et al. (2012). The investigation is carried out
through optimization procedures of the damping performance of
both the geometry of the piezoelectric patches and their position
in the elastic structure. Optimization is based on maximizing
the modal electro-mechanical coupling factor (MEMCF) of the
mechanical vibration mode on which the shunt is tuned. Several
important conclusions regarding the mechanism of coupling
between the piezoelectric patches and the host structure are

drawn from the study. The results of the investigation are also
confirmed experimentally.

In the work of Bachmann et al. (2012a), a strain energy–based
finite element approach for the optimum piezoelectric patch
positioning is presented. More specifically, the finite element
method is used in order to provide an efficient approximation
for the calculation of the coupling coefficient. The method
is applied on a smart composite turbomachine blade. Two
different placement positions of the piezoelectric patches are
proposed. An experiment is conducted for the verification of
the results on a blade structure and the coupling coefficient
was compared to the calculated values. A novel optimization
method based onmodal strains was used to calculate both electric
charge and generalized electromechanical coupling coefficient of
piezoelectric patch transducers.

Actuator location optimization is also studied by Foutsitzi
et al. (2013b). In this work, a numerical investigation on the
optimal voltages and on the optimal placement of piezoelectric
actuators for shape control of beam structures is presented. A
hybrid optimization scheme, based on great deluge and genetic
algorithms, is proposed. The optimal location of the piezoelectric
actuators is sought considering the minimization of the error
between the achieved and the desired shape of the structure. The
results indicate the efficiency of the proposed method.

Last but not least, in the work of Zorić et al. (2012), a
multi-objective fuzzy algorithm for the optimization of sizing
and location of piezoelectric elements is proposed. Namely,
the location of piezoelectric sensors and actuators on thin-
walled beam structures is studied. The optimization criterion
is the degree of controllability, while the whole process takes
into account the involved constraints from the dynamics of
the structure. The discretization is done by using the finite
element method, while the optimization is based on the particle
swarm method.

Optimization of Shunt Characteristics
In Thomas et al. (2012) the passive damping of vibrations
in any form of construction for free and forced oscillation
is studied by means of shunted piezoelectric patches. The
conclusion from this research is that oscillation reduction
performance depends mainly on a single parameter: the so-called
modal electromechanical coupling coefficient (MEMCF) of the
mechanical vibration mode. Thus, in order to optimally tune the
resonant shunt system, one has to find the optimum value of this
coefficient. From the experiments, a satisfactory agreement with
the proposed theory is achieved.

A new method of adjusting the parameters of shunt circuits
for passive piezoelectric damping of structures is presented
by Kim et al. (2000). During the adjustment process, the
optimal parameters of the shunts are identified from measured
impedance data, to maximize the dissipated energy in the
shunt circuit.

In Mokrani et al. (2015) a method for the damping
of vibrations of structures with piezoelectric transducers is
proposed. Specifically, the area near the natural oscillation
frequency is studied using an adaptive induction scheme. Linear
RL branches for damping of only one mode at a time have been
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investigated. The problem is associated with the robustness of
the RL branch with respect to resonant frequency variability
and it was resolved by adapting the inductor value L through a
controlled voltage inducer.

A novel acoustic radiation optimization method for vibrating
panel-like structures with passive piezoelectric shunt circuits
is presented in Jeon (2009a). The objective of the work
is the minimization of the well-radiating modes generated
from the panel. The optimization scheme is a mixture of
the p-version finite element method, the boundary element
method and the particle swarm optimization algorithm. The
optimum design works like a stiffener so that well-radiating
modes are shifted up. However, the optimized panel require
additional damping for attenuating the peak acoustic amplitude,
thus a passive shunt damping system is employed. The
particle swarm optimization is used in order to achieve the
optimum performance for the damping of several modes
simultaneously. An experiment is also carried out and it is
shown that the numerical results have good agreement with the
experimental ones.

In the work of Fleming et al. (2002) a new approach aiming
to provide the optimal performance and implementation of
piezoelectric circuits is introduced. The method determines
the resistance values by minimizing the H2 standard of the
dampened system. The short circuits are normally implemented
using discrete resistors, virtual inductors and Riordian gyrators.
Synthetic impedance, which consists of a voltage controlled
current source and a digital signal processor system, is used to
synthesize the ultimate impedance of the shunt network.

In the same direction, the induction requirements of
piezoelectric transducers can be reduced by adding capacitors
to every piezoelectric circuit as proposed in another work of the
same group (Fleming et al., 2003b). The theoretical background
is presented and experimentally confirmed for two modes of a
simply supported beam.

In Krenk and Høgsberg (2009) an optimal method for the
design and the implementation of resonant shunt circuits in
structural damping is presented. The resonant control includes
a resonant shunt circuit, coupled to the structure via the
feedback of a sensor and an actuator. A control system with
one degree of freedom is initially investigated, and then the
method is expanded to structures with many degrees of freedom.
There are several multi-d.o.f. applications which vary from
ideal models of piezoelectric sensors-actuators application on
beams, to accelerometers-actuators devices on cables. For both
cases, near-ideal response characteristics were acquired, when the
quasi-static correction of the modal properties was considered.

In Park and Inman (2003) a technique which is able
to reduce the amplitude of the structural vibrations by
using an electrical passive damper with lower inductance,
compared to previous attempts is introduced. To achieve
this, a modified and amplified piezoelectric circuit, analyzing
the mechanical-electrical analogies has been designed in
order to provide the system with natural interpretation. The
enhanced shunt circuit demonstrated, both theoretically and
experimentally, that the vibration function in the concrete
cantilever beam has significantly decreased.

A specific formulation for the tuning of vibration absorbers
with shunted piezoelectric transducers, as an alternative to
classical tuned mass dampers, is presented in Heuss et al. (2016).
The characteristics of the absorber can be altered by applying
a purely resistive or a resonant shunt circuit. Moreover, the
tuning frequency of the damper can be adapted to the excitation
frequency, considering a negative capacitance circuit, which
requires only a small amount energy in order to supply the
electric components of the shunt system.

In the work of Xie et al. (2014) an electromagnetic shunt
damping absorber, based on electromagnetic shunt damping,
is employed. The governing equations are enriched with the
electromagnetic system. The main parameters of the shunt
absorber are obtained by using the particle swarm optimization
method. More specifically, the minimization of the response
of the variance of system is sought. Both numerical and
experimental results which indicate that the electromagnetic
shunt damping absorber can reduce significantly the vibrations
of the structure are presented.

A balance calibration system for RL piezoelectric shunts
is discussed in Høgsberg and Krenk (2015a). The procedure
is analytically presented. The proposed balanced calibration
scheme with explicit correction for background flexibility present
some significant advantages, such as equal modal damping,
effective reduction of the dynamic amplification, no overshoot
of piezoelectric force amplitude and explicit formulas for the
system parameters in terms of structural modal properties and
the desired damping ratio.

The optimization of the damping properties of electro-
viscoelastic objects with external electric circuits is investigated
in Matveenko et al. (2015). More specifically, the dynamic
characteristics of smart structures with piezoelectric materials
are optimized in terms of the resonance frequencies and the
damping properties which are provided by external electric shunt
circuits which, in turn, incorporate resistance, capacitance and
inductance to the system. A natural vibration problem of an
electroviscoelastic solid is used for the numerical investigation.
Several examples are used in order to demonstrate the efficiency
of the proposed method. The shunt circuits can be placed either
in series, in parallel, or a combination of them. The advantage
of passive piezoelectric damping lies to its capability to tune the
damper in a wider frequency range in order to achieve better
thermal stability.

A similar study for the optimization of vibration damping
for structures with piezoelectric patches, which, however, are
shunted with negative capacitance is presented in Wahid et al.
(2016). Namely, the ant colony optimization algorithm is used.
The frequency range of interest is presented in the context of
statistical energy analysis with modal overlap. Two different
resistive-negative capacitance (RC) shunt circuits; one in series
and one in parallel are studied. The equation of motion is
obtained using the Lagrange method, while the ant colony
optimization algorithm is used to obtain the optimum values of
the shunt circuit for the different frequency areas, for reducing
the maximum amount of energy of the vibrating structure.

In Jeon (2009b) another optimization scheme for the
improvement of a piezoelectric shunt damping system is
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proposed. The objective of this work is to find the optimal
electrical parameters of the shunt circuit for the structural
vibration suppression of several modes. The vibration reduction
is based on the idea of using the integrated p-version
finite element method (p-version FEM), and the particle
swarm optimization algorithm (PSO). The optimal electrical
components are determined by the minimization of the objective
function, which is given as the sum of the average velocity
at a specific frequency range. The performance of the optimal
system in terms of structural damping is shown both numerically
and experimentally.

A comparative analysis of the electrical circuits used in
piezo-electric passive vibration damping is conducted by Caruso
(2001). The analysis is carried out by means of analyzing various
electrical circuits, i.e., R-L in series, RL in parallel, and RL-
C parallel shunt circuits. The optimum values of the electric
variables are obtained by using the pole-placement technique,
considering the inherent structural damping of the system.
Experimental results, in good agreement with the numerical
ones, are also reported.

A detailed study of piezoelectric shunts with a parallel resistor
and inductor circuit for passive structural damping and vibration
control has been made in Wu (1996). When tuning is optimum,
it is easily proved that the peak amplitude of the displacement
over the frequency curve of a structural mode decreases with
the increase of the shunt resistance. Thus, a “plateau” is created
at the area near the optimum resistance. If a further increase
of the resistance is considered, the middle of the plateau also
decreases, and two peaks appear around the shoulders of the
plateau. Structural parameters, such as mass and stiffness, also
affect the displacement. When the inductance is larger or smaller
than the optimum value, a peak appears on the right or on the left
shoulder, respectively.

In the same sense, the optimal electrical circuits for passive
vibration damping are sought in Bisegna et al. (2006). In this
paper, shunts where an inductance and a capacitance are in
parallel and in series with a resistance are proposed. The main
focus of the investigation lies on the optimal choice of shunt
system to reduce the structural vibrations. An advantage of the
proposed modulation is that higher values of the piezoelectric
coupling coefficient can be obtained.

In Delpero et al. (2012) a study for the prediction of loss
factor in piezoelectric shunt damping, considering the involved
electromechanical parameters, is presented. More specifically, an
efficient method, which is based on the analysis of the dynamic
response of the structure, is proposed for the measurement
of the involved coupling coefficient. The method is applied
on several structures, with different shunting techniques, i.e.,
resonant shunts, synchronized switching systems, etc., and the
numerical results are compared with the experimental ones.

In Soltani et al. (2014) the optimum tuning rules for
piezoelectric shunt control are studied. The piezoelectric
transducer is shunted with passive RL electric components for
the vibration damping of the host structure. The performance
of the proposed method was higher compared to other tuning
rules for resonant circuits, even if the improvement of the
electromechanical coupling parameters were slight.

Another important aspect, like the minimization of the
acoustic radiation of a structure with the use of optimal shunted
electrical components with piezoelectric transducers is studied in
Collet et al. (2012). The aim of the research was the calculation
of the optimal impedance for the reduction of the velocity of
the flexural waves. Numerical experiments confirm the proposed
method and show the potential for application of the research.

Last but not least, the influence of a digital synthetic
impedance on vibration damping applications is studied in
Nečásek et al. (2016). The paper presents a compact digital
synthetic impedance for application in the field of vibration
damping with constructional details. The results of the actual
artificial impedance have been compared with several prescribed
impedances, resulting in very good performance of the device. An
experiment on a one-dimensional spring-mass vibration system,
with a piezoelectric actuator incorporated as an interface between
the vibration source and vibrating mass, proves the applicability
of the proposed model.

APPLICATIONS OF SHUNT
PIEZOELECTRIC CIRCUITS

In Kurczyk and Pawelczyk (2016) a shunt circuit with a single
piezoelectric transducer and a suitably defined fuzzy system is
considered for the noise control of structures. More specifically,
a fuzzy inference system is used to adapt the parameters of the
electrical circuit. For the optimization of the fuzzy rules, a genetic
algorithm is used. The numerical results indicate the efficiency of
the method, which is useful for several industrial applications.

Another application of the shunt damping is on the vibration
control of hard drives. More specifically, in Lim and Choi (2007)
a piezoelectric bimorph shunt damping circuit is used. In the
first part of this work, the dynamic analysis and modeling
of the system is described. A target vibration mode which
significantly restricts the density increment of the hard drive
is determined by undertaking both modal testing and finite
element analysis tools. For the control of unwanted oscillations, a
piezoelectric bimorph is designed and integrated into the system.
The mechanical impedance here is derived from the lamination
theory and the linear piezoelectric constitutive equations, while
the coupling coefficient is incorporated into this impedance.
From the numerical results it is shown that the displacement
transmissibility can be tuned by adjusting only the coupling
coefficient. This implies that the total vibration of the system can
be suppressed successfully by activating the piezoelectric shunt
circuits which are proposed.

A reduced-order finite element model of double sandwich
panels using shunted piezoelectric patches for noise and vibration
reduction is developed and presented in Larbi et al. (2016).
The paper deals with the suppression of sound transmission
through double laminated sandwich panels of three layers each,
with viscoelastic core and an air cavity between the layers.
A semi-passive piezoelectric shunt technique with resonant
circuits is used for the damping of vibrations of specific
resonance frequencies of the resulted coupled system. Both
a full- and a reduced- order finite element formulation of
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the visco-electro-mechanical acoustic system, which takes into
account the frequency dependence of the viscoelastic material
is presented. More specifically, the coupled system is solved
considering the first real short-circuit structural modes, while
a static correction is introduced in order to consider the effect
of higher eigenmodes. The efficiency of the proposed scheme is
illustrated by several results.

A three-hinged arch controlled by piezoelectric stack actuators
and passive RL electrical circuits is presented in Pagnini and
Piccardo (2016). The proposed system is considered as a
simple structural model, which can be used as an ignition
in order to generalize to more common civil and industrial
engineering structures. The Lagrangian approach is used for
the formulation, taking into account the analogy between the
electrical and the mechanical model, which can guarantee multi-
modal attenuation. Some preliminary results, which indicate the
efficiency of the method, are also presented.

An adaptive control strategy based on passive piezoelectric
shunt techniques with application to mistuned bladed disks is
described in Zhou et al. (2013). Resonant shunted piezoelectric
transducers are placed onto the disk between adjacent blades in
order to reduce the vibrations of the blade, via the blade–disk
coupling. In this study, piezoelectric damping is exploited with
the objective of minimizing the blade mistuning effects using
genetic algorithms. Numerical experiments indicate that a good
performance is achieved.

The self-excited vibration called chatter is a problem which
recurs during machining. Passive shunt circuits can increase
the system’s damping and thus, they can be used to control
chatter. In Venter and da Silva (2016) and Venter et al. (2015),
a method for reducing chatter in turning using a piezoelectric LR
passive shunt strategy is proposed. Firstly, the system is evaluated
without any control strategy. Then, LR passive shunts are used
in the two main directions of vibration, and the response of
the system is analyzed. The electromechanical coupled structure
which is considered in the numerical simulations presents FRFs
that are very close the experiments. Moreover, the robustness
of the passive shunt control strategy for chatter reduction
is discussed in Venter and da Silva (2016). Two different
boundary conditions formulations are tested experimentally,
and the effectiveness of the passive control strategy is shown.
The results indicate the lack of robustness of the method, due
to its inability to perform well for both conditions, however
the damping is increased for the first experiment, where the
fixation was selected in a form that the system could maintain
its natural frequency.

An application on helicopter rotor blade vibration control
on the basis of active/passive piezoelectric dampers is presented
in Shevtsov et al. (2009). More specifically, a comparative
analysis on the efficiency of the helicopter rotor blades vibration
suppression was conducted both by active controlled and passive
shunted piezoelectric patches. The obtained results illustrate the
efficiency of the proposed method.

A passive damping of composite blades using embedded
piezoelectric shunt modules is proposed in Bachmann et al.
(2012b). Namely, the potential improvement of the mechanical
damping of composite fan blades is sought by using two different
passive damping techniques; piezoelectric shunt circuits and

shape memory allow wires. From the results of the investigation,
both piezoelectric shunt and shape memory alloy damping were
effective in terms of passive damping for the application in open
rotor fan blade applications.

The vibration damping of turbomachinery components with
RL-shunted piezoelectric transducers is discussed in Mokrani
et al. (2012). A design rule, capable of overcoming the high
level of uncertainties, is given for the RL-shunt circuits. The
performance of the proposed schemes is validated through
experiments. The results indicate the simplicity, the efficiency
and the robustness of the whole system. An application
of piezoelectric shunt damping on circular saw blades with
autonomous power supply for noise and vibration reduction is
presented in Pohl and Rose (2016). Due to the thin blade and the
contact of the cutting edges, circular saws suffer of vibrations and
tension phenomena, thus a novel damping concept is proposed.
The experimental investigation indicates a significant attenuation
of the vibration amplitude over a wide range of frequencies when
the system is not rotating. In the rotating condition the damping
which is achieved is lower and it is limited to a narrower band.

The investigation of Min et al. (2010) focuses on the
efficiency of a piezoelectric shunt vibration control of
turbine blades, especially for a centrifugal rotation state.
Piezoelectric patches are placed on plate specimens and
two types of circuits, resistive R circuits and resonant
RL circuits are used for testing. The experiments and the
analyses are executed both in spinning and in non-spinning
conditions. The results show the ability of shunted piezoelectric
damping to suppress vibrations under centrifugal loading of
turbine blades.

The shunt vibration technology was applied in Kurczyk and
Pawełczyk (2018) for noise control. The aim of study was
to reduce the noise which comes from outside, by damping
vibration control of structures. The control vibration of walls
achieved with the use of neural networks. An experimental
simulation was carried out to confirm the proposed method.

The use of piezoelectric materials in combination with RL
shunt circuits is investigated in Min et al. (2008). The main
purpose of study was to reduce the problems of high cycle
fatigue (HCF) in of turbomachinery blades which caused from
vibrations. Experiments on resonant damping control with
shunted piezoelectric elements with passive and active control
techniques have shown that the optimal electrical components
reduce significantly the vibrations.

In Rana et al. (2013) an observer-based model predictive
control (OMPC) scheme is investigated in order to improve the
positioning of an Atomic Force Microscope. The design of the
control system takes into account the piezoelectric tube scanner
(PTS) model. For the consideration of the full-state properties, a
Kalman filter is used. Experimental results indicate the efficiency
of the control method.

Another application of piezoelectric shunt control is discussed
in Fairbairn et al. (2011). The aim of the research was the
improvement of the image quality and scan rate of tapping
mode Atomic Force Microscopy (AFM). The scan rate is
ameliorated by degreasing the quality factor of the micro-
cantilever, and the PZT shunt control is applied by using
an electrical impedance in series with the cantilever tip
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oscillation circuit. The conducted experiment indicates the
efficiency of the proposed method in scan rate and image
quality improvement.

The electrical control of elasticity with piezoelectric coupling
is investigated in Date et al. (2000). When shunt circuits are
connected in parallel with a piezoelectric polymer film, the
dynamic elastic constant increases. Many separate electrical
circuits (resistance, inductance and capacitance circuit) can be
used for the measurement of the influence in the elastic constant.
Experimental tests of the dynamic elastic constants validate the
theoretical model. The results of the research have a particular
contribution on sound absorption.

An application of shunt vibration damping is presented in
Takigami and Tomioka (2005). More specifically, stationary
excitation tests are carried out over a railway passenger
vehicle car body for vibration control using piezoelectric
transducers with shunt circuits. The experiments were conducted
for different types of shunts, and the results indicate the
deterioration of frequency response gain between excitation
force and acceleration on the floor at the natural frequency,
up to about 30%. In a similar investigation of the same
group (Takigami and Tomioka, 2008), the suppression of
bending vibrations of a 5m long Shinkansen railway vehicle
carbody with small piezoelectric transducers and shunt circuits
is studied. The results indicate that the vibrations can be
successfully reduced.

ENERGY HARVESTING WITH
SHUNT CIRCUITS

A parametric study on a collocated piezoelectric beam
vibration absorber and power harvester is conducted in
Huang et al. (2016). More specifically, the parametric
effects of a piezoelectric beam which is used both as a
vibration absorber and a power harvester are investigated.
A load resistance which increases with the lumped mass
ratio is used in order to harvest the maximum amount
of power. Experimental results have proved the existence
of a best value for the resistance, however the measured
harvested power values were lower than the theoretical
ones, due to structural damping and possible divergence of
material properties.

A novel electromagnetic resonant shunt tuned mass-
damper-inerter with application on wind induced
vibration control of building structures and energy
harvesting is proposed in Luo et al. (2017). A single
degree of freedom system is considered for the study
of the performance of the damper. The effectiveness
and the robustness of the proposed technique in both
the frequency and time domain are shown by the
numerical results.

Moreover, the effect of shunted piezoelectric control
for the fine-tuning of piezoelectric power harvesters is
studied in Lumentut and Howard (2015). Namely, a novel
analytical technique on the modeling of shunt circuit control
responses for the modification of the electromechanical
piezoelectric harvesting structures is presented. The

proposed technique presents self-adaptive capabilities in
terms of harvesting response, for the adjustment of the
frequency band, as well as of the power amplitude of the
harvesting devices.

The optimization of piezoelectric energy harvesting
devices in order to achieve advanced electromechanical
efficiency and frequency range is discussed in Godoy
et al. (2014). More specifically, some preliminary results
on the topological optimization of the piezoelectric layer
which is bonded to a sliding-free plate and connected to
shunt circuit are presented. From the obtained results,
one concludes that topology optimization of active layers
can significantly increase efficiency of the system in
terms of the amount of the energy which is harvested per
unit mass.

An energy harvesting system for the power supply of a shunt
piezoelectric system, i.e., to achieve zero energy consumption
have been proposed by Tairidis et al. (2018). The shunt system
is developed for the suppression of vibrations of smart structures
and it usually needs a small amount of energy in order to operate.
Energy harvesting can be proved very effective in this direction.
In the method which is proposed by the authors, the whole
implementation will be restricted only to the collection of the
necessary amount of energy in order to make the system self-
sustained.

CONCLUSIONS

Shunt piezoelectric systems have been extensively used for
vibration and noise control during the last several years. In
fact, resonant shunts are proved to be very efficient and stable
for the reduction of vibration on smart piezoelectric structures,
such as beams and plates. Moreover, it is proven that if the
values of the electrical parameters (e.g., of the inductance, the
resistance etc.) are tuned properly, a minimum number of
piezoelectric patches can be sufficient. In this direction, the
optimization of shunt parameters has also been an object of
study in the current state of the art, either for single-mode,
as well as for multi-mode shunt circuits as presented in the
present review.

From the numerous applications which are reviewed in
the present paper, it is clear, as well, that shunt piezoelectric
systems can be very effective for several different purposes
such as among others, the control of vibrations on hard
drives, the noise reduction on acoustic applications,
the improvement of the image quality and scan rate of
tapping mode Atomic Force Microscopy and so on and
so forth.

An interesting idea for further investigation is the extension
of the use of Riordian gyrators, as they could possibly
solve the problem of large capacitors which are needed in
such systems. Moreover, adaptive and/or fuzzy controlled
shunt systems as described in Tairidis (in press) should
be studied further. Last but not least, shunted piezoelectric
systems can be used for the fine-tuning of piezoelectric
power harvesters as seen in Tairidis et al. (2018), which is
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very important in the direction of designing zero energy
consumption systems.
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We propose a novel spectra-matching framework, which employs a linear combination

of raw ground motion records to generate artificial acceleration time histories perfectly

matching a target spectrum, taking into account not only the acceleration but also

the seismic input energy equivalent velocity. This consideration is leading to optimum

acceleration time histories which represent actual ground motions in a much more

realistic way. The procedure of selection and scaling of the suite of ground motion

records to fit a given target spectrum is formulated by means of an optimization problem.

Characteristic ground motion records of different inherent nature are selected as target

spectra, to verify the effectiveness of the algorithm. In order to assess the robustness

and accuracy of the proposed methodology the seismic performance of single- and

multi- degree of freedom structural systems has been also considered. The portion of the

seismic input energy that is dissipated due to viscous damping action in the structure

is quantified. It is shown that there exists a good agreement between the target and

optimized spectra for the different matching scenarios examined, regardless of the nature

of target spectra, demonstrating the reliability of the proposed methodology.

Keywords: Fast Fourier Transform, genetic algorithm, artificial ground motion records, seismic input energy,

selection, scaling

INTRODUCTION

The response history analysis for the seismic design and the evaluation of the performance of
structures has evolved along with the rapid increase in the computational power of the various
engineering software. This has enabled not only the application of a faster and more accurate linear
elastic time history analysis of structures having some thousands degrees of freedom, but also of the
nonlinear time history response analysis which is becoming more and more common nowadays.
Traditionally, the seismic design of structures is based on a force-based and/or displacement based
approach, in which the effect of the earthquake loading is quantified using the peak ground and
response spectra acceleration of the corresponding ground motion record. However, the current
status of the various norms regarding the selection of suitable ground motion records that meet
specific requirements is rather simplified, which, despite the robustness of the various finite element
models available for seismic design, may account for significant source of error in structural design.
Therefore, the selection of appropriate sets of ground motion records for linear/nonlinear dynamic
analysis of structures remains a challenge.
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Although, large ground motion databases are today widely
available, in engineering practice, the problem of record selection
is tackled either through scaling a real ground motion, or
generating them artificially. A state-of-the-art review on the
available methods for selection and scaling of ground motion
records is presented by Katsanos et al. (2010), whereas some
critical issues in record selection and manipulation are presented
by Iervolino et al. (2008). In case of limited availability of
appropriate real acceleration time-histories, simulated strong
motion records can be used (Boore, 2009; Graves and
Pitarka, 2010). The generation of artificial/simulated spectrum-
compatible ground motion records has some disadvantages
against real ground motions. Artificial records have generally a
large number of cycles of strong motion, which leads to increased
energy content compared to real ground motions. Adjusting
the Fourier spectrum of a real ground motion in the frequency
domain with a view to matching a target spectrum at specific
frequencies affects amplitude, frequency content and phasing,
which generally tends to increase the total input energy. The same
deficiencies are observed also in the simulated records, which
may not produce similar nonlinear response in structures as real
records due to unrealistic phasing as well as peaks and troughs
effects (Atkinson and Goda, 2010).

An alternative formulation of the loading effect of earthquakes
on structures can be based on the earthquake input energy,
which is the internal product of force and displacement. Energy
considerations for the seismic design of structures constitutes the
basis of the energy-based seismic design (EBSD) approach and is
gaining extensive attention (Uang and Bertero, 1988; Chou and
Uang, 2003; Surahman, 2007; Leelataviwat et al., 2009; Jiao et al.,
2011; López Almansa et al., 2013). Since in the EBSDmethods the
energy-absorption capacity of the structure and the input energy
that comes from the ground motion are compared for seismic
design, it is imperative to develop and use design energy input
spectra (DEIS).

EBSD has many benefits and compensates the deficiencies
related to the use of conventional acceleration or pseudo-
acceleration response spectra as follows: (a) It accounts for the
effects of duration of the cyclic loading of the earthquake ground
motion. Therefore, it can adequately capture the different type
of time histories (impulsive, non-impulsive, periodic with long-
duration pulses, etc.) regarding their destructive potential. (b) It
enables the quantitative evaluation of the cumulative structural
damage in terms of hysteretic energy without the need to use
equivalent viscous damping and/or ductility reduction. (c) There
is no interdependence between the earthquake input energy and
the structural resistance in terms of energy dissipation capacity.
(d) The input energy that a structure experiences during an
earthquake is governed primarily by its eigenperiod and mass
and less by its strength or damping, except for the short-
period range (Zahrah and Hall, 1984; Akiyama, 1985; Kuwamura
and Galambos, 1989). This has been verified experimentally by
Tselentis et al. (2010). Therefore, the input energy is a stable
quantity that does not depend on many factors and thus is
simpler to handle and interpret.

Given the advantages of the EBSD over the traditional
approaches, the incorporation of not only acceleration spectra

but also energy-based spectra for the generation of artificial
ground motion records is an interesting alternative that could
lead to more realistic spectrum-compatible design records
(Chapman, 1999; Tselentis et al., 2010). Actually, it has been
demonstrated that if the hazard is assessed on the basis of the
earthquake input energy, the hazard posed by larger magnitude
earthquakes contributes more to the total seismic hazard at a
specific site, than that based on spectral acceleration (Tselentis
et al., 2010). It is noted that the input energy spectrum that is
obtained elastically is valid also for inelastic systems since the
strength and plastification of the structure do not practically
affect the total energy input (López Almansa et al., 2013; Dindar
et al., 2015).

In this study a novel spectra-matching framework is
developed, to generate artificial acceleration time histories
perfectly matched a target spectrum. Apart from the well-known
design acceleration spectrum that is prescribed by the various
norms and guidelines, the seismic input energy equivalent
velocity spectrum is also taken into account. This consideration
is leading therefore to optimum acceleration time histories
which represent actual motions in a much more realistic way.
In order to produce elastic spectra that match as closely as
possible to a given target spectrum, the procedure of selection
and scaling of the suite of ground motion records to fit a
given target spectrum is formulated as an optimization problem.
Three characteristic ground motion records of different inherent
nature are selected as target spectra, to verify the effectiveness
of the proposed algorithm, ensuring that its performance
is target spectrum independent assuming different matching
scenarios. The optimization results have shown that there exists
a good agreement between the target and optimum spectra
for each case examined, regardless of the nature of target
spectrum, demonstrating the reliability and performance of the
proposed methodology.

NUMERICAL MODELING

The main goal of this study is to obtain artificial ground motion
records by performing as minimum as possible number of
operations on the raw groundmotion data. These groundmotion
records are linearly combined together forming a suite of records.
The procedure of selection and scaling of the suite of ground
motion records to fit a given target spectrum is formulated as
an optimization problem. In this section, the process of the raw
groundmotion data as well as the ingredients for the formulation
of the optimization problem are presented.

Processing Raw Ground Motion Data
A linear combination of real accelerograms requires only
selection and scaling of the latter and does not alter their inherent
characteristics (e.g., non-stationarity, coda, phase content, etc.),
which have to be preserved in order to obtain realistic artificial
records as a result of the linear combination. Since the real
records have various durations, linear combination cannot be
applied directly to the acceleration time histories. However, it can
be applied to their Fourier spectra in the frequency domain which
have the same length for all motions; the resulting time history
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can be obtained by the inverse Fourier transform of the Fourier
spectra of a suite ofm ground motion records as follows:

üg,c = IFFT

(

m
∑

i=1

xiFFT
(

üg,i
)

)

(1)

where üg,i is the acceleration time history, FFT
(

üg,i
)

is its
Fast Fourier Transform, xi is the combination coefficient,
respectively, of the i-th ground motion, IFFT () is the inverse
Fourier transform and üg,c is the linear combination of the
accelerations of ground motions records in the suite. Given that
the Fourier transform of any real groundmotion record is a linear
transformation, it can be established that Equation (1) effectively
combines linearly the various records involved. In this way, the
artificial time history that is generated depends only on selection
and scaling of the participating ground motion records and also
on the values of the combination coefficients xi, i.e., scale factors.

It is apparent that an inverse Fourier transform of a signal in
the frequency domain which is a linear combination of Fourier-
transformed signals, requires a time step which has to be identical
to that used for the Fourier transform of the original records,
in order to obtain in this way realistic linear combinations of
real ground motions. For this purpose, each record is resampled
so that the fixed sampling rate of all records in the data base is
unique. This fixed sampling rate (or fixed time step) is used for
the inverse Fourier transform of the linear combination of the
Fourier transforms of the resampled motions.

Resampling
The resampling technique is based on least-squares linear-
phase finite-duration impulse-response (FIR) filter for the rate
conversion. The order NFIR of the FIR filter is given by:

NFIR = 20 ·max (1told,1tnew) (2)

where1told,1tnew are the time steps of the groundmotion before
and after conversion, respectively. The frequency-amplitude
characteristics of the FIR filter approximately match those given
by the relation:

A
(

f
)

=

{

1 0 ≤ f ≤ f0
0 f0 < f ≤ 1

(3)

where A is the amplitude that corresponds to frequency f , 1 is the
Nyquist frequency and f0 is given by:

f0 = 1/max {1told,1tnew} (4)

The coefficients of the FIR filter are multiplied by the coefficients
of a Kaiser window of length equal to NFIR + 1, given by:

w (n) =

I0

(

β

√

1−
(

n−NFIR/2
NFIR/2

)2
)

I0 (β)
, 0 ≤ n ≤ NFIR (5)

where I0 is the zero-th order modified Bessel function of the
first kind. In this study, β parameter is selected to be equal

to 5. To compensate for the delay of the linear phase filter
a number of entries at the beginning of the output sequence
are removed. After obtaining the FIR filter designed via a
Kaiser window, the raw ground motion record is resampled
based on this filter thus obtaining the modified ground
motion history.

Fast Fourier Transform
The FFT of a raw motion data of Equation (1)
is calculated by means of DFT (Discrete Fourier
Transform). The DFT of raw motion data üg (t) is
calculated as:

¯̈ug
(

kω
)

=

n
∑

j=1

üg
(

j1t
)

W
(j−1)(k−1)
n (6)

where Wn = e−2π i/n is one of the n roots of unity and ω =

1/(2n1t) . The inverse DFT of ¯̈ug
(

kω
)

is given by:

üg
(

j1t
)

=
1

n

n
∑

k=1

¯̈ug
(

kω
)

W
−(j−1)(k−1)
n (7)

The execution time of DFT depends on the number of
multiplications involved. A direct DFT evaluation takes n2

multiplications whereas FFT takes nlog2n multiplications. It has
been proven that the n-point DFT can be obtained from two n/2 -
point transforms, one on even input data and one on odd input
data (Frigo and Johnson, 1998; FFTW). Therefore, if n is a power
of 2, then it is possible to recursively apply this decomposition
until only discrete Fourier transforms of single points are left.

Problem Formulation
In mathematical terms the procedure of selection, scaling and
linearly combining of ground motion records to fit a given target
spectrum is formulated as follows:

minimize: f (x)

subject to:
xi,min ≤ xi ≤ xi,max

i={1,2,...,D}
. (8)

where f is the objective function to be minimized, x is the vector
of design variables of dimensionD, and xi,min, xi,max are the lower
and upper bounds of its i-th component.

Objective Function
In this study, two types of objective functions are proposed:

(a) Objective function fSa which consists a measure of the area
under the curve of the deviation between the suite and the target
spectral accelerations and is defined as follows:

fSa =

T2
∫

T1

∣

∣

∣

∣

Sac(T)− Sat(T)

Sat(T)

∣

∣

∣

∣

p (T) dT. (9)

where Sac is the spectral acceleration of the linear combination of
the ground motions as obtained from Equation (1) and Sat is the
target spectral acceleration.
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(b) Objective function fSa−Sievwhich consists a measure of the
sum of the following:

• The area between the spectral acceleration curves.
• The area between the equivalent seismic absolute input energy

velocity spectra curves.
• The area between the equivalent seismic relative input energy

velocity spectra curves.

fSa−Siev is given by:

fSa−Siev =

T2
∫

T1

(∣

∣

∣

∣

Sac(T)− Sat(T)

Sat(T)

∣

∣

∣

∣

+

∣

∣

∣

∣

SievABSc (T)− SievABSt (T)

SievABSt (T)

∣

∣

∣

∣

+

∣

∣

∣

∣

SievRELc (T)− SievRELt (T)

SievRELt (T)

∣

∣

∣

∣

)

p (T) dT (10)

where SievABSc , SievRELc are the spectral equivalent absolute
and relative input energy velocities, respectively, of
the suite of the ground motions and SievABSt , SievRELt

are the target spectral equivalent absolute and relative
input energy velocities, respectively. Detailed calculation
of SievABSt and SievRELt quantities can be found in
Uang and Bertero (1990).

In Equations (9) and (10) and || denotes the absolute value and
p (T) is a linear penalty function which is biased toward the lower
period range and is given by:

p (T) =
(T − T1) + kp (T2 − T)

T2 − T1
(11)

where T1, T2 are the lower and upper period integration
limits, T is the period and kp is a penalty constant.
Although baseline correction is performed before the
various spectral computations, the penalty function ensures
that the displacement and velocity of the acceleration
is equal to zero at the start and the end of the time
history considered.

Design Variables
The design variables of the optimization problem are arranged
into the vector x which contains 2m components, where m is
the number of ground motion records in the suite. The first
m components are the scale factors (continuous variables) used
for the selected ground motions in the suite of Equation (1),
and the remaining components, are the IDs (integer variables)
of the corresponding selected ground motion. The lower and
upper bounds, xi,min and xi,max, respectively, of the continuous
variables, i = {1, 2, ...,m}, have a significant impact on the
performance of the optimization algorithm and the quality of
the optimum solution. As the range of values of a design
variable gets broader, the optimization algorithm shows a relaxed
behavior, which can become unstable for very large upper and/or
very small lower limits. Therefore, suitable values for these
limits should be selected. The values selected in this study are
as follows:

xi,min =

{

−2.0 1 ≤ i ≤ m
1 m+ 1 ≤ i ≤ 2m

(12)

xi,max =

{

2.0 1 ≤ i ≤ m
M m+ 1 ≤ i ≤ 2m

(13)

where M is the total number of the raw ground motions records
contained in the database.

As obtained from Equations (12) and (13) the problem
considered in this study is virtually a mixed-integer optimization
problem and for this purpose the optimization algorithm has to
be able to handle such a situation.

Mixed Integer Genetic Algorithm
Choosing the proper search algorithm for solving such problem
is not a straightforward procedure. Metaheuristic search
optimization algorithms achieve efficient performance for a wide
range of structural optimization problems. In this study, among
the plethora of metaheuristic algorithms, a genetic algorithm
has been chosen to solve the underlying optimization problem,
capable to handle mixed-integer nature of the design variables.
This should not be considered as an implication related to the
efficiency of other algorithms, since any algorithm available can
be used for solving a particular optimization problem based on
researcher’s experience.

The Genetic Algorithm (GA) is a stochastic global search
optimization method introduced by Holland (1992) which
emulates the natural biological evolution. GA applies on a
population of potential solutions the principle of survival of
the fittest to produce better approximations to a solution. At
each generation, a new set of approximations is created by
the process of selecting individuals according to their level of
fitness in the problem domain and breeding them together using
operators borrowed from natural genetics (selection, crossover
and mutation). This process leads to the evolution of individuals
that are better suited to their environment than the individuals
that they were created from, like in natural evolution process.
The algorithm stops when a suitable criterion is met (e.g., current
generation GEN equals to maximum number of generations,
MAXGEN). A pseudocode of GA is described in Algorithm 1.

Algorithm 1 | The pseudocode of a GA.

Pseudocode of the GA

1 Set parameters

2 Generate the initial population

3 while GEN < MAXGEN do

4 Fitness calculation

5 Selection

6 Crossover

7 Mutation

8 end while

9 Obtain the individual with maximum fitness

10 return the best solution

For the purposes of this study, a real-valued representation
is adopted as encoding strategy. The use of real-valued genes in
GAs offers over binary encodings the following advantages: (i)
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efficiency of the GA is increased as there is no need to convert
chromosomes to phenotypes before each function evaluation,
(ii) less memory is required as efficient floating point internal
computer representations can be used directly, (iii) no loss in
precision by discretization to binary or other values, (iv) greater
freedom to use a variety of genetic operators.

Initialization of Population
The GA starts with the generation of a random initial population
of individuals with uniform distribution in the initial generation.
If the initial population is denoted by P0 and its size (number of
individuals) by nP, then any element of P0 is given by:

xi,j = xj,min +
(

xj,max − xj,min

)

aRU (14)

where aRU is a random variable with uniform distribution for
which 0 ≤ aRU ≤ 1. It is ensured that xi, i = {m+1,m+2, ..., 2m}

is a positive integer. In case of a duplicate integer found this is
replaced by a random integer value (respecting the upper and
lower bounds) different from the calculated ones in P0.

Selection and Crossover
The stochastic universal sampling (SUS) is used as a selection
function, which provides zero bias and minimum spread. SUS
offers an offspring selection procedure that may lead to faster
convergence to the solution of a problem than other selection
methods, such as e.g., roulette wheel selection.

In addition, to avoid duplicate entries in the ground motion
record identities a new crossover scheme is proposed which
ensures that the linear combination of the groundmotion records
examined each time is comprised by unique members. This
procedure is described by detail in the following:

If the crossover is performed between two random individuals
at generation k, Pk,1 =

{

xi1,j
}

and Pk,2 =
{

xi2,j
}

, the individual
Pk+1,12 is produced as a result of the crossover. Initially, three set
operations are performed between the two individuals:
a) Intersection between xi1,j and xi2,j:

x1∩2 =
{

xi1,j
}

⋂

{

xi2,j
}

(15)

b) Subtraction of xi2,j from xi1,j:

x1−2 =
{

xi1,j
}

−
{

xi2,j
}

(16)

c) Subtraction of xi1,j from xi2,j:

x2−1 =
{

xi2,j
}

−
{

xi1,j
}

(17)

The offspring Pk+1,12 will contain the intersection x1∩2 which
contains n1

⋂

2 elements and the vector {x1−2, x2−1}l which
contains l = m − n1

⋂

2 randomly selected elements from the
vector formed by concatenating the two differences {x1−2, x2−1}:

Pk+1,12 =
{

x1
⋂

2, {x1−2, x2−1}l
}

(18)

In the case where x1∩2 = ∅ then {x1−2, x2−1}l = {x1−2, x2−1}.
Equations (15–18) apply both for continuous and integer design
variables of the problem.

Mutation
In GA, the mutation function uses various distributions from
which random numbers (perturbations) are generated and added
to the components of the individual that is mutated. In this study,
the perturbation of the continuous/integer design variables,
is performed using a Gaussian/random uniform distribution,
respectively, and are described in detail below.

Continuous variables
The mutation function of continuous design variables follows
a Gaussian distribution of zero-mean with standard deviation
given by the relation:

mSC,k = mSC,0

(

1−mSH
k

kmax

)

(19)

where the standard deviation mSC,k is the fraction of the
maximum range of possible perturbations of the design variables
(i.e., scale factors) that can be added to an individual in
generation k during mutation process. mSC,0 is the scale
parameter and is equal to the fraction of the maximum range of
possible perturbations of the continuous variables at the initial
generation (0), whereas mSH is the shrink parameter which
controls how fast mSC,k is reduced as generations evolved. Both
of the parameters mSC,0 and mSH can be arbitrarily selected and
their values must be between 0 and 1. mSH < 0 or mSH > 1
is also possible, but not recommended. For a random individual
at generation k, Pk,1 =

{

xi1,j
}

this operation can be written
as follows:

Pk+1,1 =
{

xi1,j
}

+ āGUmSC,k, 1 ≤ j ≤ m (20)

where mSC,k is given by Equation (19) and āGU is a vector with
entries following a uniform Gaussian distribution.

Integer variables
The mutation function of integer design variables follows a
random uniform distribution. Since the random perturbations
are not integers in general, the result is rounded toward the
nearest integer and then the remainder of its Euclidean division
with M is extracted, to ensure that the result does not exceed M
value. For a random individual at generation k, Pk,1 =

{

xi1,j
}

this
operation can be written as follows:

Pk+1,1 = mod
(〈{

xi1,j
}

+ (2āRU − 1)mSC,k

〉

,M
)

,

m+ 1 ≤ j ≤ 2m (21)

where the symbol 〈〉 is used to denote the nearest integer of the
quantity contained in the brackets, āRU is a vector with entries
following a uniform random distribution with 0 ≤ āRU,j ≤

1, mSC,k is the scale parameter of mutation function (standard
deviation of Gaussian distribution at the kth generation), and
mod() denotes the modulo operation, i.e., the remainder of
the Euclidean division of between the two arguments. After
application of Equation (21) the result is checked for duplicate
values of integer components. If so, the duplicates are replaced by
a random integer value (respecting the upper and lower bounds)
different from the calculated ones.
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NUMERICAL RESULTS

The effectiveness of the proposed algorithm is verified by
generation of artificial accelerograms which are compliant to
target spectra of different inherent nature, ensuring also the
independence of the algorithm’s performance from the target
spectrum. More specific, the acceleration and equivalent input
energy velocity response spectra of three ground motion records:
(a) El Centro Terminal Substation Building record of the 1940
Imperial Valley earthquake, (b) Rinaldi record of the 1994
Northridge earthquake and (c) Sakarya—SKR record of the 1999
Kocaeli earthquake are defined as target spectra. The target
spectra are associated with a far-field ground motion, a near-
field ground motion which contains forward directivity effects
and a near-field ground motion which contains fling-step effects,
respectively (Kalkan and Kunnath, 2006). Typical characteristic
of the near-field motions is the presence of high-velocity pulses,
which do not exist in typical far-field ground motions. The
difference between these two types of motions originates mainly
from two factors: (a) the distance between the site where the
earthquake is recorded and the seismic fault, (b) the orientation
of the last. It is noted that the three target spectra have essentially
different general configurations, a fact that results from the
different inherent nature of the time histories of the three
ground motions.

Twomatching scenarios are considered: (i)Matching Scenario
1 (Sa matching): Matching only the spectral acceleration and
(ii) Matching Scenario 2 (Sa–Vei matching): Matching both the
spectral acceleration and the equivalent input energy velocity
spectra (absolute and relative). In each scenario, the database
is comprised of the ground motion records obtained from the
European StrongMotion (ESD) database (Ambraseys et al., 2004;
Iervolino et al., 2010). After a preliminary screening of the ESD
database, a subset database is constructed that consists of 6026
ground motion records corresponding to horizontal earthquake
components, i.e., M = 6026. The number m of ground motion
records in the suite is set to be equal to 20 and the matching
range of periods is between T1 = 0.1 s and T2 = 4.0 s. The penalty
constant kp is set to be equal to 50.

Furthermore, the tuning parameters of the GA are selected as
follows: the population size np (number of individuals in each
generation) is equal to 80. For reproduction, the number of
individuals that are guaranteed to survive to the next generation
(elite children) is equal to 5% of the population size, namely nE =

0.05nP = 4, and the fraction of the next generation, other than
elite children, that is produced by crossover (crossover fraction)
is equal to 0.8, i.e., nC = 0.8 (nP − nE) ≈ 61 individuals are
produced in each generation. The number of individuals in each
generation that are produced bymutation is nM = nP−nE−nC =

15. In the GA used in this study no migration occurs, as there are
no subpopulations. As stopping criteria for the GA algorithm the
maximum number of generations (MAXGEN) is used, i.e., equal
to 100. A sensitivity analysis of 30 independent optimization
runs is also performed followed by a statistical process on the
optimized results. The sensitivity analysis represents a necessary
step since the GA optimization procedure does not yield the same
results when restarted due to its stochastic nature.

In all cases examined, the objective function is evaluated
using OpenSeismoMatlab, an open source tool for earthquake
groundmotion processing (Papazafeiropoulos and Plevris, 2018).
OpenSeismoMatlab performs baseline correction and generates
the elastic acceleration and equivalent input energy velocity
response spectra which are then used for the calculation of the
objective function.

Matching Scenario 1
The optimization results for Matching Scenario 1 are depicted
in Figure 1. For each target record, the black curve represents
the target acceleration spectrum, while the red and blue curves
represent the spectral acceleration that corresponds to the
optimization run (out of the 30 runs) that fits best and worst
to the target spectrum, respectively. The coefficient of variation
(CoV) of the 30 runs for each period is also depicted by the
green curve.

A good agreement is observed between the “best” and “target”
spectra in all cases examined while the CoV value increases
near the bounds of the matching period range. This is mostly
attributed to the range of the periods involved in the calculation
of the objective value [see Equations (9) and (10)] which is
defined in a way that it covers the eigenperiods of a structure. This
means that the period range used in the matching procedure and
consequently the optimized acceleration time history are period-
dependent. In this study, an extended period range is selected
to highlight the applicability of the proposed methodology for
a variety of structures. However, most of civil structures have
eigenperiods that are concentrated near the middle of the range
considered, where the CoV values are minimum and high
accuracy can be achieved. Furthermore, the finite number of
groundmotions in the suite of the linear combination contributes
to large CoV values in general. As the number of the ground
motions in the suite decreases, the methodology becomes more
cumbersome, since the time history given by the suite has less
flexibility. Hence, as the number of the groundmotions increases,
the matching becomes generally better. Finally, the shape of the
penalty function in Equation (11) has an important effect on
the optimized response spectrum of each optimization run, since
the weighting of the deviation from the target spectrum for the
matching period range considered is not uniform, as has been
already mentioned in the previous section.

Figure 2 shows the convergence history of the 30 independent
optimization runs of Matching Scenario 1. Each curve represents
the objective value of the best individual at each generation
of a given optimization run. The red (blue) curve represents
the evolution of the objective value that corresponds to the
optimization run (out of the 30 runs) that fits best (worst) to the
target spectrum.

It can be noted that in the case of El Centro earthquake the
best individual of the final generation for the best independent
run corresponds to roughly 14% of the objective value of the
best individual of the initial generation. The best individual of
the final generation for the worst independent run corresponds
to roughly 40.3% of the objective value of the best individual of
the initial generation. In the case of Northridge earthquake these
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FIGURE 1 | Optimization results of Matching Scenario 1 for each target: (A) El Centro, (B) Northridge, and (C) Sakarya.

FIGURE 2 | Optimization history of the 30 independent runs of the Matching Scenario 1 for each target: (A) El Centro, (B) Northridge, and (C) Sakarya.
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FIGURE 3 | Results of Matching Scenario 2 regarding spectral acceleration for each target: (A) El Centro, (B) Northridge, and (C) Sakarya.

FIGURE 4 | Results of Matching Scenario 2 regarding equivalent absolute seismic input energy velocity spectra (SievABS) for each target: (A) El Centro, (B)

Northridge, and (C) Sakarya.
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FIGURE 5 | Results of Matching Scenario 2 regarding equivalent relative seismic input energy velocity spectra (SievREL) for each target: (A) El Centro, (B) Northridge,

and (C) Sakarya.

FIGURE 6 | Optimization history of the 30 independent runs of the Matching Scenario 2 for each target: (A) El Centro, (B) Northridge, and (C) Sakarya.
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percentages are roughly equal to 16.1% and 53.6%, and in the case
of Sakarya earthquake they are 17.7% and 36.9% respectively.

The trend of all convergence histories shows that the approach
to the optimum value is quick and relatively smooth, which is
achieved by proper adjustment of the crossover and mutation
rates, in order to ensure sufficient population diversity in each
generation. It seems that, while the coefficient of variation among
the optimization histories increases at the early stages of the
optimization process, there is a point after which it stabilizes until
termination. The magnitude of the final stabilized value of the
CoV value is a measure of the complexity of the optimization
space. As it is expected, larger CoV values corresponds to
increased diversity between the various optimization runs, in
terms of the path followed by the best individual of each
optimization run. The largest CoV value of the objective value
of the best individual among the various optimization runs at
the final generation occurs in the case of Northridge earthquake,
an observation that correlates well with the large dispersion
of the optimum spectra, especially in the low period range, in
Figure 1B.

Matching Scenario 2
The optimization results for Matching Scenario 2 are depicted
in Figure 3. Nearly the same traits that are mentioned for
Figure 1 are observed; the proposed algorithm gives higher CoV

values in the lower and higher limits of the matching period
range considered.

In Figures 4, 5, the absolute seismic input energy
equivalent velocity (SievABS) and the relative seismic
input energy equivalent velocity (SievREL) spectra for
each target spectrum are presented, respectively. A very
close agreement between the target and corresponding
optimized spectra is also observed in this case. Although
the CoV plots exhibit local peaks and troughs, all of
them fluctuate around the value of 10%, regardless of the
target spectrum.

In a similar rationale, Figure 6 depicts the convergence
history of the 30 independent optimization runs of Matching
Scenario 2. It is apparent that in the case of El Centro

Table 1 | Normalized error of the damping energy between the optimized and the

target ground motion records.

Target ground

motion

Matching

Scenario 1

Matching

Scenario 2

Difference

(%)

El Centro 0.4065 0.2794 31.3

Northridge 0.2289 0.1901 17.0

Sakarya 1.2104 0.2310 80.9

FIGURE 7 | Energy dissipated by viscous damping per unit mass over time for the optimized artificial ground motions of the two matching scenarios and for each

target ground motion: (A) El Centro, (B) Northridge, and (C) Sakarya.
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earthquake the best optimization run gives result equal to
32.8% of the best objective value of the initial population,
whereas the worst result is roughly equal to 48.3% of the
initial best objective value. In the case of Northridge earthquake
the best and worst results are roughly equal to 32 and 55.7%

Table 2 | Yield displacement and ductility demand of each story for the 3-DOF

and 9-DOF structural systems.

Target Ground Motion El Centro Northridge Sakarya

LA3 Yield displacement [m] 0.0283 0.1681 0.0356

Ductility demand Story 2 1.19 0.99 0.99

Story 3 0.62 0.48 0.49

LA9 Yield displacement [m] 0.0685 0.166 0.1193

Ductility demand Story 2 0.41 0.38 0.38

Story 3 0.44 0.41 0.38

Story 4 0.39 0.39 0.30

Story 5 0.51 0.58 0.30

Story 6 0.47 0.61 0.25

Story 7 0.52 0.74 0.28

Story 8 0.36 0.53 0.20

Story 9 0.18 0.26 0.10

respectively of the initial best objective value. Similarly, the
corresponding percentages for the Sakarya earthquake are 26
and 41.1%. Interestingly, the lowest (best) percentage appears
in the case of Sakarya earthquake whereas the highest (worst)
percentage appears in the case of Northridge earthquake. The
smooth convergence in optimization histories demonstrates the
reliability of the proposed algorithm not only for matching
the target spectral acceleration, but also for matching both
target acceleration and target seismic input energy equivalent
velocity spectra.

Scenarios Comparison
A one-to-one comparison between the performance of the two
scenarios shows that the CoV is generally higher in Scenario
2. This occurs because the optimization problem of Scenario
1 is more “relaxed” than the Scenario 2. In Scenario 1, the
objective function is related only with a single target spectrum
(acceleration), while in Scenario 2 the objective function is
related with three target spectra (acceleration, absolute velocity,
relative velocity), at the same time. This relation establishes
an indirect “constraint” which implies that, with respect to
the target acceleration spectrum only, the optimized solution
of Scenario 2 will have higher deviation than that of Scenario
1, which interprets the higher CoV values in Figure 3 when
compared to Figure 1. Consequently, in the case of Scenario

FIGURE 8 | Time variation of energy dissipated at the 1st story of the 3-DOF system for the optimized and the target ground motion records: (A) El Centro, (B)

Northridge, and (C) Sakarya.
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2 the possible “paths” of the population evolution toward the
optimum are far fewer and therefore the population diversity
is lower compared to Scenario 1, which explains the reduced
CoV in the last generation in Figure 6 (Scenario 2), compared
to that in Figure 2 (Scenario 1). Finally, it is noted that as the
generations increase, the CoV fluctuation is smoother in the case
of Scenario 2, related to the increased robustness of the algorithm
in this case.

VERIFICATION OF THE PROPOSED
METHODOLOGY

In order to assess the robustness and accuracy of the proposed
methodology the seismic performance of single- and multi-
degree of freedom structural systems has been considered. To
this end, nonlinear response history analyses were conducted for
the optimized accelerograms of the two Matching Scenarios as
resulted for the three target ground motion records in Section
3. The response results are compared in terms of the goodness-
of-fit with the respective response result of the target ground
motion. The seismic input energy that is dissipated due to
viscous damping action in the structure (damping energy) is
also quantified.

Energy Definitions
The seismic input energy that is absorbed by an inelastic
single degree of freedom (SDOF) structural system during an
earthquake can be defined by integrating the equation of motion
of the system as follows:

u
∫

0

üm̄du+

u
∫

0

u̇c̄du+

u
∫

0

fsdu = −

u
∫

0

m̄ {I} üg,cdu (22)

where m̄ is the mass matrix, c̄ is the viscous damping coefficient
matrix, fs is the resistance force due to stiffness, I is the unit
influence vector of the structure and üg,c is the linear combination
of the accelerations of ground motions records in the suite as
defined in section resampling Equation (22) stands as a statement
of energy balance of the system and can be rewritten as:

Ek (t) + Ed (t) + Es (t) + Ey (t) = EI (t) (23)

With regard to Equation (22) the first integral gives the kinetic
energy Ek, the integral on the right-hand side gives the input
energy EI imparted from the ground motion to the structure
and the last integral on the left-hand side is equal to the sum
of the linear elastic recoverable strain energy Es and the plastic

FIGURE 9 | Time variation of energy dissipated at the 2nd story of the 3-DOF system for the optimized and the target ground motion records: (A) El Centro, (B)

Northridge, and (C) Sakarya.
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irrecoverable strain energy Ey. The damping energy term Ed is
defined as follows:

Ed (t) =

u
∫

0

u̇c̄du. (24)

The definitions of the aforementioned energy quantities are
given for a structure whose mass is acted upon by a force
equal to peff (t) = −m̄ {I} üg,c, i.e., they are based on the
consideration of the structural motion relative to the base,
rather than the total motion of the structure. The two types of
energy formulations (relative and absolute) are equivalent but the
former is more intuitive and simplifies the calculations when it
comes to multi degree of freedom (MDOF) structural systems.
Equations (22–24) correspond to a SDOF system inmathematical
terms and their extension to MDOF systems can be done in a
straightforward manner.

SDOF System Results
Three SDOF systems involving a bilinear elastoplastic
constitutive model with kinematic hardening are analyzed
for each target ground motion. The eigenperiod, the critical
damping ratio, the post-yield stiffness ratio (i.e., the ratio of
the post-yield stiffness to the initial small strain stiffness of the

structure), and the ductility demand are same for all the SDOF
systems and equal to 0.5 sec, 5%, 1%, and 1.1, respectively.
The three systems have different yield displacements, equal to
0.052, 0.1, and 0.025m for the El Centro, the Northridge and
the Sakarya target ground motion, respectively. The reader is
referred to Papazafeiropoulos et al. (2017) for more details about
the implementation of the bilinear elastoplastic constitutive
model with kinematic hardening and the time integration
algorithm that were used in this study.

The small ductility value specified for all target ground
motions denotes that structures only with slightly nonlinear
behavior are considered in this study; for cases of severely
nonlinear response the scenarios presented in this study
for calculation of the design artificial ground motion is an
open research issue. For such cases it would be better to
consider the inelastic response spectra, rather than elastic
response spectra in matching scenarios. In addition, the physical
properties of each SDOF system remain the same for the
estimation of its dynamic response for each target ground
motion as well as the optimized ground motions obtained
from the two matching scenarios. Based on an arbitrarily
selected value of ductility demand (equal to 1.1, to ensure
a slightly nonlinear response) for each target ground motion
the yield displacement that is calculated was used also for
the corresponding optimized ground motions obtained from

FIGURE 10 | Time variation of energy dissipated at the 3rd story of the 3-DOF system for the optimized and the target ground motion records: (A) El Centro, (B)

Northridge, and (C) Sakarya.
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the two matching scenarios in all nonlinear time history
response analyses.

In Figure 7, the time variation of the damping energy per unit
mass for each target motion and the optimized ground motion
records produced from the two matching scenarios is depicted. A
good agreement is observed in all cases since the damping energy
of the optimized ground motion (red line) is very close to that of
the respective target ground motion (black line). To quantify this
agreement, the normalized error eij for the i

th story (in the case of

SDOF systems i is always equal to 1) and jth matching scenario,
which is proportional to the area between a matching scenario
and the target ground motion curves was used as a metric of this
goodness-of-fit, defined as follows:

eij =

Td
∫

0

∣

∣

∣
E
j

d,i (
t) − ET

d,i (
t)
∣

∣

∣
dt

Td
∫

0

ET
d,i (

t) dt

. (25)

where E
j

d,i
and ET

d,i
is the damping energy for the jth scenario and

the target ground motion, respectively.
Even in the case of Northridge target ground motion, it is

indicative that the damping energy corresponding to Scenario
2 is slightly closer to the respective curve of the target motion,
although there is not much difference between the two scenarios
(17% as seen in Table 1). This fact, in combination with
the large value of the dissipated energy per unit mass may
be a consequence of the special characteristics of Northridge
earthquake, which contains a high velocity pulse (forward
directivity effect) as a near-field ground motion.

MDOF System Results
Two model buildings were analyzed as a 3-DOF and 9-DOF
structural systems. More specific, the model buildings are a 3-
story (LA3) and a 9-story building (LA9) designed as standard
office buildings and situated on a stiff soil (soil type S2), following
the local code requirements for the Los Angeles city (UBC,
1994), and according to the provisions of the FEMA/SAC project,
presented in FEMA 355C (2000). The plan and elevation of
their effective structural models, along with the various cross
sections of its members are shown in Supplementary Figure 1.
The perimeter moment-resisting frames act as the structural
system of the building. The column bases of themoment resisting
frames are considered as fixed. Furthermore, the design of the
buildings for the two orthogonal directions is quite similar, and
therefore only half of the structure is considered in the analysis in
each case.

The benchmark buildings are simulated as a 3-DOF and a 9-
DOF structural system involving the same bilinear elastoplastic
constitutive model with kinematic hardening, as in the SDOF
system analyzed previously. Their fundamental eigenperiods are
equal to 1.01 and 2.85 sec, respectively. The post-yield stiffness
ratio and critical damping ratio were set equal to 1% and 5%,
respectively. The yield displacement and ductility demand of
each story for the 3-DOF and 9-DOF structural systems are

FIGURE 11 | Normalized error of the damping energy between the optimized

and the target ground motion records for each floor of the 3-DOF

structural system.

shown in Table 2. The maximum ductility at any story does
not exceed the value of 2. Usually, an interpolative iterative
procedure is necessary to obtain the yield displacement for
a target ductility demand (Chopra, 2017). However, for each
target ground motion in each building the yield displacement is
assumed as uniform distributed across all stories and is calculated
so that the maximum ductility demand is equal to 2 at least in
one story of the building. For both of the LA3 and LA9 buildings
the maximum ductility demand is observed at the first story. The
ductility of the remaining stories is much lower or even lower
than 1 (i.e., story remains linear elastic).

For each target ground motion, three nonlinear response
history analyses were conducted using as excitation the target
ground motion and the two optimized ground motions resulting
from the two matching scenarios. Figures 8–10 show the time
history of the damping energy at the three stories of the building
for each target ground motion and the optimized ground motion
records. Again, a good agreement is observed in all cases since
the damping energy of the optimized ground motion (red line)
is very close to that of the respective target ground motion
(black line).

To quantify this agreement the normalized error as defined
in Equation (25) was used as a metric of this goodness-of-
fit. Figure 11 shows the normalized error of the damping
energy between the optimized and the target ground motion
records for each floor of the 3-DOF structural system. The
min/max errors for the two scenarios are 15%/48% and
3%/20%, respectively. It is observed that the proposed algorithm
(Scenario 2) yields far lower error compared to Scenario 1.
Although the error of Scenario 2 remains lower, only in
the case of the dynamic response of the third floor of the
3-DOF system for the El Centro target motion Scenario 2
gives greater error compared to Scenario 1 (28% higher).
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FIGURE 12 | Time variation of energy dissipated at the 1st story of the 9-DOF system for the optimized and the target ground motion records: (A) El Centro, (B)

Northridge, and (C) Sakarya.

It is worth noting that in the case of the Sakarya target
ground motion the error of the Scenario 2 is 78.3% lower
compared to Scenario 1. This is directly related with the
low CoV values observed in Section 3 for this specific case,
a fact that also proves the robustness and accuracy of the
proposed methodology.

Figure 12 shows the time history of the damping energy
at a typical story (i.e., first story) of the LA9 building for
each target ground motion and the optimized ground motion
records. Again, a good agreement is observed in all cases
since the damping energy of the optimized ground motion
is very close to that of the respective target ground motion.
To quantify this agreement, Figure 13 shows the normalized
error of the damping energy between the optimized and
the target ground motion records for each story of the 9-
DOF structural system. The min/max errors for the two
scenarios are 8.2%/88.7% and 9.8%/38.5%, respectively. It is
observed that the proposed algorithm (Scenario 2) yields far
lower error compared to Scenario 1. The error of Scenario
2 remains higher, only in the case of the dynamic response
of the upper stories of the 9-DOF system for the Northridge
target motion. This deviation is attributed to the dynamic
characteristics of the structural system mainly affected by the
near field effects of the specific ground motion. It is worth

noting that the maximum error of the Scenario 1 is 130.4%
higher compared to the corresponding maximum error of the
Scenario 2.

CONCLUSIONS

In this study a novel spectra-matching framework is developed,
which employs a linear combination of raw ground motion
records to generate artificial accelerograms. To this end, apart
from the well-known design acceleration spectrum that is
prescribed by the various norms and guidelines, the seismic
input energy equivalent velocity spectrum is also taken
into account.

This consideration is leading therefore to optimized
acceleration time histories, which represent actual motions in
a much more realistic way. In order to produce elastic spectra
that match as closely as possible to a given target spectrum,
the procedure of selection and scaling of a suite of ground
motion records to fit a given target spectrum is formulated as
an optimization problem. Three characteristic ground motion
records of different inherent nature are selected as target spectra,
to verify the effectiveness of the proposed algorithm, ensuring
that its performance is not ground motion record-dependent
assuming different matching scenarios. The optimization results
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FIGURE 13 | Normalized error of the damping energy between the optimized and the (A) El Centro, (B) Northridge, and (C) Sakarya target ground motion records for

each floor of the 9-DOF structural system.

have shown that there exists a good agreement between the target
and optimized spectra for each case examined, regardless of the
nature of target spectrum. Finally, it is proved that the artificially
generated records are much more realistic and suitable for the
seismic design of structures, since they reproduce better the real
non-linear structural inelastic response in terms of the damping
energy, demonstrating also the reliability and robustness of the
proposed methodology.
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NOMENCLATURE

A: amplitude

aRU : scalar variable with uniform random distribution with 0 ≤ aRU ≤ 1

āGU: vector with entries following a uniform Gaussian distribution

āRU : vector with entries following a uniform random distribution

with 0 ≤ āRU ≤ 1

c̄: viscous damping coefficient matrix

DFT (): Discrete Fourier Transform

Ed : Energy dissipated due to damping

Ek : Kinetic energy

EI: Input energy due to earthquake

Es: Elastic recoverable strain energy

Ey : Energy dissipated due to yielding

f: frequency

fi : fitness value of the i-th individual

fs: force due to stiffness

FFT (): Fast Fourier Transform

I: unit column vector (influence vector)

I0: zeroth – order modified Bessel function of the first kind

IFFT (): Inverse Fast Fourier Transform

k: number of generation

kmax: maximum number of generations

kp: constant for penalty of lower period bound

kS: positive integer for selection function with 0 ≤ kS ≤ nS − 1

k̄: small strain (initial) stiffness matrix

M: number of raw accelerograms that are contained in the earthquake

data base

m: number of raw accelerograms combined to produce the artificial

time history

mSC,0: scale parameter of mutation function (standard deviation of Gaussian

distribution at the first generation) at the initial generation (0)

mSC,k : scale parameter of mutation function (standard deviation of Gaussian

distribution at the first generation) at generation k

mSH: shrink parameter of mutation function (rate of decrease of standard

deviation w.r.t. generation number)

m̄: mass matrix

NFIR: order of FIR filter

n: length of the Fourier transform

n1
⋂

2: number of elements of the intersection x1∩2
nC: number of individuals in each generation produced by crossover

nE : number of elite individuals in each generation

nM: number of individuals in each generation produced by mutation

nP: population size

nS: number of individuals which are selected for breeding in each generation

P0: population at zeroth generation (initial)

Pk : population at generation k

Pk,1: first random individual belonging to population at generation k

Pk,2: second random individual belonging to population at generation k

Pk+1,12: offspring from crossover between Pk,1 and Pk,2
p (T): penalty function

pi : probability of selection of the ith individual

r: rank of an individual

Sac: spectral acceleration of the linear combination of the selected

ground motions

Sat : target spectral acceleration

SievABSc : spectral equivalent absolute input energy velocity of the linear combination

of the selected ground motions

SievRELc : spectral equivalent relative input energy velocity of the linear combination of

the selected ground motions

SievABSt : target spectral equivalent absolute input energy velocity

SievRELt : target spectral equivalent relative input energy velocity

T: eigenperiod

T1: lower period limit of the various spectra

T2: upper period limit of the various spectra

Td : duration of the earthquake time history

t: time

u: displacement vector of the structure

u̇: velocity vector of the structure

ü: acceleration vector of the structure

üg,c: acceleration time history of the linear combination of the selected

ground motions

üg,i : acceleration time history of the ith ground motion

Wn: one of the n roots of unity

w: coefficients of Kaiser window

x1∩2: intersection between two random individuals xi1,j and xi2,j
x1−2: relative complement of individual xi2,j in individual xi1,j
x2−1: relative complement of individual xi1,j in individual xi2,j
xi : combination coefficient respectively of the ith ground motion

xi,j : jth element of the ith individual

β: constant equal to 5

1told : time step of ground motion before resampling

1tnew: time step of ground motion after resampling

ω: cyclic frequency step of the Fourier spectrum
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