Design of RC Sections with Single
Reinforcement According to EC2-1-1
and the Rectangular Stress Distribution

Vagelis Plevris and George Papazafeiropoulos

Abstract Nowadays, the design of concrete structures in Europe is governed by
the application of Eurocode 2 (EC2). In particular, EC2—Part 1-1 deals with the
general rules and the rules for concrete buildings. An important aspect of the design
is specifying the necessary tensile (and compressive, if needed) steel reinforcement
required for a Reinforced Concrete (RC) section. In this study we take into account
the equivalent rectangular stress distribution for concrete and the bilinear
stress-strain relation with a horizontal top branch for steel. This chapter presents
three detailed methodologies for the design of rectangular cross sections with
tensile reinforcement, covering all concrete classes, from C12/15 up to C90/105.
The purpose of the design is to calculate the necessary tensile steel reinforcement.
The first methodology provides analytic formulas and an algorithmic procedure that
can be easily implemented in any programming language. The second methodology
is based on design tables that are provided in Appendix A, requiring less calcu-
lations. The third methodology provides again analytic formulas that can replace the
use of tables and even be used to reproduce the design tables. Apart from the direct
problem, the inverse problem is also addressed, where the steel reinforcement is
given and the purpose is to find the maximum bending moment that the section can
withstand, given also the value and position of the axial force. For each case
analytic relations are extracted in detail with a step-by-step procedure, the relevant
assumptions are highlighted and results for four different cross section design
examples are presented.
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1 Literature Review and Introduction

During the last decades, well-established procedures have been used for the design
of reinforced concrete cross-sections against bending and/or axial loads [8]. Three
Model Codes have been published in the past [2, 3, 5, 6], which are guiding
documents for future codes, making recommendations for the design of reinforced
and prestressed concrete structures. In the first two, improved models were
developed for a more accurate representation of the structural behaviour of rein-
forced concrete structures. In Model Code 1990 [3] constitutive equations for the
proper description of concrete material properties were introduced (concrete
strengths up to C80 were considered), in view of the possibility of nonlinear finite
element analysis of structures. Model Code 1990 [3] became the most important
reference document for the future development of EC2-1-1 [4]. A detailed pre-
sentation of the Model Code 2010 [5, 6] is given in [13].

It is common knowledge that all relevant national standards of European
countries regarding the design and construction of reinforced concrete structures
will eventually be replaced by the Eurocode 2 (EC2), which will be valid
throughout the whole Europe and not only. EC2-Part 1-1 [4] specifies the strength
and deformation characteristics of 14 classes of concrete, classified according to
their strength. For all of these, stress—strain relationships are defined for: (a) struc-
tural analysis, (b) design of cross-section and (c) confinement of concrete. In the
second case, three stress-strain relationships are defined for concrete as follows:
(a) parabolic-rectangular stress distribution (b) bi-linear stress distribution,
(c) rectangular stress distribution.

In the past research has been conducted regarding the degree of simplification,
conservative design, safety and equivalence in between the three above cases of
stress-strain distributions, as well as their application for modern types of rein-
forcement (e.g. Fibre Reinforced Polymer, FRP). In [9] the design of a reinforced
concrete section subjected to bending using two stress—strain relationships men-
tioned in EC2, namely the parabola-rectangle stress distribution and the rectangular
distribution, is studied and the differences are underlined. Two dimensionless
quantities are used to convert the parabola-rectangle stress distribution to an
equivalent concentrated force for the concrete in compression. Also analytic rela-
tions which determine the limit between single reinforcement (only tensile) and
double reinforcement (tensile and compressive) are provided. The results drawn
from the use of these two stress distributions, namely, parabola-rectangle and
rectangle, showed that the differences between the amounts of reinforcement are
less than 1 % for singly reinforced sections and less than 2 % for doubly reinforced
sections.

Due to the different characteristics of higher strength concrete (higher strain
before reaching yield, and much reduced stress plateau after yield) some design
procedures traditionally used in normal strength concrete structures had to be
revised. In [7], Jenkins compared the results of the revised rectangular stress block
specified in the Australian Standard Concrete Structures Code AS 3600-2009 [11]
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regarding concrete strengths higher than 50 MPa, with those in the main interna-
tional codes (e.g. ACI 318-2005 [1], EC2-1-1 [4]), and with stress-strain distri-
butions closer to the actual behaviour of high strength concrete. It was found that
the equivalent rectangular stress block derived from the parabolic-rectangular stress
block of EC2 (assuming the same positions of centroids and the same resultant
compressive force) gave almost identical results to the parabolic-rectangular curve
of EC2 for all concrete strengths when used on a rectangular section.

In [10] the influence of the assumed stress-strain curve for concrete on the
prediction of the strength of conventional and high strength concrete columns under
eccentric axial load is investigated. It was concluded that the traditional
parabola-rectangle stress-strain relationship of the CEB-FIP Model Code 90 (for
fac < 50 MPa) leads to unsafe results when used for high strength concrete.

A general methodology for determining the moment capacity of FRP RC sec-
tions by using the general parabola-rectangle diagram for concrete in compression,
according to the model of EC2 is proposed in [12]. Non-dimensional equations are
derived independently of the characteristics of concrete and FRP reinforcement, and
a simplified closed-form equation is also proposed for the case of failure due to FRP
rupture. These equations can be used to obtain universal design charts and tables,
which can facilitate the design process. A comparative study is also presented
between the predictions of the proposed methodology and experimental results
from 98 tests available in the literature.

Although the above studies deal with the application of the most suitable
stress-strain diagram for concrete for the “optimal” design of cross sections using
different approaches, to the authors’ knowledge, there is no study in which explicit
closed formulas, design charts and design tables are provided to achieve the design of
RC sections according to EC2-1-1 [4]. In the present study, the case of the rectan-
gular stress distribution of EC2-1-1 for concrete is thoroughly studied and three
different but equivalent methodologies are provided for the design of RC sections
with single tensile reinforcement. The first and the third of the methodologies provide
analytic formulas and step-by-step instructions for the design, while the second is
based on easy-to-use design tables that are provided in Appendix. In addition, the
inverse problem is also investigated, again using the three methodologies, where
given the steel reinforcement the aim is to find the maximum bending moment that
the RC section can withstand, given also the axial force acting on the section.

2 Concrete

2.1 Concrete Properties

According to EC2-1-1 [4] the compressive strength of concrete is denoted by
concrete strength classes which relate to the characteristic (5 %) cylinder strength
Jfek, or cube strength fi cupe, in accordance with EN 206-1. Higher strength
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Table 1 Strength classes for concrete according to EC2-1-1

fix (MPa) 12 |16 |20 |25 |30 |35 |40 |45 |50 |55 |60 |70 |80 |90
Forewre MPa) |15 120 |25 [30 |37 |45 |50 |55 |60 |67 |75 |85 |95 |105

concretes, up to the class C90/105 are covered by Eurocode 2. The strength classes
for concrete are presented in Table 1 where f is the characteristic compressive
cylinder strength of concrete at 28 days and f cubes 1S the corresponding cube

strength.
The design compressive strength is defined as
Jea = acc& (1)
Ye
where:

e . is the partial safety factor for concrete at the Ultimate Limit State, which is
given in Table 2.1 N of EC2-1-1 [4]. For persistent and transient design situ-
ations, y. = 1.5

e a. is the coefficient taking account of long term effects on the compressive
strength and of unfavourable effects resulting from the way the load is applied.
The value of a,.. for use in a country should lie between 0.8 and 1.0 and may be
found in its National Annex. The recommended value is 1, although various
countries have adopted lower values, leading to more conservative designs.

It should be noted that higher concrete strength shows more brittle behaviour,
reflected by shorter horizontal branch, as will be shown in the stress-strain relations
and diagrams, later.

2.2 Concrete Stress-Strain Relations for the Design of Cross
Sections

Eurocode 2 Part 1-1 suggests the use of three approaches for the stress-strain
relations of concrete for the design of cross sections:

1. Parabola-rectangle diagram (more detailed)—EC2-1-1 Par. 3.1.7(1)
2. Bi-linear stress-strain relation (less detailed)—EC2-1-1 Par. 3.1.7(2)
3. Rectangular stress distribution (simplest approach)—EC2-1-1 Par. 3.1.7(3)

The three different approaches are described in detail in the following sections.
In the present study, only the 3rd approach has been used for the design of RC
sections.
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2.2.1 Rectangular Stress Distribution

According to Paragraph 3.1.7(3) of EC2-1-1, a rectangular stress distribution may
be assumed for concrete, as shown in Fig. 1 (Fig. 3.5 of EC2-1-1 [4]).

In the figure, d is the effective depth of the cross-section, x is the neutral axis
depth, A, is the cross sectional area of the tensile steel reinforcement, ¢, is the tensile
strain at the position of the steel reinforcement, F,. is the concrete force (com-
pressive, positive, as in the figure), F; is the steel reinforcement force (tensile,
positive, as in the figure). The factor 4 defining the effective height of the com-
pression zone and the factor # defining the effective strength, are calculated from:

, 08 for f <50 MPa ’
47008130 for 50<fy <90 MPa @)
_J10 for f <50 MPa 3
T=1.0 =20 for 50 <fix <90 MPa (3)

According to EC2-1-1, Table 3.1 [4] the value of &3 is given by

o 3.5 for fu <50 MPa 4
faua (o) = { 2.6+35(2%4)" for 50<fy <90 MPa “

Table 2 and Fig. 2 show the values of the parameters A, # and ¢.,; for each
concrete class.

Note: According to EC2-1-1 [4], if the width of the compression zone decreases
in the direction of the extreme compression fibre, the value #+f.4 should be reduced
by 10 %. This case is not examined in the present study, as the cross section is
assumed to be rectangular and the width of the compression zone does not decrease.
In any case, if needed, this correction can be very easily implemented in the
calculations.

Fig. 1 Rectangular stress distribution
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Table 2 The parameters /4, # and ¢,3 for each concrete class

Concrete Class A n €cu3 (%0)
C12/15-C50/60 0.80 1.00 3.50
C55/67 0.79 0.98 3.13
Co60/75 0.78 0.95 2.88
C70/85 0.75 0.90 2.66
C80/95 0.73 0.85 2.60
C90/105 0.70 0.80 2.60
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: 2.20
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0.70 : “% 2.00
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Concrete characteristic strength
(€12/15 to €90/100)
Fig. 2 The parameters 4, # and &3 for each concrete class
3 Steel
3.1 Steel Properties
The design strength for steel is given by
Sk
Sfoa == (5)
Vs

where 7 is the partial safety factor for steel at the Ultimate Limit State, which is
given in Table 2.1 N of EC2-1-1 [4] (for persistent and transient design situations,
ys = 1.15) and f{y is the characteristic yield strength of steel reinforcement.
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Table 3 Properties of steel reinforcement according to EC2-1-1

Product form Bars and de-coiled rods Requirement or
quantile value (%)
Class A B C -
Characteristic yield strength fix 400-600 5.0
or foox (MPa)
Minimum value of k = (filfy)« >1.05 >1.08 >1.15 10.0
<1.35
Characteristic strain at maximum >25 >5.0 >17.5 10.0
force, ey (%)

Table 3 (derived from Table C.1 of Annex C of EC2-1-1 [4]) gives the prop-
erties of reinforcement suitable for use with the Eurocode. The properties are valid
for temperatures between —40 and 100 °C for the reinforcement in the finished
structure. Any bending and welding of reinforcement carried out on site should be
further restricted to the temperature range as permitted by EN 13670.

The application rules for design and detailing in Eurocode 2 are valid for a
specified yield strength range, fix from 400 to 600 MPa. The yield strength fy is
defined as the characteristic value of the yield load divided by the nominal cross
sectional area. The reinforcement should have adequate ductility as defined by the
ratio of tensile strength to the yield stress, (f/fy)x and the characteristic strain at
maximum force, &,. Typical values of fy; used in the design practice nowadays are
400 and 500 MPa.

3.2 Steel Stress-Strain Relations for the Design
of Cross-Sections

According to Paragraph 3.2.7(2) of EC2-1-1, for normal design, either of the fol-
lowing assumptions may be made for the stress-strain relation for steel, as shown in
Fig. 3 (Fig. 3.8 of EC2-1-1 [4]):

Fig. 3 Idealised and design
stress-strain diagrams for
reinforcing steel (for tension
and compression)

o KB
o= A k5

k= (/)
A ldealised

B Design

f.f" E: © Luk
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Jfﬁbled4 Tfhe Pafsmetelrs lfyk’ Steel Class fy (MPa) fya (MPa) &ys (%0)

va and &y for each steel class,

sssuming E, = 200 GPa and B400 400 347.83 1.74

2o = 115 B500 500 434.78 2.17
B600 600 521.74 2.61

1. An inclined top branch with a strain limit of &,q and a maximum stress of k*fy/y;
at &y, where k = (fi/fy)x.
2. A horizontal top branch without the need to check the strain limit.

The parameter & defines the inclination of the top branch. The special case k = 1
corresponds to a horizontal top branch (no inclination).

In the present study we use the second of the above approaches, i.e. a horizontal
top branch for steel (k = 1). According to this approach, there is no need to check
the strain limit of steel and as a result in the design of RC cross sections, the
concrete is always assumed to be the critical material. In this case, the steel design
stress is given by

JS_{fy(yi:Es-ss %f0<ss<sys ©)
.ﬁd if Es > Eys

where fyq is the design steel strength given by Eq. (5) and & is the design yield
strain given by

Sys = 7 (7)

The design value of the steel modulus of elasticity Eg may be assumed to be 200
GPa according to EC2-1-1 [4].

Table 4 shows the parameters fyy, fyq and &y for each steel class (B400, B500,
B600), with the assumptions E; = 200 GPa and )¢ = 1.15, in accordance with
EC2-1-1 [4].

4 Design Assumptions

The following design assumptions are made in this study, in accordance with
Eurocode 2—Part 1-1:

1. The design is based on characteristic concrete cylinder strengths, not cube
strengths.

2. Plane sections remain plane.

3. Strain in the bonded reinforcement, whether in tension or compression, is the
same as that of the surrounding concrete.

4. The tensile strength of concrete is completely ignored.
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5. The concrete stress is considered according to the simplified rectangular dis-
tribution shown in Fig. 1. This gives the opportunity to obtain elegant
closed-form solutions for the design process.

6. Stress in steel reinforcement is considered according to the stress-strain relation
of EC 2-1-1 [4] for steel (Fig. 3), with a horizontal top branch without the need
to check the strain limit. As a result, concrete is assumed to always be the critical
material, reaching its maximum strain at ULS.

5 Rectangular Stress Distribution Case Definitions

Figure 4 shows a typical rectangular cross section and the distribution of strains,
stresses and corresponding forces.

Since the horizontal top branch for the steel stress-strain relationship is adopted
in this study (Fig. 3), there is no need to check the strain limit of steel and at the
Ultimate Limit State (ULS) the concrete is the critical material (&, = &.,3) as shown
in Fig. 4, where:

e / and b are the height and width of the rectangular section, respectively

d; is the distance from the lower edge of the section to the centre of the tensile
reinforcement

d is the effective depth of the rectangular section

x is the neutral axis depth

& is the tensile strain in the steel reinforcement

& = &3 1s the compressive strain in the concrete upper edge

A is a factor defining the effective height of the compression zone, given by
Eq. (2)

As

d

—bhb——

Section Strains Forces Equilibrium

Fig. 4 Cross section, strain, stresses and forces distribution and section equilibrium, assuming
& = &qu3 (concrete at limit strain)
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e 5 is a factor defining the effective strength of the compression zone, given by
Eq. 3)

e M, is the applied external bending moment (if positive, it puts the lower edge of
the section in tension)

e N, is the applied external axial force (tensile for the section if positive), applied
at a position yy measured from the top of the section towards the lower edge of
it. Note: If the axial force is central, acting at the middle of the section height,
then yn = h/2

e 1y, is the distance from the tensile steel reinforcement to the position of the

external applied axial force

z is the distance of the resultant concrete force F, from the steel reinforcement

F. is the concrete (compressive) force

F is the steel (tensile) force

A is the required steel reinforcement.

5.1 Definition of the Direct and the Inverse Problem

In the direct problem, the loading conditions (bending moment My, axial force Ny,)
are given and the purpose is to calculate the required tensile reinforcement (steel
area) A. In the inverse problem, A and Ny (applied at yy) are given and the purpose
is to calculate the maximum bending moment M, that the cross section can
withstand.

6 Investigation of the Direct Problem

6.1 Analytical Calculation of the Required Tensile
Reinforcement Area A

In the direct problem, the loading conditions are given and the purpose is to
calculate the required tensile reinforcement (steel area) A. In order to calculate A,
the unknown quantities x and z for the given loading conditions have to be cal-
culated first. After moving the external force Ny to the position of the steel rein-
forcement and imposing force and moment equilibrium for the cross-section, the
situation is depicted in Fig. 5.

From the equilibrium of the section in the x-direction, we have:

SF,=0=F.+N;—F,=0=F,=F,. +N, (8)
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VR T AT
— \ —_—
N ‘ | \
} Ny (tensile) } \ }
\ > «Ms | } \
\ \ |:|' > | \
| > | | Z
Ys | \ ‘ !
\ ‘ | Mss=My — Ngys |
R | R Na |
N -/ \\57777 77777;//
Equilibrium Equilibrium

Fig. 5 Equilibrium after moving the external force N, to the position of the steel reinforcement

We have also:
di+d=h=d=h—d 9)
ystyn=d=y;=d—yn (10)
The effective bending moment applied at the location of the steel reinforcement is:
Mg =My — Ny - ys (11)
From the geometry of the section (Fig. 4), we have:

x Ax
d= — =d—— 12
z+2:>z 5 (12)

The concrete force, assuming a rectangular distribution of stresses, is given by:
F. = Jxnbf.q (13)

From the equilibrium of moments at the position of the steel reinforcement
(Fig. 5) we have (clockwise moment taken as positive):

Mjee =0=F,. - 2—Myq=0= My =F.-z (14>
By substituting Eq. (13) into Eq. (14), we obtain:

Msd = j~x’7bzﬁd (15>
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By substituting Eq. (12) into Eq. (15), we have:

4 ix , 2 (L #
My = Jxnbfeq - (d — ?> =X (Anbdﬁd) — X - (nb?fcd) = (16)

b7 fea
(P55 2 — Gt -4 My =0 (17)
The above quadratic equation needs to be solved for the neutral axis depth x. All
quantities except for x are known and the solution of the quadratic equation can be
easily obtained as

d VA
=-+— 18
T2 T 04, (18)
where
b7’ fua
A = (19)
2
and 4, is the discriminant of the quadratic equation:
Ay = 22nbfeg (nbd*fra — 2Mq) (20)

According to Eq. (2), it is always A < 1, as 4 = 0.80 for f,; < 50 MPa and
4 <0.80 for 50 < fy < 90 MPa and as a result d/A>d which leads to
X, > d which is not acceptable, since the requirement is that 0 < x <d for sections

under bending. Therefore the only acceptable solution is x = x; and thus:

d VA
x_XI_I_ﬁ (21)

After calculating x from Eq. (21), it is easy to calculate also z, F. and F from
Egs. (12), (13), (8). The required tensile reinforcement is then calculated by

F
A== (22)

Os

where o, is the steel stress at the Ultimate Limit State (ULS) of the section, cal-
culated by Eq. (6). In our case, at the ULS the concrete zone is always at the critical
strain, &, = &3 While the steel strain & can be calculated considering the geometry
of Fig. 4 as follows:
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CU. CU. S d
i 3:ﬂz>ssz (——1)86143 (23)

X d X

If the steel does not work in full stress (o, < fyq), although the required rein-
forcement area A4 can be calculated, the design with a single tensile reinforcement
is not economic. Either compressive reinforcement should be also added, or an
increase in the dimensions of the cross section, in particular its effective depth d.

6.1.1 Maximum Effective Moment Mgy max that the Section Can
Withstand

The maximum effective bending moment that the section can withstand (either
economically, with steel working at full strength or not) can be calculated by setting
x = d, so that the concrete compressive zone obtains its maximum value. In order to
find the corresponding maximum effective bending moment Mgy m.x, We set
x =d in Eq. (16) and we obtain:

Msd,max =4 <1 - %) ’/’bdzfcd (24)

It should be noted that the maximum effective bending moment My 1. is the
upper limit of the effective moment, but the design for Mgy m.x is in fact impossible,
as for x =d, it is & =0, g, = 0 and as a result an infinite amount of steel rein-
forcement would be needed according to Eq. (22).

The effective bending moment Mgy can be also expressed in general in a nor-
malized (dimensionless) form as follows

_ M sd
 bd?fey

Hsa (25)

where g is called the normalized effective bending moment. For the maximum
normalized effective bending moment, we have

Mg max A
= sdmar (-2 2
Hsd max bdzfcd ( 2> n ( 6)

It can be seen that psg max depends only on the concrete class, as 4 and # are both
direct functions of the concrete strength only [Egs. (2) and (3)].
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6.1.2 Critical Effective Moment Mq)im that the Section Can
Withstand Economically

Theoretically, the steel area can be calculated for any Mgy < Mg max (Or equiva-
lently psq < Msa.max) but as mentioned earlier, for the cases Mg jim < Msq < Md.max
(Or Usdtim < Hsa < Hsa.max) the design is not economic as steel works below its yield
point. In order for the design to be economic, the steel reinforcement has to work
above the yield limit, at full strength (¢, > &y and o = fyq). At the limit of this
condition, we set & = &, in Eq. (23), and solving for x, we have the corresponding
limit value xy;,,, of x:

Ecu3
B Ecu3 + Eys ( )

In order to find the corresponding effective moment Mg i, We set X = Xy, in

Eq. (16)

27
Msd,lim = Xiim * (i’/lbdfcd) - x12im : (ﬂb chd) (28)
By substituting xy;,,, from Eq. (27) into Eq. (28), we finally obtain:

Ecu 1- 4 +¢ s
Msd,lim = 3)(—2);80143 : Wbdz cd (29)

(36u3 + Eys
The corresponding dimensionless limit value pgqim is then

de lim gcu?)(l - /1/2) + Eys
Hsd tim = ; = - ’7/18(‘1(3 (30)
d,l bdzfcd (8cu3 + 8”)2

If for a given design problem Mgy < M4 1im (or equivalently pgq < sa1im) then
an economic design can be achieved using single steel reinforcement only. On the
other hand, if Mgy > Myqjim (O Usg > Usaim) then an economic design cannot be
achieved using only single steel reinforcement. Either double reinforcement (tensile
and also compressive) is needed, or an increase in the dimensions of the cross
section (especially d, but also b). As shown in Eq. (30), the value of fisq 1im depends
on the concrete strength class and the steel yield strain &, which is dependent on the

steel strength, as shown in Eq. (7) and Table 4.
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6.1.3 Summary of the Analytical Methodology for the Design of Cross
Sections

The full methodology for the calculation of the needed steel reinforcement Ay is
summarized below:
Known quantities for the design:

e Materials properties: f, fyx, Es (EC2-1-1 value is 200 GPa)
Safety factors: y. (EC2-1-1 value is 1.5), y, (EC2-1-1 value is 1.15), ac.
(EC2-1-1 recommended value is 1, National Annexes can enforce values
between 0.8 and 1.0)
Section geometry: b, h, d,

¢ Loading conditions: My, N4 applied at yy position

Quantities to be calculated and corresponding equation to use:

A Eq. (2), n: Eq. (3)

fcd’: Eq (l)v &cus: Eq (4)a fyd: Eq (5)’ Eyst Eq (7)

d: Eq. 9), ys: Eq. (10), Mq: Eq. (11)

Mg max: Eq. 24). If Mg < Mg max then proceed with the next calculations,

otherwise stop, the design cannot be achieved

® Myim: Eq. 29). If Mgy < Myqim then the design using single steel reinforce-
ment is economic (steel working at full strength), otherwise the design using
single steel reinforcement can be achieved, but it is not economic (steel working
below full strength)

e A;: Eq. (19), 4,: Eq. (20), x: Eq. (21), z: Eq. (12)

e F. Eq. (13), F: Eq. (8)

e ¢ Eq. (23), o4 Eq. (6), As: Eq. (22)

The above procedure is straightforward and can be easily implemented in any
programming language. A simple spreadsheet program, such as Microsoft Excel,
can be also used in order to make the necessary calculations, without even the need
for any complicated programming macros.

6.2 Design of Cross Sections Using Design Tables

In this section, we explain how the steel reinforcement area can be calculated using
the design tables that are provided in Appendix A. We define the dimensionless
value w as

Fe
=" 31
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From Eq. (8) we have
F.=F;—Ny (32)

Substituting F from Egs. (22) in (32) and then substituting F, from Eq. (32)
into Eq. (31) we obtain

_ASGS —Nd

bdf.d (33)

By solving Eq. (33) for A, we obtain
1
Ay =— (wbdfq + Ny) (34)

It is obvious that if w and o, are both known, then it is easy to calculate the
needed steel reinforcement area Ag from Eq. (34). In Appendix A there are six
tables which provide the values of @ and o, for given values of the normalized
effective bending moment (4, for each concrete class. In Sect. 6.3 we will explain
how the values of the tables can be calculated. Each table gives the value of w for a
given value of pgq, together with the values of & = x/d, { = z/d, &5 (%o) and also o
for three different steel classes (B400, B500, B600). Of these parameters, only o, is
affected by the steel quality and that’s why it is given in three columns.

It should be noted that the first nine concrete classes (C12/15, C16/20, C20/25,
C25/30, C30/37, C35/45, C40/50, C45/55, C50/60) share the same table (Table 10)
while for the other five concrete classes (C55/67, C60/75, C70/85, C80/95 and
C90/105) there are separate tables for each case.

The tables are independent of the values of the concrete parameters a.. and ..
Of course these parameters affect the final design, but they are taken into account
through the calculation of f.4 in Eq. (34) which affects the calculation of A;. The
first 5 columns, ugy, w, &, {, & are also independent of the steel parameters y, and
E,. Only the steel stress at the ultimate state (last three columns of the tables)
depends on the steel parameters y, and Eg and these three columns have been
calculated with the assumption Eg = 200 GPa and y, = 1.15 (in accordance with
EC2-1-1 [4]). This is also the case for the limit values fisq jim and i, which depend
also on Eg and ys.

6.2.1 Linear Interpolation for the w-psq Tables

In most cases, the value of pyq is not an exact value of the table, but rather lies
between two neighbouring values piq; and pggp (Usq1 < Hsa < Usqz)- In this case
linear interpolation is needed in order to obtain the value of w that corresponds to
the given ug. This is of course an easy-to-solve problem, but nevertheless we will
provide an explicit analytic solution here.
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Table 5 .The linear Usq values from Table  values from Table
interpolation problem of the
Usq-Co tables Hsd1 @1

Our psa (Hsar < Hsa < Psaz) Our 0 =7?

Hsaz (05)

If w; corresponds to pg; and @, corresponds to iy, then we have the linear
interpolation problem that is depicted in Table 5.
The solution is given below

Hsar — Hsa1 _ Hsa — Hsar N (35)
Wy — W w — W
Hsaz — Hsai

6.3 Analytic Formulas and Investigation of the Design
Parameters o, &, §, &

In this section, we will investigate the parameters o, &, {, & and we will end up to
closed formulas for their calculation. Using these formulas, one can easily generate
the design tables of Appendix.

6.3.1 Parameter ®

Although the values of the parameter @ can be taken from the design tables using
the design approach described before, it is very interesting to investigate also @
analytically, using closed formulas. From Eq. (8) we have

Fe=F.+Ny (37)

By substituting the concrete force from Eq. (13) and the steel force from
Eq. (22) into Eq. (37), we have

Ag- 0y = 2x - nfeq - b+ Ny (38)

By substituting Ag from Eq. (34) into Eq. (38), we have

1
(wbdfoq +Ny) - 05 = Ax - Nfeq - b+ Ny = (39)

Os
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By definition it is

b = o (1)
By substituting My, from Eq. (15) into Eq. (41) we have
= X -gjﬁ:db z_ /IZ:Z (42)
By substituting z from Eq. (12) into Eq. (42) we obtain
dnx(d—%)  Jon 1 (o z
Ma="—g =4 (7) (43)
By substituting Axy/d from Eq. (40) into Eq. (43) we finally get
LI
Heg = @O — 2 Q) (44)

The above is a simple analytic formula for the calculation of uy when w is
known. This is very useful in the inverse problem which will be investigated later.
Now we will try to solve Eq. (44) for . It can be written in the following form:

1
%wz—w—i—,usd:O (45)

The solution of the quadratic equation is:

[ 2
w1 = n(l +./1 —%) (46)

From the above two solutions, only the one with the negative sign (w;) is
acceptable (proof will follow) and as a result:

a)—n(l— 1_2;:;d> (47)
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Proof that o, (with the positive sign) is not an acceptable solution of
Eq. 45)
Assuming that w, is an acceptable solution, then from Eq. (40) we have

Ax
(02271'72 (48)

[ 2
Wy = n<1+ 1—%) (49)
1+

M2 Zﬂd
e  Q—— 50
n-— n( \/ = (50)

X2 2:usd
A—==1 1-— 51
p +,/ p = (51)

14./1— 2psq

Since

Then it should be

n

.

(52)

Xy =

~

Since the numerator is greater than 1 and the denominator A is less than 1,
then x, > d which is not acceptable. As a result, @, is not an acceptable
solution.

Figure 6 depicts Eq. (47) showing w as a function of the dimensionless effective
bending moment (4, for every concrete class.

Using Eq. (47) for w and setting as piyq the values of pigg max [Eq. (26)] and pigq jim
[Eq. (30)] for each steel class, it is easy to calculate the corresponding values @,ax
and wy;, for every steel class, and obtain the closed formulas as follows:

Omax = NA (53)

cu. 2—-12 2 VS 4
WDpim =1 1 — 1 — Mﬂguﬁ (54)
(8c143 + Syx)
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Table 6 The values of the parameters fisq max> @max> Msd lims Dlim
Concrete class max. (any steel) lim (B400) lim (B500) lim (B600)
Hsd,max max Hsd lim Diim ﬂsd,lim Dlim Hsd lim Wlim

C12/15-C50/60 | 0.4800 |0.8000 |0.3916 |0.5344 |0.3717 |0.4935 |0.3533 |0.4584
C55/67 0.4655 [0.7678 |0.3685 |0.4933 |0.3477 |0.4528 |0.3287 |0.4185
C60/75 0.4510 [0.7363 |0.3482 |0.4593 |0.3270 |[0.4198 |0.3079 |0.3865
C70/85 0.4219 [0.6750 |0.3155 |0.4079 |0.2946 |[0.3712 |0.2761 |0.3405
C80/95 0.3929 [0.6163 |0.2892 |0.3695 |0.2695 |[0.3358 |0.2521 |0.3078
C90/105 0.3640 [0.5600 |0.2652 |0.3356 |0.2469 |0.3050 |0.2307 |0.2795

Maximum and limit values for pq and @

Table 6 shows the values of the parameters g max, @max (the same for all steel
classes) and g 1im» @nm (for steel B400, B500 and B600), for every concrete class.
It should be noted that the values of the limit parameters (lim) of the table have been
calculated for E; = 200 GPa and y, = 1.15, in accordance with EC2-1-1 [4].

Figure 7 shows the corresponding fisq max> @max and Usd 1im> Wrim, as functions of
the concrete strength. Figure 8 depicts myax and @iy, VEIsus fgg max and fisq jim for
each concrete and steel class.
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Fig. 8 wmax and wyy, Versus fggmax and fisq im for each concrete and steel class

6.3.2 Parameter &

The parameter ¢ is the normalized neutral axis depth. The neutral axis depth is
normalized with respect to the effective height d of the section and is defined as
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g=2 (55)

Using Eq. (40) and also substituting o from Eq. (47) we have

N R
\f_d_/m_2<1 1 r/) (56)

The corresponding values &,,x and &, are

1 32 — A) + 26y,
Eim==1—/1— MASL‘M?’ (58)
Z (SCM3 + gys)

In Fig. 9 £ is shown as a function of the normalized moment u,; for various
concrete strength classes. It is apparent that for higher concrete classes, the nor-
malized neutral axis depth is higher, for the same value of pg,. All curves increase
with increasing normalized moment, until ¢ gets equal to one (x = d).

~pn C55 C12-C50

1 T T T T T T Co0_C8y, 75

09t ]
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06 .
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04t .
03} .
02t ]

01 .

I L I L I L I 1 I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Msd

Fig. 9 ¢ as a function of w4 for every concrete class
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6.3.3 Parameter {
The parameter ( is the normalized distance of the resultant concrete force from the

tensile reinforcement z with respect to the effective section height d and is defined
as

z
=- 59
(== (59)
Using Eq. (12) and also Eq. (56) we have
Z (d - )jx) A X A w
: d d 2 d 2 ¢ 2y (60)

Substituting & from Eq. (56) we obtain also

(1—,/1—%’>:o.5<1+,/1—%> (61)
n n

The corresponding values (,;, (corresponding to @pmax and figg max) and (i, are

(=1~

ST
ol -

A
gmin =1- 5 (62)

32— A)+2e
Ciim = 0.5 (1 + \/1 — Mwm) (63)

(Scu3 + gys) ?

In Fig. 10 { is plotted against the dimensionless design bending moment g, for
various concrete strength classes. It is observed that { decreases with increasing
concrete strength class for the same value of u,; and it decreases generally with
increasing [l

Table 7 shows the values of the parameters &,.x, {imin (the same for all steel
classes) and &y, (im (for steel B400, B5S00 and B600), for every concrete class. It
should be noted that the values of the limit parameters (lim) of the table have been
calculated for E; = 200 GPa and y, = 1.15, in accordance with EC2-1-1 [4].

6.3.4 Steel Strain &

From the definition of &, it is

= | X

(64)

O | =
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Table 7 The values of the parameters & axs Cmins Clims Clim

Concrete class max./min. lim (B400) lim (B500) lim (B600)

(any steel

class)

Emax | Cmin Slim Clim Clim Clim Slim Clim
C12/15-C50/60 |1 0.6000 |[0.6680 |0.7328 |0.6169 |[0.7533 |0.5730 |0.7708
C55/67 1 0.6063 [0.6425 |0.7470 |0.5898 [0.7678 |0.5450 |0.7854
C60/75 1 0.6125 [0.6238 |0.7583 [0.5702 [0.7791 |0.5250 |0.7966
C70/85 1 0.6250 [0.6043 |0.7734 |0.5499 [0.7938 |0.5045 |0.8108
C80/95 1 0.6375 [0.5995 |0.7827 |0.5450 [0.8025 |0.4995 |0.8189
C90/105 1 0.6500 [0.5992 |0.7903 |0.5446 |0.8094 |0.4992 |0.8253

Substituting Eq. (64) into Eq. (23) and also using Eq. (56) we have

1 1 A
& = (_ - 1>8cu3 =\~ 1 Ecuz = (ﬂ - 1>gcu3 (65)
¢ I @

or in terms of g

1— 2p5q

& = (— — 1)8”43 =|——1 Ecuz = N vV "] 1 Ecu3

¢ Hi-y/1-2) 2154
7 n
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The strain of the reinforcement ¢ is shown in Fig. 11, as a function of the
normalized design bending moment pgq (for pugq > 0.01), for various concrete
strength classes, where the x-axis (isq) is in logarithmic scale for better clarity. In
general, it is shown that the steel strain decreases for increasing normalized bending
moment fgy. If the horizontal top branch of the steel stress-strain diagram is con-
sidered (as in this study), the steel strain is not supposed to have a maximum and in
theory it can extend to infinity. Therefore, for very small values of the dimen-
sionless bending moment pgq the ¢ curves tend asymptotically towards infinity.
Furthermore, for higher values of 4, the steel strain decreases and for gy max it
becomes zero, as shown in the figure.

In Fig. 12 we zoom in the area of higher values of piy4, 0.2 < ugq < 0.48. The
yield (limit) values for & (&y, shown in Table 4) have been plotted in this diagram
also, as horizontal lines, for each steel class.

6.3.5 Analytic Formulas of py, o, &, {, & for Concrete Classes
up to C50/60

For the special case of concrete classes up to C50/60, calculations are much sim-
pler. For this case, it is # = 1 and A = 0.8 and as a result we obtain the following
simplified formulas.
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Fig. 12 ¢ as a function of uyy for every concrete class (g > 0.2, ugq in logarithmic scale)

For pgy:

Uy = —0.5- (67)
My max = 048 (68)
P lim = 402:{3:;2)8;}3 beu3 (69)

For w:
o=1-/1-2uy (70)
Omax = 0.8 (71)
o= 1 \/1 096603 + 1.628ys o (72)

(s + )
For ¢&:

£ = 1250 = 1.25(1—\/1—2;‘“,) (73)

émax =1 (74)
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0.96¢.,3 + 1.6¢,
fim =125 — 125 [1 - 0 200s T 100 (75)
(86M3 + gys)
For (:
C:l—O.SOJ:O.S(l—F\/l_Zﬂsd) (76)
Cmin =0.6 (77)
0.96¢.,3 + 1.6¢,
(im = 0.540.5, 1 — Lfysws (78)
(8cu3 +8ys)
For &:

. 4
g = <% — 1)86,43 = {0— <1 ++/1- Zﬂsd) - 1]80143 (79)

w Hsa

Figure 13 shows the parameters w, &, { and ¢ as functions of the normalized
bending moment 4 for concrete classes C12/15 up to C50/60.
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Fig. 13 o, ¢, , & as functions of ug for concrete classes C12/15 up to C50/60
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7 Investigation of the Inverse Problem

In the inverse problem, the tensile reinforcement (steel area) A, and the axial force
Ny (which is applied at yn) are given and the purpose is to calculate the maximum
bending moment My that the cross section can withstand.

7.1 Analytical Calculation of the Maximum Bending
Moment My

In this problem there are generally again two cases:

e Steel working at full strength (g5 > &y, 05 = fya)
e Steel working below full strength (&5 < &y, 05 < fya)

Case A: We assume that steel works at full strength

If steel works at full strength, then & > &, and o, = f,q and we have:

F;
Ay =—=F,=A;-fu (80)
Sy
SF,=0=F.+N;—F,=0=F.=F,— N, (81)
F. = Jxnbf.q = Fe (82)
- = /Axnbf,, X =
a Jnbfoq
Ecul gcu3+8x d
—:—jﬁ‘: ——1 Ecu3 83
X d ¢ (x >(0 : (83)

Using Eq. (83) we can now check our principal assumption. If & > & then the
assumption was right and we can continue, otherwise the assumption was not right
and we have to move to Case B. By substituting Egs. (80), (81), (82) into Eq. (83)
and doing some calculations, the criterion for Case A becomes as follows:

dinb [ U .
if Lf‘l -1 bass >1 then & >¢, otherwise & <g (84)
Axfyd - Nd Eys i

If the criterion of Eq. (84) is satisfied, then & > €. If this is the case, then we
calculate x from Eq. (82) and we continue with the Final step below, otherwise we
move to Case B where ¢ < gy
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Case B: Steel working below the yield limit (with less than full strength)

If the criterion of Eq. (84) is not satisfied then steel works below the yield point,
& < €y and g < fyq and we have:

&
Os :f;'d'_: s " & (85>
Eys
F
Ay =—=F;=A; gy (86)
Os
Ecu3 Eeuz & d
— = = &= |- 1 cu 87
X d ¢ (x )8 3 (87)

By substituting ¢, from Eq. (87) into Eq. (85) and then g, from Eq. (85) into
Eq. (86) we obtain:

Fy= A, - (‘_’ - 1) o (88)
X
We have also:
F, = Jxnbf.y (89)
Fy=F.+ Ny (90)

By substituting F from Eq. (88) and F, from Eq. (89) into Eq. (90) we have:
d

ASEY l=—1 Eeuz = Mnbfcd +Nd = (91)
X

()“nbftd) ’ x2 + (Nd +AsEsgcu3) “x — AjEden; =0= (92)

The above quadratic equation needs to be solved for the neutral axis depth x. It
can be written as:

Ay +Box+Cy =0 (93)
where
A2 = /lnbfcdv BZ = Nd +A.€Es8cu3; C2 = *AxEsdscM (94)

The quantities A, B, and C; are all known, so by solving the quadratic Eq. (93)
we can determine the quantity x. The discriminant 4, of the quadratic equation is
given by:
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Ay =B — 44 - Co = (Na+Ay - Ey - 603)’ +4%-n-fua - b-As - Eg-d - 6o (95)

The solution of the quadratic equation is:

(96)

X =
12 24, — Bt VA

—B, £ VA, {Xl :%ﬂ
_— = 2
24,

X2

Given that —B, — v/A; <0 and according to the requirement 0 < x<d, the
only acceptable solution is x = x, and thus:

=B+ VA
T 24,

X=x (97)

After calculating x from Eq. (97), it is easy to calculate also & from Eq. (87). We
can now check again the validity of the principal assumption. It should certainly be
&s < &y otherwise the assumption for Case B was not right and there must be a
problem in the calculations. If indeed & < €, then we continue with the Final step
below, with the value of x calculated with Eq. (97).

Final step:

Having obtained the value of x, either from Case A or Case B, we continue with
the following calculations:

Mo = rontfa(a -5 (98)

My =M;—Ng-ys = Mg =M+Ng-ys (99)

7.1.1 Summary of the Analytical Methodology for the Calculation
of the Maximum Bending Moment My

The full methodology for the calculation of the maximum bending moment M} that
the section can withstand given the existing steel reinforcement A and the axial
force N4 (which is applied at yy) is summarized below:

Known quantities for the calculation of the strength: The known quantities
for the calculation of the cross section strength are the same as the ones of the direct
problem, with the exception of the applied external bending moment My which is
now not known (and needs to be calculated). Instead, the existing steel reinforce-
ment A, is now known.

Quantities to be calculated and corresponding equation to use:

e /J: Eq. (2), n: Eq. 3), fea: Eq. (1), ecu3: Eq. (4), fya: Eq. (5), &y Eq. (7), d:
Eq. (9), ys: Eq. (10)
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e If the Criterion of Eq. (84) is satisfied, then proceed with Case A, otherwise
proceed with Case B

* Case A * Case B

— Fg: Eq. (80), F.: Eq. (81), x: — Ay, By, Cy: Eq. (94), 45: Eq. (95), x:
Eq. (82), & Eq. (83) (should be > &), Eq. (97), &: Eq. (87) (should be < &), ay: steel
05 = fyd stress, Eq. (85)

o My: Eq. (98), My: Eq. (99).

The above is again a straightforward procedure that can be very easily imple-
mented in any programming language.

7.2 Solution of the Inverse Problem Using Design Tables

The inverse problem can be solved using the design tables provided in Appendix A,
without any complicated analytic calculations in the usual case of economic design
(steel working at full strength). In the case where the steel does not work at full
strength, then it is not very easy to use the design tables, as the unknowns in this
case are two (w and o) and an iterated process is needed in order to calculate the
real value of w, as described in detail in the following sections.

Case A: We assume that steel works at full strength

Setting 0 = fyq in Eq. (33) we obtain

Agfya — Na
=Sy~ 1
w bl (100)

Now we must calculate «» with Eq. (100) and then read the design table and
ensure that for the given value of , steel works indeed above the yield limit, at full
strength (o5 = fyq) S0 our assumption was right. For this we can also simply read the
o;m value for the given steel class and check if the calculated w is below wyy,
(w < oym). Otherwise, if @ > wy;;, then the assumption was not right and we have
to move to Case B. If indeed steel works at full strength, then for the given value of
w, we use the design table to take the corresponding value of uyy (linear interpo-
lation may be needed) Then we calculate My with the following formula which is
derived by solving Eq. (25) for M:

M, = Hsa - bdzﬂ'd (101)

Then, as previously, My can be easily calculated using Eq. (99)
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Table 8 Schematic representation of how to use design tables when Steel works below the yield
limit

o (from table) g, (from table) o (calculated from o with Eq. (102))
Dfim Os :f;/d Wcalc,in (from o :f;/d) > Wjim

Dable O table Ocalc (from O's.table) > Wiable

wl,table Usl,lable ma,calc (from Usl,lable) > wl,table

02, table 02 table Opcate (frOM G4 table) < D2 table

Case B: Steel working below the yield limit (with less than full strength)

If using Eq. (100) for the given A and Ny, we obtain a value of ® equal to Wy,
in for which it iS ®W¢a1cin > ®Opm, then the assumption that steel works at full strength
was wrong. In this case for the real value of o, it iS ® < W¢yein because in fact
05 < fya. We must start an iterative process in order to calculate the real value of w
from the values of the table. We continue with the first pair of wype and o wple
values from the table which correspond to an uneconomic design (first o tpje fOr
which it i 0 pie < fya). From each oy 1 We calculate @, as follows:

Asas table — Nd
cale = 7 102
WDcal, bdfg (102)

and we move on with the next pairs (ypie, O able) UNtil we find a value of @, for
which @y < Wple- Then we stop and the real value of w should be between the
last two values from the table, as shown in Table 8.

In Table 8, the real value of @ should be between the two values w; and w, (the
word “table” has been omitted) of the table. In order to find w we have to find the
intersection of two lines in the 2D space of (g5, @), namely the line passing through
points (a1, w1) and (05, w,) and the line passing through points (og;, w,) and (o,
wy). The intersection point can be easily calculated as follows:

— 051 (w2 — wp) + 0(wy — 1) (103)
Wy — Wy + W, — W)

WMy — W1
w = 2Wa 1Wph (104)
Wy — Wp + Wy —

Having calculated w, we read pgq from the table (linear interpolation may be
needed). Then as previously, we can calculate Mgy and My, by using Eqgs. (101)
and (99), respectively.
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7.2.1 Linear Interpolation for the w-psq Tables

Generally, the value of w is not an exact value of the table, but rather lies between
two neighboring values w; and w, (w; < w<w,), corresponding to fsy values pgq;
and . In this case linear interpolation is needed again. Solving Eq. (35) for pgy
we obtain

w 1
= _— - . 105
Hsa = Hsq1 + P (Hsaz = Hsar) (105)

7.3 Analytic Formulas of o, &, {, & for the Solution
of the Inverse Problem

Again we have two cases: Steel working at full strength and steel working below

full strength.
Case A: We assume that steel works at full strength (nq < g jim)

Setting 0 = fyq in Eq. (33) we obtain

_ Adva —Na
o= bl (106)

Substituting @ from Eq. (47) we have:

n bdfcq

|- (1 _Ada Nd>2
nbdfea

Now we check if the pyq calculated from Eq. (108) is indeed less than pq 5im (See

Table 6). If indeed g < fsaim then the assumption was right, otherwise we move

to case B. If the assumption was right, then we can calculate My and M, as
previously, by using Egs. (101) and (99).

Mg = (108)

N

Case B: Steel working below the yield limit (less than full strength, psq > psq 1im)

If using Eq. (108) for the given A and Ny, the obtained value 4 is greater than
Usazim» then steel works below yield strain and the design is not economic. In this
case, we have & < ¢y and from Eq. (6) we have
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o, = E; - & (109)

Substituting o, from Eq. (109) into Eq. (33) we have

AsEge; — N,
:_7E:l (110)
Substituting & from Eq. (65) into Eq. (110) we have
AJL(%——I)Qﬁ~—AQ
o= b = (111)
(bdf.q) - @ + (AsEsecus +Nyg) - @ — IAEseos =0 (112)

The above quadratic equation needs to be solved for w. It can be written in the
form:

A30° + B3+ C3 =0 (113)
where
A3z = bdfy (114)
B3 = AEsécu3 +Na (115)
C3 = —InAEsecs (116)

The quantities A3, B3 and C3 are all known. The discriminant 45 of the quadratic
equation is given by:

A3y = B2 — 4A3C3 = (AEyees + Ny)* + 45mbdf,qAEge s (117)

The solution of the quadratic equation is:

—By + /A o =2V
W12 = 3 Vas = { : 243

o W (118)

W2 = —54,

Of the above solutions, only the second is acceptable, as the first leads to
negative values for ®. So we have

—B3+ VA3
w=—2"_"Y=

o (119)

Having calculated w, we calculate uyq with Eq. (44) and then as previously, we
can calculate My and My, by using Eq. (101) and Eq. (99).
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8 Numerical Examples

Four concrete sections will be examined in total. For each section, the direct and the
inverse problem are solved using three methodologies:

1. Analytical calculations
2. Using the design tables provided in Appendix A
3. Using o analytic formulas without the use of tables

Below are the common properties for all numerical examples:

o 7. =1.50,a,=1
e Steel class B500 (fyx = 500 MPa)
e E =200 GPa, y;=1.15

The main different characteristics of the four test examples are summarized
below:

1. Concrete Class C20/25, no axial force (steel working at full strength).

2. Concrete Class C30/37, with tensile axial force (steel working at full strength).

3. Higher Concrete Class (C70/85), with tensile axial force (steel working at full
strength).

4. Concrete Class C30/37, with compressive axial force (steel working below the
yield limit, with less than full strength).

8.1 Numerical Example 1

The section of the first numerical example has the following properties (Fig. 14):

e Concrete class C20/25, Height & = 50 cm, Width b = 25 cm, d; = 5 cm
e For the direct problem, we have: My = 60 kNm, Ngq = 0 (no axial force), yn: Not
applicable.

N

A=? Es Fs
5 AR S _/
25—
Section Strains Forces Equilibrium

Fig. 14 The direct problem of the 1st numerical example (dimensions in cm)
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8.1.1 Direct Problem

In the direct problem, the external forces are known and we need to find the
required steel reinforcement area As.

A. Analytical calculations

1. 2=0.38 12. A; = 1066.67
2.n=1 13. M4 = 60 kNm
3. fua = 13,333.33 kPa 14. Ng=0

4. eey3 = 3.5 %o 15. 4 = 1,184,000
5. fya = 434782.61 kPa 16. x =0.052 m

6. g5 = 2.17 %o 17. z=0429 m
7.d=045m 18. F. = 139.85 kN
8. ys = Not applicable 19. F; = 139.85 kN
9. Myq = 60 kNm 20. & = 26.53 %o
10. Mgy max = 324 kKNm, Mg < Mg max SO proceed with the next 21.

calculations o = 434,782.61 kPa
11. Mgqjim = 250.91 kNm, My < Myq5im SO the design using 22. Ay =3.22 cm?
single steel reinforcement is economic (steel working at full

strength)

B. Using design tables

After calculating M4 as above, we calculate p,q from Eq. (25). Then using linear
interpolation we obtain the corresponding value of w from the values of pgy, tsaz,
w1, w, of Table 10. Finally, we read the corresponding value of g from the table
(linear interpolation is not needed for o, unless we are in the area of g > fisq 1im Of
uneconomic design) and we calculate the value of A using Eq. (34), as follows

. My = 60 kNm

- Hsd = 0.0889

. For psq; = 0.08, ®; = 0.0835 (Table 10)

. For psq = 0.09, 0, = 0.0945 (Table 10)

. ® = 0.0933 (obtained with linear interpolation)
. 0, = 43478 MPa

. Ag =322 em?

~N N BN

C. Using o analytic formulas without the use of tables

Again, after calculating My, we calculate pgq from Eq. (25). Then, instead of
using the design tables in order to obtain w and o, we calculate the value of @
using Eq. (47), the value of g using Eq. (66) and the value of o, using Eq. (6).
Finally, we obtain the value of A, again using Eq. (34), as follows

1. My =60 kNm
2. tsa = 0.0889
3. o= 0.0932
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4. &= 26.53 %o > &y
5. o, =434.78 MPa
6. A, = 3.22 cm?

8.1.2 Inverse Problem

In the inverse problem, the tensile reinforcement (steel area) A and the axial force
Ny (which is applied at yy) are given and the purpose is to calculate the maximum
bending moment My that the cross section can withstand. We assume that we have
the same problem as previously, therefore:

e Ny =0, yn: Not applicable
e A, =322 cm?

A. Analytical calculations

1. 1=0.38 9. Criterion of Eq. (84) = 12.19 > 1, thus
2.n=1 we have Case A, steel working at full strength
3. fea = 13333.33 kPa 10. F = 140.00 kN

4. ecy3 = 3.5 %o 11. F. = 140.00 kN

5. fya = 434782.61 kPa 12. x =0.053 m

6. &y = 2.17 %o 13. & =26.50 %0 > &y

7.d=045m 14. My = 60.06 kNm

8. ys = Not applicable 15. M4 = 60.06 KNm

We see that we get a value of My equal to 60.06 kNm, instead of 60.00 kNm of
the direct problem. This is because of the fact that in the inverse problem we set
A, =322 cm? while in the direct problem, the exact value of the needed A had
more decimal digits (3.21662 cm?), but it was rounded to two decimal digits for the
definition of the inverse problem.

B. Using design tables
We assume that steel works at full strength. We calculate o using Eq. (100)
e »=0.0933

We read o, from the table (Table 10) and we confirm that steel works at full
strength (o, = 434.78 MPa), so we proceed with Case A. We take the value of pyy
from the table (linear interpolation is needed):

e For o; = 0.0835, ug; = 0.08 (Table 10)
e For ®, = 0.0945, usqo = 0.09 (Table 10)
e With linear interpolation: psq = 0.0889 < pigq1im = 0.3717
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Then we calculate My from Eq. (101) and My from Eq. (99) as follows:

e My =60.03 kNm
o M4 =60.03 kNm

C. Using o analytic formulas without the use of tables
We assume that steel works at full strength. We calculate py using Eq. (108)
* gq = 0.0890

It is psa < Usapim = 0.3713, so indeed steel works at full strength and the
assumption was right. We then calculate M4 from Eq. (101) and M, from Eq. (99)
as follows:

o My = 60.06 kNm
o My =60.06 kNm.

8.2 Numerical Example 2

The section of the second numerical example has the following properties (Fig. 15):

e Concrete class C30/37, Height 7 = 60 cm, Width » = 30 cm, d; = 5 cm

e For the direct problem, we have: My = 100 kNm, Ngq=50 kN, yy=Hh/
2 =30 cm.

Ec=Ecu3

e x —>

55
60 z
AS=? & Fs [ l Fs
5 VAR ' N 7
«—30——
Section Strains Forces Equilibrium

Fig. 15 The direct problem of the 2nd numerical example (dimensions in cm)
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8.2.1 Direct Problem

A. Analytical calculations

1.1=0.38 11. Msd,lim = 674.68 kNm, My < Msd,lim so the
2.n=1 design using single steel reinforcement is
3. fea = 20000 kPa economic (steel working at full strength)
4. €3 = 3.5 %o 12. x =0.034 m

5. fya = 434782.61 kPa 13. z=0.536 m

6. &ys = 2.17 %o 14. F. = 163.12 kN

7.d=055m 15. Fy =213.12 kN

8. y,=025m 16. & = 53.14 %o

9. Myq = 87.50 kNm 17. o, = 434782.61 kPa

10. Mygmax = 871.20 kKNm, Myg < Mg max | 18. Ag = 4.90 em?

so proceed with the next calculations

B. Using design tables
Using the same methodology as in the first example, we have:

. My = 87.5 kNm

- Hsa = 0.0482

. For psq; = 0.04, ®; = 0.0408 (Table 10)
. For pgp = 0.05, 0, = 0.0513 (Table 10)
. ® = 0.0494 (linear interpolation)

. 0, = 43478 MPa

. Ag = 490 cm?

~N O\ BN =

C. Using o analytic formulas without the use of tables

Using the same methodology as in the first example, we have:

1. My = 87.50 kNm
2. pa = 0.0482

3. @ = 0.0494

4. &, = 53.14 %o > &y,
5. o, = 434.78 MPa
6. Ag = 4.90 cm>.

8.2.2 Inverse Problem

We assume that we have the same problem as previously, therefore:

o Ng=50kN, yy =/h/2=30cm
e A, =490 cm’
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A. Analytical calculations

1. 2=0.8 9. Criterion of Eq. (84) = 24.46 > 1, thus
2.n=1 we have Case A, steel working at full strength
3. fea = 20,000 kPa 10. Fy = 213.04 kN

4. ez = 3.5 %o 11. F. = 163.04 kN

5. fya = 434782.61 kPa 12. x =0.034 m

6. &ys = 2.17 %0 13. &5 = 53.17 %0 > &y

7.d=055m 14. My = 87.46 kNm

8. y,=0.25m 15. My = 99.96 kNm

Again, there is a small errors due to rounding A to two decimal digits.
B. Using design tables

We assume that steel works at full strength. We calculate o using Eq. (100)
e o =0.0494

We read o, from the table and we confirm that steel works at full strength
(o5 = 434.78 MPa), so we proceed with Case A. We take the value of py from the
table (linear interpolation is needed):

For w; = 0.0408, psq; = 0.04 (Table 10)
For w, = 0.0513, peg> = 0.05 (Table 10)
With linear interpolation: pigq = 0.0482 < ptgq1im = 0.3717

Then we calculate My from Eq. (101) and M, from Eq. (99) as follows:

M. = 87.48 kKNm
M, = 99.98 kNm

C. Using o analytic formulas without the use of tables
We assume that steel works at full strength. We calculate pq using Eq. (108)
® Ua = 0.0482

It is psa < Usapim = 0.3713, so indeed steel works at full strength and the

assumption was right. We then calculate My from Eq. (101) and M, from Eq. (99):

o M. = 87.46 kNm
o M, =99.96 kNm.
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Fig. 16 The direct problem of the 3rd numerical example (dimensions in cm)

8.3 Numerical Example 3

245

The section of the third numerical example has the following properties (Fig. 16):

e Concrete class C70/85, Height &7 = 70 cm, Width » = 30 cm, d; = 5 cm
e For the direct problem, we have: My = 150 kNm, Ny = 100 kN, yn = h/

2=35cm.

8.3.1 Direct Problem

A. Analytical calculations

1. A=0.75

2.1 =0.90

3. fea = 46,667 kPa

4. &cu3 = 2.66 %o

5. fya = 434782.61 kPa

6. g5 = 2.17 %0
7.d=0.65m

8. y5=0.30m

9. My = 120 kNm

10. Mg max = 2495.38 kNm,
Mg < Mg max SO proceed with the next
calculations

11. Msd,lim = 1742.81 kNm, My < Msd,lim N¢J
the design using single steel reinforcement is
economic (steel working at full strength)

12. x = 0.020 m

13. z=0.643 m

14. F. = 186.74 kN

15. Fy = 286.74 kN

16. & = 84.71 %o

17. o, = 434782.61 kPa

18. A = 6.60 cm?

B. Using design tables

Using the same methodology as in the previous examples, we have:

1. My = 120 kNm
2. 1t = 0.0203
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. For pgq; = 0.02, 0; = 0.0202 (Table 13)
. For psq = 0.03, 0, = 0.0305 (Table 13)
o = 0.0205 (linear interpolation)

o = 434.78 MPa

A, = 6.59 cm?

Novaw

C. Using o analytic formulas without the use of tables

Using the same methodology as in the previous examples, we have:

. My = 120 kNm
.l = 0.0203
. © = 0.0205

. &= 84.71 %o > &y
. 05 =434.78 MPa
. Ag = 6.60 cm®

AN LA W~

8.3.2 Inverse Problem

We assume that we have the same problem as previously, therefore:

e Nyg=100 kN, yy = /2 =35 cm
e A, =6.60 cm’

A. Analytical calculations

1. A=0.75 9. Criterion of Eq. (84) = 38.92 > 1, thus

2. 71 =0.90 we have Case A, steel working at full strength
3. fea = 46666.67 kPa 10. F = 286.96 kN

4. ecyz = 2.66 %o 11. F, = 186.96 kN

5. fya = 434782.61 kPa 12. x = 0.020 m

6. &ys = 2.17 %o 13. &5 = 84.61 %0 > &y

7.d=0.65m 14. My = 120.13 kNm

8. y,=0.30m 15. M4 = 150.13 kNm

B. Using design tables
We assume that steel works at full strength. We calculate @ using Eq. (100)
e o =0.0205

We read o from the table and we confirm that steel works at full strength
(o5 = 434.78 MPa), so we proceed with Case A. We take the value of pq from the
table (linear interpolation is needed):
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For w; = 0.0202, u; = 0.02 (Table 13)
For w, = 0.0305, usgr = 0.03 (Table 13)
Hsa = 0.0203 < Hsd lim = 0.2946

Then we calculate Mgy from Eq. (101) and M, from Eq. (99) as follows:

M = 120.28 kNm
My = 150.28 kNm

C. Using o analytic formulas without the use of tables
We assume that steel works at full strength. We calculate pq using Eq. (108)
o 14 =0.0203

It is psa < Usasim = 0.2946, so indeed steel works at full strength and the
assumption was right. We then calculate M, from Eq. (101) and My from Eq. (99):

o My =120.13 kNm
e M, =150.13 KNm

8.4 Numerical Example 4

The section of the fourth numerical example has the following properties:

e Concrete class C30/37, Height 4 = 50 cm, Width b = 25 cm, d; = 5 cm
e For the direct problem, we have: My = 378 kNm, Ny = —50 kN (compressive),
yn = A2 =25 cm (Fig. 17).

Ec=Ecu3

e x —>

As=? &
5 VAR
«——26——
Section Strains Forces Equilibrium

Fig. 17 The direct problem of the 4th numerical example (dimensions in cm)
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8.4.1 Direct Problem

A. Analytical calculations

V. Plevris and G. Papazafeiropoulos

4A=08

n=1

foa = 20000 kPa

Ecuz = 3.5 %o

5. fya = 434782.61 kPa

6. £y = 2.17 %o
7.d=045m

8.y, =020 m

9. Mgy = 388 kNm

10. Mg max = 486.00 kKNm,

L
2.
3.
4,

Mg < Mgqmax SO proceed with the next

calculations

11. Msd,lim = 376.37 kNm, Msd > Mid,lim so the
design using single steel reinforcement is not
economic (steel not working at full strength)
12. x=0.291 m

13. 2=0.334 m

14. F. = 1162.57 kN

15. Fg = 1112.57 kN

16. & = 1.92 %o < &y

17. o5 = 383803.99 kPa < fiq

18. A, = 28.99 cm?

B. Using design tables

Using the same methodology as in the previous examples, we have:

. My = 388 kKNm
. e = 0.3832

~N Nk LN

. Ag = 28.98 cm’

. For psq; = 0.38, 0; = 0.5101, a5, = 397.82 (Table 13)
. For psq> = 0.39, o, = 0.5310, a4, = 354.70 (Table 13)
. ® = 0.5168 (linear interpolation)

. 05 =383979.01 kPa (linear interpolation)

C. Using o analytic formulas without the use of tables

Using the same methodology as in the previous examples, we have:

1. My = 388.00 kNm
2. Hsa = 0.3832

3. w=05167

4. &=1.92 %o < &y
5. o, = 383803.99 kPa
6. Ag = 28.99 cm?

8.4.2 Inverse Problem

We assume that we have the same problem as previously, therefore:

e Ng=-50KkN, yn=h2=25cm

e A, =2899 cm?
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A. Analytical calculations

1.1=0.38 9. Criterion of Eq. (84) = 0.60 < 1, thus we have Case B, steel
2.n=1 working below full strength
3. fea = 20,000 kPa 10. A = 4000, B = 1979.30, C = -913.19
4. &cu3 = 3.5 %o 11. 4 = 18,528,588
5. fya = 434782.61 kPa 12. x=0.291 m
6. &ys = 2.17 %0 13. &5 = 1.92 %0 < &y
7.d=045m 14. o, = 383784.87 kPa < fiq
8. ys=0.20 m 15. My = 388.00 kNm
16. My = 378.00 kNm

B. Using design tables

We first assume that steel works at full strength. Setting o5 = f4 in Eq. (33) we
calculate o from Eq. (100) as follows

®  ecalcin = 0.5824

According to the design table, wy;y, = 0.4935, 50 it iS Weyicin > Oim- Also, if we
read the design table for the initially calculated @ = 0.5824 we will see that steel
works below full strength (o < fyq), which is in conflict with our assumption. This
means that the design is not economic and the assumption of steel working at full
strength was wrong. We must start the iterative process in order to calculate the real
value of w from the values of the table:

e We start with wy, which essentially corresponds to o = fyq = 434.78 MPa.
From this value o= f,q we calculate the new value of w (@cqcin) With
Eq. (102). For wyiy and o = fyq the calculated value of wcac should be @,
in > Onim. See the 2nd line of Table 9.

e We continue with the first pair of W and oy e values from the table which
correspond to an uneconomic design (first o tap1e for which it is o apie < fya)- In
our case, this first value is o4 a1 = 397.82 MPa. We calculate w .y again. In
this case, it iS again W, calc > W1 table- S€€ the 3rd line of Table 9.

e We repeat the previous calculation with the next pairs until we find a value of

Weale for which @¢yec < @ypie- In our case this happens in the next pair, as shown
in the 4th line of Table 9.

Then we stop and we use Eqs. (103) and (104) to calculate o and w as follows:

o o, = 383894.86 kPa
o »=05168

Table 9 Iterative process for the solution of the inverse problem of the 4™ example

o (from table) o, (from table) o [calculated from o with Eq. (102)]
Oim = 0.4935 05 = fya = 434.78 Ocalcin (from o = fiq) = 0.5824 > Wy,
01 gapte = 0.5101 Ot table = 397.82 @y cale (from o) gapie) = 0.5348 > W raple
W3 tabte = 0.5310 O2.able = 354.70 Op cate ({from g apie) = 0.4792 < W3 aple
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For the calculation of u,y we then use linear interpolation:

For w; = 0.5101, peq; = 0.38 (Table 13)
For w, = 0.5310, pgr = 0.39 (Table 13)
With linear interpolation we obtain: g = 0.3832 > g jjm = 0.3717

Then we calculate My from Eq. (101) and M, from Eq. (99) as follows:

o M = 388.02 kNm
o M, =378.02 kNm

C. Using o analytic formulas without the use of tables

We first assume that steel works at full strength. We calculate uyy using

Eq. (108)

Hsa = 0.4128

It is psg > psasim = 0.3717, so the assumption was wrong—steel works below

full strength. We move to Case B. We need to solve a quadratic equation in order to
calculate w. We calculate Az, B3, C; using Egs. (114), (115), (116). Then we
calculate w using Eq. (119).

As = 2250.00, B; = 1979.30, C; = —1623.44
A5 = 18,528,588

o =0.5167

lea = 0.3832

We then calculate My from Eq. (101) and M, from Eq. (99) as follows:

M,y = 388.00 kKNm
M, = 378.00 kNm

Conclusions

Eurocode 2-Part 1-1 gives us new tools in order to design concrete cross sec-
tions. Three approaches may be used for the stress-strain relation of concrete and
another two approaches for the stress-strain relation of the steel reinforcement.
In this study we used the rectangular stress distribution for concrete together
with the bilinear stress-strain distribution for steel with a horizontal top branch
(no hardening, k = 1).

EC2-1-1 allows the designer not to limit the ultimate strain for steel when a
horizontal top branch is assumed for its stress-strain diagram. In this case, the
concrete zone is assumed to be at the ultimate strain at the ULS and the steel
strain can take any value, without any limitation. This approach is followed in
the present study—in all the methodologies and the examples, concrete is the
critical material in all cases.
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e This chapter presents three detailed methodologies for the design of rectangular
cross sections with tensile (single) reinforcement, covering all concrete classes,
from C12/15 up to C90/105. The purpose in every case is to calculate the
necessary tensile steel reinforcement A;. The first methodology provides an
analytical algorithmic procedure that can be easily applied in any programming
language. The second methodology is based on design tables that are provided
in Appendix A. The third methodology provides again analytic formulas that
can replace completely the use of tables and can in fact be used to reproduce
these tables.

e Apart from the direct problem, the inverse problem is also studied, where the
steel reinforcement is given and the purpose is to find the maximum bending
moment that the section can withstand, given also the value and position of the
axial force on the section. Again, the inverse problem is solved using the same
three methodologies of the direct problem.

e All methodologies provide the same results. The results of the two method-
ologies based on analytic formulas coincide, while the use of tables incorporates
small errors that can affect the decimal digits of the final result. The solution of
the inverse problem always leads to the bending moment of the direct problem.
Small errors are due to the fact that the steel area is “rounded” in two decimal
digits when the inverse problem is defined.

e All Eurocode parameters, such as ac., V¢, Vs, €ven Eg and many others can be
adjusted according to the preferences of the designer, without any limitation.
That is with the exception of the Tables of Appendix where the last columns
(steel stress os) and the limit values have been calculated for E; = 200 GPa and
ys = 1.15. Nevertheless, using the proposed methodology new tables can be
generated where the values of these parameters can be different.

e In this study detailed guidelines are provided for reinforced concrete section
design accompanied with special design curves for each case. The curves pre-
sented are based on equations which are given in closed form.

e The various regions of reinforced concrete section design are explicitly defined.
Two limits are defined for the normalized design bending moment: pgq i, and
Usd.max > Usasim- We have three cases in general:

1. If for the direct problem, psq < HUsaiim, then the design is economic and this
should be the case in practice.

2. If psqiim < Msa < Usd,max» then the design is possible, but not economic and it
should be avoided, as steel works below its full strength.

3. If tsa > Usa.max then the design is impossible. The dimensions of the section

must be increased and/or compressive reinforcement must be added.
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Appendix A: Tables for the Design of Cross Sections

with Single Reinforcement

V. Plevris and G. Papazafeiropoulos

Assumptions (in accordance with EC2-1-1 [4]): E; = 200 GPa and 7y, = 1.15,
affecting the calculation of fisq jim, Wim and o values, only (Tables 10, 11, 12, 13, 14
and 15).

Table 10 Design table for Concrete C12/15 up to C50/60

Concretes from C12/15 up to C50/60 — fisg max = 0.4800

fa |@ E=xld |{=dd | e (%) |a, (B400) a, (B500) o, (B600)
faagim = 03916 | ftsqim = 0.3717 | o im = 0.3533
O = 0.5344 | 0 = 04935 | @y, = 0.4584

0.01 |0.0101 [0.0126 |0.9950 |275.09 |347.83 434.78 521.74

0.02 00202 [0.0253 09899 |135.09

0.03 00305 |0.0381 |0.9848 |88.41

0.04 |0.0408 |0.0510 |0.9796 |65.07

0.05 |0.0513 |0.0641 |0.9743 |51.06

0.06 |0.0619 |[0.0774 |0.9690 |41.72

0.07 [0.0726 [0.0908 |0.9637 |35.05

0.08 |0.0835 |0.1044 |0.9583 |30.04

0.09 [0.0945 |[0.1181 |0.9528 |26.14

0.10 |0.1056 |0.1320 |0.9472 |23.02

0.11 [0.1168 |0.1460 |0.9416 | 20.47

0.12 |0.1282 [0.1603 |0.9359 |18.34

0.13 |0.1398 [0.1747 09301 |16.53

0.14 |0.1515 [0.1893 |0.9243 |14.99

0.15 |0.1633 |0.2042 |0.9183 |13.64

0.16 |0.1754 [0.2192 [09123 |12.47

0.17 |0.1876 [0.2345 09062 | 11.43

0.18 |0.2000 [0.2500 |0.9000 | 10.50

0.19 02126 |0.2657 |0.8937 |9.67

020 |0.2254 |0.2818 |0.8873 |8.92

021 |0.2384 |0.2980 |0.8808 |8.24

022 02517 [03146 |0.8742 |7.63

023 02652 [0.3314 |0.8674 |7.06

0.24 02789 [0.3486 |0.8606 |6.54

0.25 02929 |0.3661 |0.8536 |6.06

026 |0.3072 |0.3840 |0.8464 |5.62

027 |0.3218 [04022 |0.8391 |5.20

028 |0.3367 [0.4208 |0.8317 |4.82

029 03519 [0.4399 |0.8240 |4.46

030 03675 [0.4594 |0.8162 |4.12

031 |0.3836 |0.4794 |0.8082 |3.80

0.32 |0.4000 |0.5000 |0.8000 |3.50

033 04169 [0.5211 [0.7915 [3.22

034 04343 [05429 [0.7828 |2.95

(continued)
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Table 10 (continued)

Concretes from C12/15 up to C50/60 — fisg max = 0.4800

Hsa 0} E=xld |{=z2d | & (%) |as (B400) as (B500) as (B600)
tsatim = 03916 | pteasim = 0.3717 | ptoasim = 0.3533
wiim = 0.5344 Wgim = 0.4935 Wiim = 0.4584

0.5653 | 0.7739 |2.69

0.36 | 0.4708 |0.5886 |0.7646 |2.45 489.34

0.37 |0.4901 |0.6126 |0.7550 |2.21 442.63

0.38 |0.5101 |0.6376 |0.7449 |1.99 397.82 397.82

0.39 |0.5310 |0.6637 |0.7345 |1.77 354.70 354.70

0.40 |0.5528 |0.6910 |0.7236 | 1.57 313.05 313.05 313.05

041 |0.5757 [0.7197 |0.7121 |1.36 272.67 272.67 272.67

0.42 |0.6000 |0.7500 |0.7000 |1.17 233.33 233.33 233.33

0.43 |0.6258 |0.7823 |0.6871 |0.97 194.81 194.81 194.81

0.44 |0.6536 |0.8170 |0.6732 |0.78 156.81 156.81 156.81

0.45 |0.6838 |0.8547 |0.6581 |0.59 118.99 118.99 118.99

0.46 |0.7172 |0.8964 |0.6414 |0.40 80.86 80.86 80.86

0.47 |0.7551 |0.9438 |0.6225 |0.21 41.67 41.67 41.67

Table 11 Design table for concrete C55/60

Concrete C55/67 — pisg max = 0.4655

Isa 0} E=xld |{=27d |& (%) |as (B400) g, (B500) g, (B600)
tsatim = 0.3685 | e sim = 0.3477 | pteasim = 0.3287
Oim = 04933 | @y = 04528 | wym = 0.4185

0.01 |0.0101 [0.0131 |0.9948 |235.60 |347.83 434.78 521.74

0.02 |0.0202 [0.0263 |0.9896 |115.61

0.03 |0.0305 [0.0397 |0.9844 |75.61

0.04 |0.0409 [0.0532 |0.9790 |55.61

0.05 |0.0514 |0.0669 |0.9737 |43.60

0.06 |0.0620 |0.0807 |0.9682 |35.60

0.07 |0.0727 |0.0947 |0.9627 |29.88

0.08 |0.0836 |0.1089 |0.9571 |25.58

0.09 |0.0946 |0.1232 |0.9515 |22.24

0.10 |0.1057 |0.1377 |0.9458 | 19.57

0.11 |0.1170 |0.1524 |0.9400 |17.38

0.12 |0.1285 |0.1673 |0.9341 | 15.55

0.13 |0.1401 |0.1824 |0.9282 |14.01

0.14 |0.1518 |0.1977 |0.9221 | 12.68

0.15 |0.1638 |0.2133 |0.9160 |11.53

0.16 |0.1759 |0.2290 |0.9098 | 10.52

0.17 |0.1882 |0.2451 |0.9035 |9.63

0.18 |0.2006 |0.2613 |0.8971 |8.83

0.19 |0.2133 |0.2779 |0.8906 |8.12

0.20 |0.2263 |0.2947 |0.8840 |7.48

0.21 |0.2394 |0.3118 |0.8772 |6.90

0.22 |0.2528 [0.3292 |0.8704 |6.37

(continued)
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Table 11 (continued)

V. Plevris and G. Papazafeiropoulos

Concrete C55/67 — pisg max = 0.4655

Ha | @ E=xld |{=z2d |& (%) |as(B400) as (B500) as (B600)
Usdtim = 0.3685 | ptsatim = 0.3477 | psasim = 0.3287
Olim = 0.4933 Olim = 0.4528 Olim = 0.4185

0.3469 | 0.8634 |5.88

0.24 |0.2803 |0.3650 |0.8563 |5.44

0.25 |0.2945 |0.3835 |0.8490 |5.02

0.26 |0.3089 |0.4024 |0.8416 |4.64

0.27 |0.3238 |0.4217 |0.8340 |4.29

0.28 [0.3389 |0.4414 |0.8262 |3.96

0.29 |0.3544 |0.4616 |0.8182 |3.65

0.30 |0.3703 |0.4823 |0.8101 |3.35

0.31 |0.3867 |0.5036 |0.8017 |3.08

0.32 |0.4035 |0.5255 |0.7931 |2.82

0.33 |0.4208 |0.5481 |0.7842 |2.58 51541

0.34 |0.4387 |0.5714 |0.7750 |2.34 468.92

0.35 |0.4572 |0.5954 |0.7655 |2.12 424.66 424.66

0.36 | 0.4764 |0.6204 |0.7557 |1.91 382.39 382.39

0.37 |0.4963 |0.6464 |0.7455 |1.71 341.89 341.89 341.89

0.38 |0.5172 |0.6735 [0.7348 |1.51 302.96 302.96 302.96

0.39 |0.5390 |0.7020 |0.7236 |1.33 265.39 265.39 265.39

0.40 |0.5619 |0.7319 [0.7118 |1.15 229.00 229.00 229.00

0.41 |0.5863 |0.7635 |0.6994 |0.97 193.57 193.57 193.57

0.42 |0.6122 |0.7973 |0.6861 |0.79 158.88 158.88 158.88

0.43 |0.6401 |0.8337 |0.6717 |0.62 124.65 124.65 124.65

0.44 |0.6707 |0.8735 |0.6561 |0.45 90.55 90.55 90.55

0.45 |0.7046 |0.9177 |0.6387 |0.28 56.09 56.09 56.09

0.46 |0.7434 |0.9682 |0.6188 |0.10 20.50 20.50 20.50

Table 12 Design table for Concrete C60/75

Concrete C60/75 — figq.max = 0.4510

Ksa |O E=x/d |{=2z/d | & (%) |0 (B400) as (B500) as (B600)
Usazim = 0.3482 | fisqtim = 0.3270 | psatim = 0.3079
Wyim = 0.4593 Oim = 04198 | Wy, = 0.3865

0.01 |0.0101 |0.0137 |0.9947 |208.29 |347.83 43478 521.74

0.02 |0.0202 |0.0275 |0.9894 |102.14

0.03 |0.0305 |0.0414 |0.9840 |66.75

0.04 |0.0409 |0.0555 |0.9785 |49.05

0.05 |0.0514 |0.0698 |0.9730 |38.43

0.06 |0.0620 |0.0842 |0.9674 |31.34

0.07 [0.0728 |0.0989 |0.9617 |26.28

0.08 |0.0837 |0.1137 |0.9560 |22.48

(continued)
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Table 12 (continued)

Concrete C60/75 — pisg max = 0.4510

Hsd ® E=x/d |{=12z/d | & (%) |aos (B400) as (B500) as (B600)

Usatim = 0.3482 | fisqsim = 0.3270 | psatim = 0.3079
Wiim = 0.4593 Wiim = 0.4198 Wpim = 0.3865

0.1287 | 0.9501 | 19.53

0.10 |0.1059 |0.1438 |0.9443 |[17.16

0.11 |0.1172 |0.1592 |0.9383 |[15.23

0.12 |0.1287 |0.1748 |0.9323 |13.61

0.13 |0.1404 |0.1907 |0.9261 |12.24

0.14 |0.1522 |0.2067 |0.9199 |11.07

0.15 |0.1642 |0.2230 |0.9136 |10.05

0.16 |0.1764 |0.2396 |0.9072 |[9.15

0.17 |0.1888 |0.2564 |0.9007 |8.36

0.18 |0.2013 |0.2735 |0.8940 |7.66

0.19 |0.2141 |0.2908 |0.8873 |7.03

0.20 |0.2272 | 0.3085 |0.8804 |6.46

0.21 |0.2404 |0.3266 |0.8735 [5.95

0.22 |0.2539 |0.3449 |0.8663 |5.48

0.23 |0.2677 |0.3636 |0.8591 |[5.05

0.24 |0.2818 |0.3827 |0.8517 [4.65

0.25 [0.2962 |0.4023 |0.8441 |4.28

0.26 |0.3109 |0.4222 |0.8364 |[3.95

0.27 |0.3259 |0.4426 |0.8285 |[3.63

0.28 |0.3413 |0.4636 |0.8204 |[3.34

0.29 |0.3571 |0.4851 |0.8120 |3.06

0.30 |0.3734 | 0.5071 |0.8035 |[2.80

0.31 |0.3901 |0.5298 |0.7947 |2.56 511.76

0.32 |0.4073 |0.5532 |0.7856 |[2.33 465.71

0.33 |0.4251 |0.5774 |0.7763 |[2.11 422.07 422.07

0.34 |0.4435 |0.6024 |0.7666 |1.90 380.58 380.58

0.35 |0.4627 |0.6284 |0.7565 |1.71 341.03 341.03 341.03

0.36 | 0.4826 |0.6554 |0.7460 |1.52 303.18 303.18 303.18

0.37 |0.5033 |0.6837 |0.7351 |[1.33 266.85 266.85 266.85

0.38 |0.5251 |0.7133 |0.7236 |1.16 231.83 231.83 231.83

0.39 |0.5481 |0.7445 |0.7115 [0.99 197.93 197.93 197.93

0.40 |0.5725 |0.7776 |0.6987 |0.82 164.94 164.94 164.94

0.41 |0.5986 |0.8130 |0.6850 |0.66 132.64 132.64 132.64

0.42 |0.6267 |0.8513 |0.6701 |0.50 100.77 100.77 100.77

0.43 |0.6576 |0.8932 |0.6539 [0.34 68.98 68.98 68.98

0.44 |0.6921 |0.9401 |0.6357 [0.18 36.77 36.77 36.77

0.45 |0.7321 |0.9943 |0.6147 [0.02 3.30 3.30 3.30




256

Table 13 Design table for Concrete C70/85

V. Plevris and G. Papazafeiropoulos

Concrete C70/85 — pisg max = 0.4219

L | @ E=xld |{=2d |& (%) |as (B400) g, (B500) g, (B600)
Hsatim = 0.3155 | ptqtim = 0.2946 | psa1im = 0.2761
Wrim = 0.4079 Wpim = 0.3712 wim = 0.3405

0.01 |0.0101 [0.0149 |0.9944 |175.62 |347.83 434.78 521.74

0.02 |0.0202 |0.0300 |0.9888 |85.98

0.03 | 0.0305 |0.0452 |0.9830 |56.09

0.04 |0.0409 |0.0606 |0.9773 |41.14

0.05 |0.0515 [0.0763 |0.9714 |32.17

0.06 |0.0621 |0.0921 |0.9655 |26.19

0.07 |0.0730 |[0.1081 |0.9595 |21.92

0.08 |0.0839 |0.1243 |0.9534 |18.71

0.09 |0.0950 |0.1408 |0.9472 |16.21

0.10 |0.1063 |0.1574 |0.9410 |14.21

0.11 |0.1177 |0.1744 |0.9346 |12.58

0.12 |0.1293 |0.1915 |0.9282 |11.21

0.13 |0.1411 [0.2090 |0.9216 | 10.05

0.14 |0.1530 |0.2267 |0.9150 |9.06

0.15 | 0.1652 |0.2447 |0.9082 |8.20

0.16 |0.1775 |0.2630 |0.9014 |7.44

0.17 |0.1901 |[0.2816 |0.8944 |6.78

0.18 |0.2029 |0.3005 |0.8873 |6.18

0.19 |0.2159 |0.3198 |0.8801 |5.65

0.20 |0.2292 |0.3395 |0.8727 |5.17

0.21 |0.2427 |0.3596 |0.8651 |4.73

0.22 | 0.2566 |0.3801 |0.8575 |4.33

0.23 |0.2707 |0.4011 |0.8496 |3.97

0.24 |0.2852 |0.4225 |0.8416 |3.63

0.25 |0.3000 |0.4444 |0.8333 |3.32

0.26 |0.3152 |0.4670 |0.8249 |3.03

0.27 |0.3308 |0.4901 |0.8162 |2.76

0.28 |0.3468 |0.5138 |0.8073 |2.51 502.63

0.29 |0.3633 |0.5383 |0.7981 |2.28 455.63

0.30 |0.3804 |0.5635 |0.7887 |2.06 411.42 411.42

0.31 |0.3980 |0.5896 |0.7789 | 1.85 369.70 369.70

0.32 | 04163 |0.6167 |0.7687 |1.65 330.18 330.18 330.18

0.33 | 0.4352 |0.6448 |0.7582 | 1.46 292.62 292.62 292.62

0.34 | 0.4550 |0.6741 |0.7472 |1.28 256.80 256.80 256.80

0.35 | 0.4757 |0.7048 |0.7357 | 1.11 222.50 222.50 222.50

0.36 |0.4975 |0.7370 |0.7236 |0.95 189.51 189.51 189.51

0.37 |0.5205 |0.7712 |0.7108 |0.79 157.64 157.64 157.64

0.38 |0.5450 |0.8075 |0.6972 |0.63 126.67 126.67 126.67

0.39 |0.5714 |0.8465 |0.6826 |0.48 96.35 96.35 96.35

0.40 |0.6000 |0.8889 |0.6667 |0.33 66.40 66.40 66.40

(continued)
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Table 13 (continued)

Concrete C70/85 — figqmax = 0.4219

Ha | @ E=xld |{=z2d |& (%) |as(B400) as (B500) as (B600)
Usdtim = 0.3155 | psatim = 0.2946 | fisqim = 0.2761
Oim = 04079 | Wi, = 0.3712 | wym = 0.3405

0.41 |0.6317 |0.9358 |0.6491 |0.18 36.44 36.44 36.44

0.42 |0.6676 |0.9891 |0.6291 |0.03 5.87 5.87 5.87

Table 14 Design table for concrete C80/95

Concrete C80/95 — fisg max = 0.3929

Ha | @ E=xld |{=z2d |¢& (%) |as(B400) as (B500) as (B600)
Usatim = 0.2892 | psatim = 0.2695 | fhsqim = 0.2521
Oyim = 0.3695 Wm = 0.3358 Wm = 0.3078

0.01 |0.0101 |0.0163 |0.9941 |156.89 |347.83 43478 521.74

0.02 |0.0202 |0.0328 |0.9881 |76.66

0.03 | 0.0305 |0.0496 |0.9820 |49.92

0.04 |0.0410 |0.0665 |0.9759 |36.54

0.05 |0.0516 |0.0837 |0.9697 |28.51

0.06 |0.0623 |0.1011 |0.9634 |23.16

0.07 |0.0731 |0.1187 [0.9570 |19.33

0.08 |0.0842 |0.1366 |0.9505 |16.46

0.09 |0.0953 |0.1547 |0.9439 |14.22

0.10 |0.1067 |0.1731 [0.9372 |12.43

0.11 |0.1182 |0.1918 |0.9305 |10.97

0.12 |0.1299 |0.2108 |0.9236 |9.74

0.13 |0.1418 |0.2302 [0.9166 |8.71

0.14 |0.1539 |0.2498 |0.9094 |7.82

0.15 |0.1663 |0.2698 |0.9022 |7.05

0.16 |0.1788 |0.2902 |0.8948 |6.37

0.17 |0.1916 |0.3109 |0.8873 |5.77

0.18 |0.2046 |0.3321 |0.8796 |5.24

0.19 |0.2179 |0.3537 |0.8718 |4.76

0.20 |0.2315 |0.3757 |0.8638 |4.33

0.21 |0.2454 |0.3983 |0.8556 |3.93

0.22 |0.2597 |0.4214 |0.8473 |3.58

0.23 |0.2742 | 0.4450 |0.8387 |3.25

0.24 |0.2892 |0.4693 |0.8299 |2.94

0.25 |0.3046 |0.4942 |0.8208 |2.66

0.26 |0.3204 |0.5199 |0.8115 |2.40 480.87

0.27 |0.3367 |0.5463 |0.8020 |2.16 432.38 432.38

0.28 |0.3535 |0.5737 [0.7921 |1.93 386.99 386.99

0.29 |0.3709 |0.6019 |0.7818 |1.72 344.35 344.35 344.35

0.30 |0.3890 |0.6313 |0.7712 |1.52 304.14 304.14 304.14

0.31 |0.4078 |0.6618 |0.7601 |1.33 266.07 266.07 266.07

(continued)



258

Table 14 (continued)

V. Plevris and G. Papazafeiropoulos

Concrete C80/95 — figqmax = 0.3929

Ha | @ E=xld |{=2d |e& (%) |as(B400) g, (B500) g, (B600)
tsaim = 0.2892 | ptaqim = 0.2695 | preqim = 0.2521
Olim = 0.3695 wjim = 0.3358 wjim = 0.3078

0.32 | 0.4275 |0.6937 |0.7485 |1.15 229.89 229.89 229.89

0.33 |0.4481 |0.7272 |0.7364 |0.98 195.35 195.35 195.35

0.34 | 0.4699 |0.7625 |0.7236 |0.81 162.22 162.22 162.22

0.35 |0.4929 |0.7999 |0.7100 |0.65 130.27 130.27 130.27

0.36 |0.5176 |0.8399 |0.6955 |0.50 99.26 99.26 99.26

0.37 |0.5442 |0.8831 |0.6799 |0.34 68.91 68.91 68.91

0.38 |0.5734 |0.9305 |0.6627 |0.19 38.90 38.90 38.90

0.39 | 0.6061 |0.9835 |0.6435 |0.04 8.74 8.74 8.74

Table 15 Design table for concrete C90/105

Concrete C90/105 — figg max = 0.3640

Hsa | @ E=xld |{=2d |e& (%) |as (B400) g, (B500) as (B600)
tsazim = 0.2652 | ftqrim = 0.2469 | g im = 0.2307
Olim = 0.3356 wjim = 0.3050 Oim = 0.2795

0.01 |0.0101 |[0.0180 |0.9937 |142.08 |347.83 434.78 521.74

0.02 |0.0203 |0.0362 |0.9873 |69.28

0.03 |0.0306 |0.0546 |0.9809 |45.01

0.04 |0.0411 |0.0733 |0.9743 |32.87

0.05 |0.0517 |0.0923 |0.9677 |25.58

0.06 |0.0624 |0.1115 |0.9610 |20.72

0.07 |0.0734 |0.1310 |0.9541 |17.25

0.08 |0.0845 |0.1508 |0.9472 | 14.64

0.09 |0.0957 |0.1709 |0.9402 |12.61

0.10 | 0.1072 |0.1914 |0.9330 | 10.98

0.11 |0.1188 |0.2122 |0.9257 |9.65

0.12 |0.1307 |0.2333 |0.9183 |8.54

0.13 | 0.1427 |0.2549 |0.9108 |7.60

0.14 | 0.1550 |0.2768 |0.9031 |6.79

0.15 |0.1675 |0.2992 |0.8953 |6.09

0.16 |0.1803 |0.3220 |0.8873 |5.47

0.17 |0.1934 |0.3453 |0.8791 |4.93

0.18 |0.2067 |0.3691 |0.8708 |4.44

0.19 |0.2203 |0.3935 |0.8623 |4.01

0.20 |0.2343 |0.4184 |0.8536 |3.61

0.21 |0.2486 |0.4440 |0.8446 |3.26

0.22 |0.2633 |0.4703 |0.8354 |2.93

0.23 | 0.2785 [0.4973 |0.8260 |2.63

0.24 |0.2940 |0.5251 |0.8162 |2.35 470.36

0.25 |0.3101 |0.5538 |0.8062 |2.10 419.05 419.05

0.26 |0.3267 |0.5834 |0.7958 |1.86 371.30 371.30

(continued)
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Table 15 (continued)

Concrete C90/105 — g max = 0.3640

g |© E=xld |{=z2d |& (%) |as(B400) as (B500) as (B600)
Usdtim = 0.2652 | pigqtim = 0.2469 | tsqsim = 0.2307
Opm = 0.3356 Oim = 0.3050 Oim = 0.2795

0.27 10.3439 |0.6142 |0.7850 |1.63 326.68 326.68 326.68

0.28 |0.3618 |0.6461 |0.7739 |1.42 284.82 284.82 284.82

0.29 |0.3805 |0.6794 |0.7622 |1.23 245.36 245.36 245.36

0.30 |0.4000 |0.7143 |0.7500 |1.04 208.00 208.00 208.00

0.31 [0.4205 |0.7509 |0.7372 |0.86 172.46 172.46 172.46

0.32 |0.4422 |0.7897 |0.7236 |0.69 138.48 138.48 138.48

0.33 |0.4653 |0.8310 |0.7092 |0.53 105.78 105.78 105.78

0.34 |0.4902 |0.8753 |0.6936 |0.37 74.09 74.09 74.09

0.35 |0.5172 | 0.9235 |0.6768 |0.22 43.08 43.08 43.08

0.36 |0.5470 |0.9768 |0.6581 |0.06 12.34 12.34 12.34
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