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Abstract Nowadays, the design of concrete structures in Europe is governed by
the application of Eurocode 2 (EC2). In particular, EC2—Part 1-1 deals with the
general rules and the rules for concrete buildings. An important aspect of the design
is specifying the necessary tensile (and compressive, if needed) steel reinforcement
required for a Reinforced Concrete (RC) section. In this study we take into account
the equivalent rectangular stress distribution for concrete and the bilinear
stress-strain relation with a horizontal top branch for steel. This chapter presents
three detailed methodologies for the design of rectangular cross sections with
tensile reinforcement, covering all concrete classes, from C12/15 up to C90/105.
The purpose of the design is to calculate the necessary tensile steel reinforcement.
The first methodology provides analytic formulas and an algorithmic procedure that
can be easily implemented in any programming language. The second methodology
is based on design tables that are provided in Appendix A, requiring less calcu-
lations. The third methodology provides again analytic formulas that can replace the
use of tables and even be used to reproduce the design tables. Apart from the direct
problem, the inverse problem is also addressed, where the steel reinforcement is
given and the purpose is to find the maximum bending moment that the section can
withstand, given also the value and position of the axial force. For each case
analytic relations are extracted in detail with a step-by-step procedure, the relevant
assumptions are highlighted and results for four different cross section design
examples are presented.
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1 Literature Review and Introduction

During the last decades, well-established procedures have been used for the design
of reinforced concrete cross-sections against bending and/or axial loads [8]. Three
Model Codes have been published in the past [2, 3, 5, 6], which are guiding
documents for future codes, making recommendations for the design of reinforced
and prestressed concrete structures. In the first two, improved models were
developed for a more accurate representation of the structural behaviour of rein-
forced concrete structures. In Model Code 1990 [3] constitutive equations for the
proper description of concrete material properties were introduced (concrete
strengths up to C80 were considered), in view of the possibility of nonlinear finite
element analysis of structures. Model Code 1990 [3] became the most important
reference document for the future development of EC2-1-1 [4]. A detailed pre-
sentation of the Model Code 2010 [5, 6] is given in [13].

It is common knowledge that all relevant national standards of European
countries regarding the design and construction of reinforced concrete structures
will eventually be replaced by the Eurocode 2 (EC2), which will be valid
throughout the whole Europe and not only. EC2-Part 1-1 [4] specifies the strength
and deformation characteristics of 14 classes of concrete, classified according to
their strength. For all of these, stress–strain relationships are defined for: (a) struc-
tural analysis, (b) design of cross-section and (c) confinement of concrete. In the
second case, three stress-strain relationships are defined for concrete as follows:
(a) parabolic-rectangular stress distribution (b) bi-linear stress distribution,
(c) rectangular stress distribution.

In the past research has been conducted regarding the degree of simplification,
conservative design, safety and equivalence in between the three above cases of
stress-strain distributions, as well as their application for modern types of rein-
forcement (e.g. Fibre Reinforced Polymer, FRP). In [9] the design of a reinforced
concrete section subjected to bending using two stress–strain relationships men-
tioned in EC2, namely the parabola-rectangle stress distribution and the rectangular
distribution, is studied and the differences are underlined. Two dimensionless
quantities are used to convert the parabola-rectangle stress distribution to an
equivalent concentrated force for the concrete in compression. Also analytic rela-
tions which determine the limit between single reinforcement (only tensile) and
double reinforcement (tensile and compressive) are provided. The results drawn
from the use of these two stress distributions, namely, parabola–rectangle and
rectangle, showed that the differences between the amounts of reinforcement are
less than 1 % for singly reinforced sections and less than 2 % for doubly reinforced
sections.

Due to the different characteristics of higher strength concrete (higher strain
before reaching yield, and much reduced stress plateau after yield) some design
procedures traditionally used in normal strength concrete structures had to be
revised. In [7], Jenkins compared the results of the revised rectangular stress block
specified in the Australian Standard Concrete Structures Code AS 3600-2009 [11]
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regarding concrete strengths higher than 50 MPa, with those in the main interna-
tional codes (e.g. ACI 318-2005 [1], EC2-1-1 [4]), and with stress-strain distri-
butions closer to the actual behaviour of high strength concrete. It was found that
the equivalent rectangular stress block derived from the parabolic-rectangular stress
block of EC2 (assuming the same positions of centroids and the same resultant
compressive force) gave almost identical results to the parabolic-rectangular curve
of EC2 for all concrete strengths when used on a rectangular section.

In [10] the influence of the assumed stress-strain curve for concrete on the
prediction of the strength of conventional and high strength concrete columns under
eccentric axial load is investigated. It was concluded that the traditional
parabola-rectangle stress-strain relationship of the CEB-FIP Model Code 90 (for
fck < 50 MPa) leads to unsafe results when used for high strength concrete.

A general methodology for determining the moment capacity of FRP RC sec-
tions by using the general parabola-rectangle diagram for concrete in compression,
according to the model of EC2 is proposed in [12]. Non-dimensional equations are
derived independently of the characteristics of concrete and FRP reinforcement, and
a simplified closed-form equation is also proposed for the case of failure due to FRP
rupture. These equations can be used to obtain universal design charts and tables,
which can facilitate the design process. A comparative study is also presented
between the predictions of the proposed methodology and experimental results
from 98 tests available in the literature.

Although the above studies deal with the application of the most suitable
stress-strain diagram for concrete for the “optimal” design of cross sections using
different approaches, to the authors’ knowledge, there is no study in which explicit
closed formulas, design charts and design tables are provided to achieve the design of
RC sections according to EC2-1-1 [4]. In the present study, the case of the rectan-
gular stress distribution of EC2-1-1 for concrete is thoroughly studied and three
different but equivalent methodologies are provided for the design of RC sections
with single tensile reinforcement. The first and the third of the methodologies provide
analytic formulas and step-by-step instructions for the design, while the second is
based on easy-to-use design tables that are provided in Appendix. In addition, the
inverse problem is also investigated, again using the three methodologies, where
given the steel reinforcement the aim is to find the maximum bending moment that
the RC section can withstand, given also the axial force acting on the section.

2 Concrete

2.1 Concrete Properties

According to EC2-1-1 [4] the compressive strength of concrete is denoted by
concrete strength classes which relate to the characteristic (5 %) cylinder strength
fck, or cube strength fck,cube, in accordance with EN 206-1. Higher strength
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concretes, up to the class C90/105 are covered by Eurocode 2. The strength classes
for concrete are presented in Table 1 where fck is the characteristic compressive
cylinder strength of concrete at 28 days and fck,cube, is the corresponding cube
strength.

The design compressive strength is defined as

fcd ¼ acc
fck
cc

ð1Þ

where:

• cc is the partial safety factor for concrete at the Ultimate Limit State, which is
given in Table 2.1 N of EC2-1-1 [4]. For persistent and transient design situ-
ations, cc = 1.5

• acc is the coefficient taking account of long term effects on the compressive
strength and of unfavourable effects resulting from the way the load is applied.
The value of acc for use in a country should lie between 0.8 and 1.0 and may be
found in its National Annex. The recommended value is 1, although various
countries have adopted lower values, leading to more conservative designs.

It should be noted that higher concrete strength shows more brittle behaviour,
reflected by shorter horizontal branch, as will be shown in the stress-strain relations
and diagrams, later.

2.2 Concrete Stress-Strain Relations for the Design of Cross
Sections

Eurocode 2 Part 1-1 suggests the use of three approaches for the stress-strain
relations of concrete for the design of cross sections:

1. Parabola-rectangle diagram (more detailed)—EC2-1-1 Par. 3.1.7(1)
2. Bi-linear stress-strain relation (less detailed)—EC2-1-1 Par. 3.1.7(2)
3. Rectangular stress distribution (simplest approach)—EC2-1-1 Par. 3.1.7(3)

The three different approaches are described in detail in the following sections.
In the present study, only the 3rd approach has been used for the design of RC
sections.

Table 1 Strength classes for concrete according to EC2-1-1

fck (MPa) 12 16 20 25 30 35 40 45 50 55 60 70 80 90

fck,cube (MPa) 15 20 25 30 37 45 50 55 60 67 75 85 95 105
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2.2.1 Rectangular Stress Distribution

According to Paragraph 3.1.7(3) of EC2-1-1, a rectangular stress distribution may
be assumed for concrete, as shown in Fig. 1 (Fig. 3.5 of EC2-1-1 [4]).

In the figure, d is the effective depth of the cross-section, x is the neutral axis
depth, As is the cross sectional area of the tensile steel reinforcement, es is the tensile
strain at the position of the steel reinforcement, Fc is the concrete force (com-
pressive, positive, as in the figure), Fs is the steel reinforcement force (tensile,
positive, as in the figure). The factor k defining the effective height of the com-
pression zone and the factor η defining the effective strength, are calculated from:

k ¼ 0:8 for fck � 50 MPa
0:8� fck�50

400 for 50\fck � 90 MPa

�
ð2Þ

g ¼ 1:0 for fck � 50 MPa
1:0� fck�50

200 for 50\fck � 90 MPa

�
ð3Þ

According to EC2-1-1, Table 3.1 [4] the value of ecu3 is given by

ecu3ð&Þ ¼ 3:5 for fck � 50 MPa
2:6þ 35 90�fck

100

� �4
for 50\fck � 90 MPa

�
ð4Þ

Table 2 and Fig. 2 show the values of the parameters k, η and ecu3 for each
concrete class.

Note: According to EC2-1-1 [4], if the width of the compression zone decreases
in the direction of the extreme compression fibre, the value η∙fcd should be reduced
by 10 %. This case is not examined in the present study, as the cross section is
assumed to be rectangular and the width of the compression zone does not decrease.
In any case, if needed, this correction can be very easily implemented in the
calculations.

Fig. 1 Rectangular stress distribution
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3 Steel

3.1 Steel Properties

The design strength for steel is given by

fyd ¼ fyk
cs

ð5Þ

where cs is the partial safety factor for steel at the Ultimate Limit State, which is
given in Table 2.1 N of EC2-1-1 [4] (for persistent and transient design situations,
cs = 1.15) and fyk is the characteristic yield strength of steel reinforcement.

Table 2 The parameters k, η and ecu3 for each concrete class

Concrete Class k η ecu3 (‰)

C12/15–C50/60 0.80 1.00 3.50

C55/67 0.79 0.98 3.13

C60/75 0.78 0.95 2.88

C70/85 0.75 0.90 2.66

C80/95 0.73 0.85 2.60

C90/105 0.70 0.80 2.60
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Fig. 2 The parameters k, η and ecu3 for each concrete class
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Table 3 (derived from Table C.1 of Annex C of EC2-1-1 [4]) gives the prop-
erties of reinforcement suitable for use with the Eurocode. The properties are valid
for temperatures between −40 and 100 °C for the reinforcement in the finished
structure. Any bending and welding of reinforcement carried out on site should be
further restricted to the temperature range as permitted by EN 13670.

The application rules for design and detailing in Eurocode 2 are valid for a
specified yield strength range, fyk from 400 to 600 MPa. The yield strength fyk is
defined as the characteristic value of the yield load divided by the nominal cross
sectional area. The reinforcement should have adequate ductility as defined by the
ratio of tensile strength to the yield stress, (ft/fy)k and the characteristic strain at
maximum force, euk. Typical values of fyk used in the design practice nowadays are
400 and 500 MPa.

3.2 Steel Stress-Strain Relations for the Design
of Cross-Sections

According to Paragraph 3.2.7(2) of EC2-1-1, for normal design, either of the fol-
lowing assumptions may be made for the stress-strain relation for steel, as shown in
Fig. 3 (Fig. 3.8 of EC2-1-1 [4]):

Table 3 Properties of steel reinforcement according to EC2-1-1

Product form Bars and de-coiled rods Requirement or
quantile value (%)

Class A B C –

Characteristic yield strength fyk
or f0,2k (MPa)

400–600 5.0

Minimum value of k = (ft/fy)k � 1.05 � 1.08 � 1.15
<1.35

10.0

Characteristic strain at maximum
force, euk (%)

� 2.5 � 5.0 � 7.5 10.0

Fig. 3 Idealised and design
stress-strain diagrams for
reinforcing steel (for tension
and compression)
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1. An inclined top branch with a strain limit of eud and a maximum stress of k∙fyk/cs
at euk, where k = (ft/fy)k.

2. A horizontal top branch without the need to check the strain limit.

The parameter k defines the inclination of the top branch. The special case k = 1
corresponds to a horizontal top branch (no inclination).

In the present study we use the second of the above approaches, i.e. a horizontal
top branch for steel (k = 1). According to this approach, there is no need to check
the strain limit of steel and as a result in the design of RC cross sections, the
concrete is always assumed to be the critical material. In this case, the steel design
stress is given by

rs ¼ fyd � es
eys

¼ Es � es if 0\es\eys
fyd if es � eys

�
ð6Þ

where fyd is the design steel strength given by Eq. (5) and eys is the design yield
strain given by

eys ¼ fyd
Es

ð7Þ

The design value of the steel modulus of elasticity Es may be assumed to be 200
GPa according to EC2-1-1 [4].

Table 4 shows the parameters fyk, fyd and eys for each steel class (B400, B500,
B600), with the assumptions Es = 200 GPa and cs = 1.15, in accordance with
EC2-1-1 [4].

4 Design Assumptions

The following design assumptions are made in this study, in accordance with
Eurocode 2—Part 1-1:

1. The design is based on characteristic concrete cylinder strengths, not cube
strengths.

2. Plane sections remain plane.
3. Strain in the bonded reinforcement, whether in tension or compression, is the

same as that of the surrounding concrete.
4. The tensile strength of concrete is completely ignored.

Table 4 The parameters fyk,
fyd and eys for each steel class,
assuming Es = 200 GPa and
cs = 1.15

Steel Class fyk (MPa) fyd (MPa) eys (‰)

B400 400 347.83 1.74

B500 500 434.78 2.17

B600 600 521.74 2.61
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5. The concrete stress is considered according to the simplified rectangular dis-
tribution shown in Fig. 1. This gives the opportunity to obtain elegant
closed-form solutions for the design process.

6. Stress in steel reinforcement is considered according to the stress-strain relation
of EC 2-1-1 [4] for steel (Fig. 3), with a horizontal top branch without the need
to check the strain limit. As a result, concrete is assumed to always be the critical
material, reaching its maximum strain at ULS.

5 Rectangular Stress Distribution Case Definitions

Figure 4 shows a typical rectangular cross section and the distribution of strains,
stresses and corresponding forces.

Since the horizontal top branch for the steel stress-strain relationship is adopted
in this study (Fig. 3), there is no need to check the strain limit of steel and at the
Ultimate Limit State (ULS) the concrete is the critical material (ec = ecu3) as shown
in Fig. 4, where:

• h and b are the height and width of the rectangular section, respectively
• d1 is the distance from the lower edge of the section to the centre of the tensile

reinforcement
• d is the effective depth of the rectangular section
• x is the neutral axis depth
• es is the tensile strain in the steel reinforcement
• ec = ecu3 is the compressive strain in the concrete upper edge
• k is a factor defining the effective height of the compression zone, given by

Eq. (2)

Fig. 4 Cross section, strain, stresses and forces distribution and section equilibrium, assuming
ec = ecu3 (concrete at limit strain)
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• η is a factor defining the effective strength of the compression zone, given by
Eq. (3)

• Md is the applied external bending moment (if positive, it puts the lower edge of
the section in tension)

• Nd is the applied external axial force (tensile for the section if positive), applied
at a position yN measured from the top of the section towards the lower edge of
it. Note: If the axial force is central, acting at the middle of the section height,
then yN = h/2

• ys is the distance from the tensile steel reinforcement to the position of the
external applied axial force

• z is the distance of the resultant concrete force Fc from the steel reinforcement
• Fc is the concrete (compressive) force
• Fs is the steel (tensile) force
• As is the required steel reinforcement.

5.1 Definition of the Direct and the Inverse Problem

In the direct problem, the loading conditions (bending moment Md, axial force Nd,)
are given and the purpose is to calculate the required tensile reinforcement (steel
area) As. In the inverse problem, As and Nd (applied at yN) are given and the purpose
is to calculate the maximum bending moment Md that the cross section can
withstand.

6 Investigation of the Direct Problem

6.1 Analytical Calculation of the Required Tensile
Reinforcement Area As

In the direct problem, the loading conditions are given and the purpose is to
calculate the required tensile reinforcement (steel area) As. In order to calculate As,
the unknown quantities x and z for the given loading conditions have to be cal-
culated first. After moving the external force Nd to the position of the steel rein-
forcement and imposing force and moment equilibrium for the cross-section, the
situation is depicted in Fig. 5.

From the equilibrium of the section in the x-direction, we have:

RFx ¼ 0 ) Fc þNd � Fs ¼ 0 ) Fs ¼ Fc þNd ð8Þ
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We have also:

d1 þ d ¼ h ) d ¼ h� d1 ð9Þ

ys þ yN ¼ d ) ys ¼ d � yN ð10Þ

The effective bending moment applied at the location of the steel reinforcement is:

Msd ¼ Md � Nd � ys ð11Þ

From the geometry of the section (Fig. 4), we have:

d ¼ zþ kx
2

) z ¼ d � kx
2

ð12Þ

The concrete force, assuming a rectangular distribution of stresses, is given by:

Fc ¼ kxgbfcd ð13Þ

From the equilibrium of moments at the position of the steel reinforcement
(Fig. 5) we have (clockwise moment taken as positive):

RMsteel ¼ 0 ) Fc � z�Msd ¼ 0 ) Msd ¼ Fc � z ð14Þ

By substituting Eq. (13) into Eq. (14), we obtain:

Msd ¼ kxgbzfcd ð15Þ

Fig. 5 Equilibrium after moving the external force Nd to the position of the steel reinforcement
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By substituting Eq. (12) into Eq. (15), we have:

Msd ¼ kxgbfcd � d � kx
2

� �
¼ x � kgbdfcdð Þ � x2 � nb

k2

2
fcd

� �
) ð16Þ

gbk2fcd
2

� �
� x2 � kgbdfcdð Þ � xþMsd ¼ 0 ð17Þ

The above quadratic equation needs to be solved for the neutral axis depth x. All
quantities except for x are known and the solution of the quadratic equation can be
easily obtained as

x1;2 ¼ d
k
�

ffiffiffiffiffiffi
D1

p
2A1

ð18Þ

where

A1 ¼ gbk2fcd
2

ð19Þ

and D1 is the discriminant of the quadratic equation:

D1 ¼ k2gbfcd gbd2fcd � 2Msd
� � ð20Þ

According to Eq. (2), it is always k < 1, as k = 0.80 for fck � 50 MPa and
k < 0.80 for 50 < fck � 90 MPa and as a result d/k > d which leads to
x2 > d which is not acceptable, since the requirement is that 0 � x� d for sections
under bending. Therefore the only acceptable solution is x = x1 and thus:

x ¼ x1 ¼ d
k
�

ffiffiffiffiffiffi
D1

p
2A1

ð21Þ

After calculating x from Eq. (21), it is easy to calculate also z, Fc and Fs from
Eqs. (12), (13), (8). The required tensile reinforcement is then calculated by

As ¼ Fs

rs
ð22Þ

where rs is the steel stress at the Ultimate Limit State (ULS) of the section, cal-
culated by Eq. (6). In our case, at the ULS the concrete zone is always at the critical
strain, ec = ecu3 while the steel strain es can be calculated considering the geometry
of Fig. 4 as follows:
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ecu3
x

¼ ecu3 þ es
d

) es ¼ d
x
� 1

� �
ecu3 ð23Þ

If the steel does not work in full stress (rs < fyd), although the required rein-
forcement area As can be calculated, the design with a single tensile reinforcement
is not economic. Either compressive reinforcement should be also added, or an
increase in the dimensions of the cross section, in particular its effective depth d.

6.1.1 Maximum Effective Moment Msd,max that the Section Can
Withstand

The maximum effective bending moment that the section can withstand (either
economically, with steel working at full strength or not) can be calculated by setting
x = d, so that the concrete compressive zone obtains its maximum value. In order to
find the corresponding maximum effective bending moment Msd,max, we set
x = d in Eq. (16) and we obtain:

Msd;max ¼ k 1� k
2

� �
gbd2fcd ð24Þ

It should be noted that the maximum effective bending moment Msd,max is the
upper limit of the effective moment, but the design for Msd,max is in fact impossible,
as for x = d, it is es = 0, rs = 0 and as a result an infinite amount of steel rein-
forcement would be needed according to Eq. (22).

The effective bending moment Msd can be also expressed in general in a nor-
malized (dimensionless) form as follows

lsd ¼
Msd

bd2fcd
ð25Þ

where lsd is called the normalized effective bending moment. For the maximum
normalized effective bending moment, we have

lsd;max ¼
Msd;max

bd2fcd
¼ k 1� k

2

� �
g ð26Þ

It can be seen that lsd,max depends only on the concrete class, as k and η are both
direct functions of the concrete strength only [Eqs. (2) and (3)].
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6.1.2 Critical Effective Moment Msd,lim that the Section Can
Withstand Economically

Theoretically, the steel area can be calculated for any Msd < Msd,max (or equiva-
lently lsd < lsd,max) but as mentioned earlier, for the cases Msd,lim < Msd < Msd,max

(or lsd,lim < lsd < lsd,max) the design is not economic as steel works below its yield
point. In order for the design to be economic, the steel reinforcement has to work
above the yield limit, at full strength (es � eys and rs = fyd). At the limit of this
condition, we set es = eys in Eq. (23), and solving for x, we have the corresponding
limit value xlim of x:

xlim ¼ ecu3
ecu3 þ eys

d ð27Þ

In order to find the corresponding effective moment Msd,lim, we set x = xlim in
Eq. (16)

Msd;lim ¼ xlim � kgbdfcdð Þ � x2lim � gb
k2

2
fcd

� �
ð28Þ

By substituting xlim from Eq. (27) into Eq. (28), we finally obtain:

Msd;lim ¼ ecu3 1� k
2

� �þ eys

ecu3 þ eys
� �2 ecu3 � gkbd2fcd ð29Þ

The corresponding dimensionless limit value lsd,lim is then

lsd;lim ¼ Msd;lim

bd2fcd
¼ ecu3 1� k=2ð Þþ eys

ecu3 þ eys
� �2 gkecu3 ð30Þ

If for a given design problemMsd � Msd,lim (or equivalently lsd � lsd,lim) then
an economic design can be achieved using single steel reinforcement only. On the
other hand, if Msd > Msd,lim (or lsd > lsd,lim) then an economic design cannot be
achieved using only single steel reinforcement. Either double reinforcement (tensile
and also compressive) is needed, or an increase in the dimensions of the cross
section (especially d, but also b). As shown in Eq. (30), the value of lsd,lim depends
on the concrete strength class and the steel yield strain eys which is dependent on the
steel strength, as shown in Eq. (7) and Table 4.
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6.1.3 Summary of the Analytical Methodology for the Design of Cross
Sections

The full methodology for the calculation of the needed steel reinforcement As is
summarized below:

Known quantities for the design:

• Materials properties: fck, fyk, Es (EC2-1-1 value is 200 GPa)
• Safety factors: cc (EC2-1-1 value is 1.5), cs (EC2-1-1 value is 1.15), acc

(EC2-1-1 recommended value is 1, National Annexes can enforce values
between 0.8 and 1.0)

• Section geometry: b, h, d1
• Loading conditions: Md, Nd applied at yN position

Quantities to be calculated and corresponding equation to use:

• k: Eq. (2), η: Eq. (3)
• fcd,: Eq. (1), ecu3: Eq. (4), fyd: Eq. (5), eys: Eq. (7)
• d: Eq. (9), ys: Eq. (10), Msd: Eq. (11)
• Msd,max: Eq. (24). If Msd < Msd,max then proceed with the next calculations,

otherwise stop, the design cannot be achieved
• Msd,lim: Eq. (29). If Msd < Msd,lim then the design using single steel reinforce-

ment is economic (steel working at full strength), otherwise the design using
single steel reinforcement can be achieved, but it is not economic (steel working
below full strength)

• A1: Eq. (19), D1: Eq. (20), x: Eq. (21), z: Eq. (12)
• Fc: Eq. (13), Fs: Eq. (8)
• es: Eq. (23), rs: Eq. (6), As: Eq. (22)

The above procedure is straightforward and can be easily implemented in any
programming language. A simple spreadsheet program, such as Microsoft Excel,
can be also used in order to make the necessary calculations, without even the need
for any complicated programming macros.

6.2 Design of Cross Sections Using Design Tables

In this section, we explain how the steel reinforcement area can be calculated using
the design tables that are provided in Appendix A. We define the dimensionless
value x as

x ¼ Fc

bdfcd
ð31Þ
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From Eq. (8) we have

Fc ¼ Fs � Nd ð32Þ

Substituting Fs from Eqs. (22) in (32) and then substituting Fc from Eq. (32)
into Eq. (31) we obtain

x ¼ Asrs � Nd

bdfcd
ð33Þ

By solving Eq. (33) for As, we obtain

As ¼ 1
rs

xbdfcd þNdð Þ ð34Þ

It is obvious that if x and rs are both known, then it is easy to calculate the
needed steel reinforcement area As from Eq. (34). In Appendix A there are six
tables which provide the values of x and rs for given values of the normalized
effective bending moment lsd, for each concrete class. In Sect. 6.3 we will explain
how the values of the tables can be calculated. Each table gives the value of x for a
given value of lsd, together with the values of n = x/d, f = z/d, es (‰) and also rs
for three different steel classes (B400, B500, B600). Of these parameters, only rs is
affected by the steel quality and that’s why it is given in three columns.

It should be noted that the first nine concrete classes (C12/15, C16/20, C20/25,
C25/30, C30/37, C35/45, C40/50, C45/55, C50/60) share the same table (Table 10)
while for the other five concrete classes (C55/67, C60/75, C70/85, C80/95 and
C90/105) there are separate tables for each case.

The tables are independent of the values of the concrete parameters acc and cc.
Of course these parameters affect the final design, but they are taken into account
through the calculation of fcd in Eq. (34) which affects the calculation of As. The
first 5 columns, lsd, x, n, f, es are also independent of the steel parameters cs and
Es. Only the steel stress at the ultimate state (last three columns of the tables)
depends on the steel parameters cs and Es and these three columns have been
calculated with the assumption Es = 200 GPa and cs = 1.15 (in accordance with
EC2-1-1 [4]). This is also the case for the limit values lsd,lim and xlim which depend
also on Es and cs.

6.2.1 Linear Interpolation for the x-lsd Tables

In most cases, the value of lsd is not an exact value of the table, but rather lies
between two neighbouring values lsd1 and lsd2 (lsd1 < lsd < lsd2). In this case
linear interpolation is needed in order to obtain the value of x that corresponds to
the given lsd. This is of course an easy-to-solve problem, but nevertheless we will
provide an explicit analytic solution here.

220 V. Plevris and G. Papazafeiropoulos



If x1 corresponds to lsd1 and x2 corresponds to lsd2 then we have the linear
interpolation problem that is depicted in Table 5.

The solution is given below

lsd2 � lsd1
x2 � x1

¼ lsd � lsd1
x� x1

) ð35Þ

x ¼ x1 þ lsd � lsd1
lsd2 � lsd1

x2 � x1ð Þ: ð36Þ

6.3 Analytic Formulas and Investigation of the Design
Parameters x, n, f, es

In this section, we will investigate the parameters x, n, f, es and we will end up to
closed formulas for their calculation. Using these formulas, one can easily generate
the design tables of Appendix.

6.3.1 Parameter x

Although the values of the parameter x can be taken from the design tables using
the design approach described before, it is very interesting to investigate also x
analytically, using closed formulas. From Eq. (8) we have

Fs ¼ Fc þNd ð37Þ

By substituting the concrete force from Eq. (13) and the steel force from
Eq. (22) into Eq. (37), we have

As � rs ¼ kx � gfcd � bþNd ð38Þ

By substituting As from Eq. (34) into Eq. (38), we have

1
rs

xbdfcd þNdð Þ � rs ¼ kx � gfcd � bþNd ) ð39Þ

kxg
d

¼ x ð40Þ

Table 5 The linear
interpolation problem of the
lsd-x tables

lsd values from Table x values from Table

lsd1 x1

Our lsd (lsd1 < lsd < lsd2) Our x = ?

lsd2 x2
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By definition it is

lsd ¼
Msd

bd2fcd
ð41Þ

By substituting Msd from Eq. (15) into Eq. (41) we have

lsd ¼
kx � gfcd � b � z

bd2fcd
¼ kgxz

d2
ð42Þ

By substituting z from Eq. (12) into Eq. (42) we obtain

lsd ¼
kgx d � kx

2

� �
d2

¼ kxg
d

� 1
2g

kxg
d

� �2

ð43Þ

By substituting kxη/d from Eq. (40) into Eq. (43) we finally get

lsd ¼ x� 1
2g

x2 ð44Þ

The above is a simple analytic formula for the calculation of lsd when x is
known. This is very useful in the inverse problem which will be investigated later.
Now we will try to solve Eq. (44) for x. It can be written in the following form:

1
2g

x2 � xþ lsd ¼ 0 ð45Þ

The solution of the quadratic equation is:

x1;2 ¼ g 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s !
ð46Þ

From the above two solutions, only the one with the negative sign (x1) is
acceptable (proof will follow) and as a result:

x ¼ g 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s !
ð47Þ
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Proof that x2 (with the positive sign) is not an acceptable solution of
Eq. (45)
Assuming that x2 is an acceptable solution, then from Eq. (40) we have

x2 ¼ g � kx2
d

ð48Þ

Since

x2 ¼ g 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s !
ð49Þ

Then it should be

g � kx2
d

¼ g 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s !
) ð50Þ

k
x2
d
¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s
) ð51Þ

x2 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

q
k

� d ð52Þ

Since the numerator is greater than 1 and the denominator k is less than 1,
then x2 > d which is not acceptable. As a result, x2 is not an acceptable
solution.

Figure 6 depicts Eq. (47) showing x as a function of the dimensionless effective
bending moment lsd, for every concrete class.

Using Eq. (47) for x and setting as lsd the values of lsd,max [Eq. (26)] and lsd,lim
[Eq. (30)] for each steel class, it is easy to calculate the corresponding values xmax

and xlim for every steel class, and obtain the closed formulas as follows:

xmax ¼ gk ð53Þ

xlim ¼ g 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ecu3 2� kð Þþ 2eys

ecu3 þ eys
� �2 kecu3

s !
ð54Þ
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Maximum and limit values for lsd and x

Table 6 shows the values of the parameters lsd,max, xmax (the same for all steel
classes) and lsd,lim, xlim (for steel B400, B500 and B600), for every concrete class.
It should be noted that the values of the limit parameters (lim) of the table have been
calculated for Es = 200 GPa and cs = 1.15, in accordance with EC2-1-1 [4].

Figure 7 shows the corresponding lsd,max, xmax and lsd,lim, xlim, as functions of
the concrete strength. Figure 8 depicts xmax and xlim versus lsd,max and lsd,lim for
each concrete and steel class.

Fig. 6 x as a function of lsd for every concrete class

Table 6 The values of the parameters lsd,max, xmax, lsd,lim, xlim

Concrete class max. (any steel) lim (B400) lim (B500) lim (B600)

lsd,max xmax lsd,lim xlim lsd,lim xlim lsd,lim xlim

C12/15–C50/60 0.4800 0.8000 0.3916 0.5344 0.3717 0.4935 0.3533 0.4584

C55/67 0.4655 0.7678 0.3685 0.4933 0.3477 0.4528 0.3287 0.4185

C60/75 0.4510 0.7363 0.3482 0.4593 0.3270 0.4198 0.3079 0.3865

C70/85 0.4219 0.6750 0.3155 0.4079 0.2946 0.3712 0.2761 0.3405

C80/95 0.3929 0.6163 0.2892 0.3695 0.2695 0.3358 0.2521 0.3078

C90/105 0.3640 0.5600 0.2652 0.3356 0.2469 0.3050 0.2307 0.2795
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6.3.2 Parameter n

The parameter n is the normalized neutral axis depth. The neutral axis depth is
normalized with respect to the effective height d of the section and is defined as
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Fig. 7 For each concrete class and steel class: a lsd,max and lsd,lim, b xmax and xlim

Fig. 8 xmax and xlim versus lsd,max and lsd,lim for each concrete and steel class
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n ¼ x
d

ð55Þ

Using Eq. (40) and also substituting x from Eq. (47) we have

n ¼ x
d
¼ x

kg
¼ 1

k
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s !
ð56Þ

The corresponding values nmax and nlim are

nmax ¼ 1 ð57Þ

nlim ¼ 1
k

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ecu3 2� kð Þþ 2eys

ecu3 þ eys
� �2 kecu3

s !
ð58Þ

In Fig. 9 n is shown as a function of the normalized moment lsd for various
concrete strength classes. It is apparent that for higher concrete classes, the nor-
malized neutral axis depth is higher, for the same value of lsd. All curves increase
with increasing normalized moment, until n gets equal to one (x = d).

Fig. 9 n as a function of lsd for every concrete class
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6.3.3 Parameter f

The parameter f is the normalized distance of the resultant concrete force from the
tensile reinforcement z with respect to the effective section height d and is defined
as

f ¼ z
d

ð59Þ

Using Eq. (12) and also Eq. (56) we have

f ¼ z
d
¼ d � kx

2

� �
d

¼ 1� k
2
� x
d
¼ 1� k

2
� n ¼ 1� x

2g
ð60Þ

Substituting n from Eq. (56) we obtain also

f ¼ 1� k
2
� 1
k

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s !
¼ 0:5 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s !
ð61Þ

The corresponding values fmin (corresponding to xmax and lsd,max) and flim are

fmin ¼ 1� k
2

ð62Þ

flim ¼ 0:5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ecu3 2� kð Þþ 2eys

ecu3 þ eys
� �2 kecu3

s !
ð63Þ

In Fig. 10 f is plotted against the dimensionless design bending moment lsd for
various concrete strength classes. It is observed that f decreases with increasing
concrete strength class for the same value of lsd and it decreases generally with
increasing lsd.

Table 7 shows the values of the parameters nmax, fmin (the same for all steel
classes) and nlim, flim (for steel B400, B500 and B600), for every concrete class. It
should be noted that the values of the limit parameters (lim) of the table have been
calculated for Es = 200 GPa and cs = 1.15, in accordance with EC2-1-1 [4].

6.3.4 Steel Strain es

From the definition of n, it is

d
x
¼ 1

n
ð64Þ

Design of RC Sections with Single Reinforcement … 227



Substituting Eq. (64) into Eq. (23) and also using Eq. (56) we have

es ¼ 1
n
� 1

� �
ecu3 ¼ 1

x
kg

� 1

 !
ecu3 ¼ kg

x
� 1

� �
ecu3 ð65Þ

or in terms of lsd

es ¼ 1
n
� 1

� �
ecu3 ¼ 1

1
k 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

q� 	� 1

0
B@

1
CAecu3 ¼

kg 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

q� 	
2lsd

� 1

0
B@

1
CAecu3

ð66Þ

Fig. 10 f as a function of lsd for every concrete class

Table 7 The values of the parameters nmax, fmin, nlim, flim

Concrete class max./min.
(any steel
class)

lim (B400) lim (B500) lim (B600)

nmax fmin nlim flim nlim flim nlim flim
C12/15–C50/60 1 0.6000 0.6680 0.7328 0.6169 0.7533 0.5730 0.7708

C55/67 1 0.6063 0.6425 0.7470 0.5898 0.7678 0.5450 0.7854

C60/75 1 0.6125 0.6238 0.7583 0.5702 0.7791 0.5250 0.7966

C70/85 1 0.6250 0.6043 0.7734 0.5499 0.7938 0.5045 0.8108

C80/95 1 0.6375 0.5995 0.7827 0.5450 0.8025 0.4995 0.8189

C90/105 1 0.6500 0.5992 0.7903 0.5446 0.8094 0.4992 0.8253
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The strain of the reinforcement es is shown in Fig. 11, as a function of the
normalized design bending moment lsd (for lsd � 0.01), for various concrete
strength classes, where the x-axis (lsd) is in logarithmic scale for better clarity. In
general, it is shown that the steel strain decreases for increasing normalized bending
moment lsd. If the horizontal top branch of the steel stress-strain diagram is con-
sidered (as in this study), the steel strain is not supposed to have a maximum and in
theory it can extend to infinity. Therefore, for very small values of the dimen-
sionless bending moment lsd the es curves tend asymptotically towards infinity.
Furthermore, for higher values of lsd, the steel strain decreases and for lsd,max it
becomes zero, as shown in the figure.

In Fig. 12 we zoom in the area of higher values of lsd, 0.2 � lsd � 0.48. The
yield (limit) values for es (eys, shown in Table 4) have been plotted in this diagram
also, as horizontal lines, for each steel class.

6.3.5 Analytic Formulas of lsd, x, n, f, es for Concrete Classes
up to C50/60

For the special case of concrete classes up to C50/60, calculations are much sim-
pler. For this case, it is η = 1 and k = 0.8 and as a result we obtain the following
simplified formulas.

Fig. 11 es as a function of lsd for every concrete class (lsd in logarithmic scale)
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For lsd:

lsd ¼ x� 0:5 � x2 ð67Þ

lsd;max ¼ 0:48 ð68Þ

lsd;lim ¼ 0:48ecu3 þ 0:8eys

ecu3 þ eys
� �2 ecu3 ð69Þ

For x:

x ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

p
ð70Þ

xmax ¼ 0:8 ð71Þ

xlim ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:96ecu3 þ 1:6eys

ecu3 þ eys
� �2 ecu3

s
ð72Þ

For n:

n ¼ 1:25x ¼ 1:25 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

p� 	
ð73Þ

nmax ¼ 1 ð74Þ

Fig. 12 es as a function of lsd for every concrete class (lsd � 0.2, lsd in logarithmic scale)
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nlim ¼ 1:25� 1:25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:96ecu3 þ 1:6eys

ecu3 þ eys
� �2 ecu3

s
ð75Þ

For f:

f ¼ 1� 0:5x ¼ 0:5 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

p� 	
ð76Þ

fmin ¼ 0:6 ð77Þ

flim ¼ 0:5þ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:96ecu3 þ 1:6eys

ecu3 þ eys
� �2 ecu3

s
ð78Þ

For es:

es ¼ 0:8
x

� 1
� �

ecu3 ¼ 0:4
lsd

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

p� 	
� 1


 �
ecu3 ð79Þ

Figure 13 shows the parameters x, n, f and es as functions of the normalized
bending moment lsd for concrete classes C12/15 up to C50/60.

Fig. 13 x, n, f, es as functions of lsd for concrete classes C12/15 up to C50/60
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7 Investigation of the Inverse Problem

In the inverse problem, the tensile reinforcement (steel area) As and the axial force
Nd (which is applied at yN) are given and the purpose is to calculate the maximum
bending moment Md that the cross section can withstand.

7.1 Analytical Calculation of the Maximum Bending
Moment Md

In this problem there are generally again two cases:

• Steel working at full strength (es � eys, rs = fyd)
• Steel working below full strength (es < eys, rs < fyd)

Case A: We assume that steel works at full strength

If steel works at full strength, then es � eys and rs = fyd and we have:

As ¼ Fs

fyd
) Fs ¼ As � fyd ð80Þ

RFx ¼ 0 ) Fc þNd � Fs ¼ 0 ) Fc ¼ Fs � Nd ð81Þ

Fc ¼ kxnbfcd ) x ¼ Fc

knbfcd
ð82Þ

ecu3
x

¼ ecu3 þ es
d

) es ¼ d
x
� 1

� �
ecu3 ð83Þ

Using Eq. (83) we can now check our principal assumption. If es � eys then the
assumption was right and we can continue, otherwise the assumption was not right
and we have to move to Case B. By substituting Eqs. (80), (81), (82) into Eq. (83)
and doing some calculations, the criterion for Case A becomes as follows:

if
dknbfcd

Asfyd � Nd
� 1

� �
ecu3
eys


 �
� 1 then es � eys otherwise es\eys ð84Þ

If the criterion of Eq. (84) is satisfied, then es � eys. If this is the case, then we
calculate x from Eq. (82) and we continue with the Final step below, otherwise we
move to Case B where es < eys.
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Case B: Steel working below the yield limit (with less than full strength)

If the criterion of Eq. (84) is not satisfied then steel works below the yield point,
es < eys and rs < fyd and we have:

rs ¼ fyd � eseys ¼ Es � es ð85Þ

As ¼ Fs

rs
) Fs ¼ As � rs ð86Þ

ecu3
x

¼ ecu3 þ es
d

) es ¼ d
x
� 1

� �
ecu3 ð87Þ

By substituting es from Eq. (87) into Eq. (85) and then rs from Eq. (85) into
Eq. (86) we obtain:

Fs ¼ AsEs � d
x
� 1

� �
ecu3 ð88Þ

We have also:

Fc ¼ kxnbfcd ð89Þ

Fs ¼ Fc þNd ð90Þ

By substituting Fs from Eq. (88) and Fc from Eq. (89) into Eq. (90) we have:

AsEs � d
x
� 1

� �
ecu3 ¼ kxnbfcd þNd ) ð91Þ

knbfcdð Þ � x2 þ Nd þAsEsecu3ð Þ � x� AsEsdecu3 ¼ 0 ) ð92Þ

The above quadratic equation needs to be solved for the neutral axis depth x. It
can be written as:

A2x
2 þB2xþC2 ¼ 0 ð93Þ

where

A2 ¼ knbfcd; B2 ¼ Nd þAsEsecu3; C2 ¼ �AsEsdecu3 ð94Þ

The quantities A2, B2 and C2 are all known, so by solving the quadratic Eq. (93)
we can determine the quantity x. The discriminant D2 of the quadratic equation is
given by:
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D2 ¼ B2
2 � 4A2 � C2 ¼ Nd þAs � Es � ecu3ð Þ2 þ 4k � n � fcd � b � As � Es � d � ecu3 ð95Þ

The solution of the quadratic equation is:

x1;2 ¼ �B2 �
ffiffiffiffiffiffi
D2

p
2A2

) x1 ¼ �B2�
ffiffiffiffi
D2

p
2A2

x2 ¼ �B2 þ
ffiffiffiffi
D2

p
2A2

(
ð96Þ

Given that �B2 �
ffiffiffiffiffiffi
D2

p
\0 and according to the requirement 0 � x� d, the

only acceptable solution is x = x2 and thus:

x ¼ x2 ¼ �B2 þ
ffiffiffiffiffiffi
D2

p
2A2

ð97Þ

After calculating x from Eq. (97), it is easy to calculate also es from Eq. (87). We
can now check again the validity of the principal assumption. It should certainly be
es < eys otherwise the assumption for Case B was not right and there must be a
problem in the calculations. If indeed es < eys then we continue with the Final step
below, with the value of x calculated with Eq. (97).

Final step:

Having obtained the value of x, either from Case A or Case B, we continue with
the following calculations:

Msd ¼ kxgbfcd d � kx
2

� �
ð98Þ

Msd ¼ Md � Nd � ys ) Md ¼ Msd þNd � ys ð99Þ

7.1.1 Summary of the Analytical Methodology for the Calculation
of the Maximum Bending Moment Md

The full methodology for the calculation of the maximum bending moment Md that
the section can withstand given the existing steel reinforcement As and the axial
force Nd (which is applied at yN) is summarized below:

Known quantities for the calculation of the strength: The known quantities
for the calculation of the cross section strength are the same as the ones of the direct
problem, with the exception of the applied external bending moment Md which is
now not known (and needs to be calculated). Instead, the existing steel reinforce-
ment As is now known.

Quantities to be calculated and corresponding equation to use:

• k: Eq. (2), η: Eq. (3), fcd: Eq. (1), ecu3: Eq. (4), fyd: Eq. (5), eys: Eq. (7), d:
Eq. (9), ys: Eq. (10)
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• If the Criterion of Eq. (84) is satisfied, then proceed with Case A, otherwise
proceed with Case B

• Case A
– Fs: Eq. (80), Fc: Eq. (81), x:

Eq. (82), es: Eq. (83) (should be � eys),
rs = fyd

• Case B
– A2, B2, C2: Eq. (94), D2: Eq. (95), x:

Eq. (97), es: Eq. (87) (should be < eys), rs: steel
stress, Eq. (85)

• Msd: Eq. (98), Md: Eq. (99).

The above is again a straightforward procedure that can be very easily imple-
mented in any programming language.

7.2 Solution of the Inverse Problem Using Design Tables

The inverse problem can be solved using the design tables provided in Appendix A,
without any complicated analytic calculations in the usual case of economic design
(steel working at full strength). In the case where the steel does not work at full
strength, then it is not very easy to use the design tables, as the unknowns in this
case are two (x and rs) and an iterated process is needed in order to calculate the
real value of x, as described in detail in the following sections.

Case A: We assume that steel works at full strength

Setting rs = fyd in Eq. (33) we obtain

x ¼ Asfyd � Nd

bdfcd
ð100Þ

Now we must calculate x with Eq. (100) and then read the design table and
ensure that for the given value of x, steel works indeed above the yield limit, at full
strength (rs = fyd) so our assumption was right. For this we can also simply read the
xlim value for the given steel class and check if the calculated x is below xlim

(x � xlim). Otherwise, if x > xlim then the assumption was not right and we have
to move to Case B. If indeed steel works at full strength, then for the given value of
x, we use the design table to take the corresponding value of lsd (linear interpo-
lation may be needed) Then we calculate Msd with the following formula which is
derived by solving Eq. (25) for Msd:

Msd ¼ lsd � bd2fcd ð101Þ

Then, as previously, Md can be easily calculated using Eq. (99)
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Case B: Steel working below the yield limit (with less than full strength)

If using Eq. (100) for the given As and Nd, we obtain a value of x equal to xcalc,

in for which it is xcalc,in > xlim, then the assumption that steel works at full strength
was wrong. In this case for the real value of x, it is x < xcalc,in because in fact
rs < fyd. We must start an iterative process in order to calculate the real value of x
from the values of the table. We continue with the first pair of xtable and rs,table
values from the table which correspond to an uneconomic design (first rs,table for
which it is rs,table < fyd). From each rs,table we calculate xcalc as follows:

xcalc ¼ Asrs;table � Nd

bdfcd
ð102Þ

and we move on with the next pairs (xtable, rs,table) until we find a value of xcalc for
which xcalc < xtable. Then we stop and the real value of x should be between the
last two values from the table, as shown in Table 8.

In Table 8, the real value of x should be between the two values x1 and x2 (the
word “table” has been omitted) of the table. In order to find x we have to find the
intersection of two lines in the 2D space of (rs, x), namely the line passing through
points (rs1, x1) and (rs2, x2) and the line passing through points (rs1, xa) and (rs2,
xb). The intersection point can be easily calculated as follows:

rs ¼ rs1 x2 � xbð Þþ rs2 xa � x1ð Þ
x2 � xb þxa � x1

ð103Þ

x ¼ x2xa � x1xb

x2 � xb þxa � x1
ð104Þ

Having calculated x, we read lsd from the table (linear interpolation may be
needed). Then as previously, we can calculate Msd and Md, by using Eqs. (101)
and (99), respectively.

Table 8 Schematic representation of how to use design tables when Steel works below the yield
limit

x (from table) rs (from table) x (calculated from rs with Eq. (102))

xlim rs = fyd xcalc,in (from rs = fyd) > xlim

xtable rs,table xcalc (from rs,table) > xtable

… … …

x1,table rs1,table xa,calc (from rs1,table) > x1,table

x2,table rs2,table xb,calc (from rs2,table) < x2,table
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7.2.1 Linear Interpolation for the x-lsd Tables

Generally, the value of x is not an exact value of the table, but rather lies between
two neighboring values x1 and x2 (x1 < x<x2), corresponding to lsd values lsd1
and lsd2. In this case linear interpolation is needed again. Solving Eq. (35) for lsd
we obtain

lsd ¼ lsd1 þ
x� x1

x2 � x1
lsd2 � lsd1ð Þ: ð105Þ

7.3 Analytic Formulas of x, n, f, es for the Solution
of the Inverse Problem

Again we have two cases: Steel working at full strength and steel working below
full strength.

Case A: We assume that steel works at full strength (lsd � lsd,lim)

Setting rs = fyd in Eq. (33) we obtain

x ¼ Asfyd � Nd

bdfcd
ð106Þ

Substituting x from Eq. (47) we have:

g 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lsd

g

s !
¼ Asfyd � Nd

bdfcd
) ð107Þ

lsd ¼
g
2

1� 1� Asfyd � Nd

gbdfcd

� �2
" #

ð108Þ

Now we check if the lsd calculated from Eq. (108) is indeed less than lsd,lim (see
Table 6). If indeed lsd � lsd,lim then the assumption was right, otherwise we move
to case B. If the assumption was right, then we can calculate Msd and Md as
previously, by using Eqs. (101) and (99).

Case B: Steel working below the yield limit (less than full strength, lsd > lsd,lim)

If using Eq. (108) for the given As and Nd, the obtained value lsd is greater than
lsd,lim, then steel works below yield strain and the design is not economic. In this
case, we have es < eys and from Eq. (6) we have
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rs ¼ Es � es ð109Þ

Substituting rs from Eq. (109) into Eq. (33) we have

x ¼ AsEses � Nd

bdfcd
ð110Þ

Substituting es from Eq. (65) into Eq. (110) we have

x ¼
AsEs

kg
x � 1
� 	

ecu3 � Nd

bdfcd
) ð111Þ

bdfcdð Þ � x2 þ AsEsecu3 þNdð Þ � x� kgAsEsecu3 ¼ 0 ð112Þ

The above quadratic equation needs to be solved for x. It can be written in the
form:

A3x
2 þB3xþC3 ¼ 0 ð113Þ

where

A3 ¼ bdfcd ð114Þ

B3 ¼ AsEsecu3 þNd ð115Þ

C3 ¼ �kgAsEsecu3 ð116Þ

The quantities A3, B3 and C3 are all known. The discriminant D3 of the quadratic
equation is given by:

D3 ¼ B2
3 � 4A3C3 ¼ AsEsecu3 þNdð Þ2 þ 4kgbdfcdAsEsecu3 ð117Þ

The solution of the quadratic equation is:

x1;2 ¼ �B3 �
ffiffiffiffiffiffi
D3

p
2A3

) x1 ¼ �B3�
ffiffiffiffi
D3

p
2A3

x2 ¼ �B3 þ
ffiffiffiffi
D3

p
2A3

(
ð118Þ

Of the above solutions, only the second is acceptable, as the first leads to
negative values for x. So we have

x ¼ �B3 þ
ffiffiffiffiffiffi
D3

p
2A3

ð119Þ

Having calculated x, we calculate lsd with Eq. (44) and then as previously, we
can calculate Msd and Md, by using Eq. (101) and Eq. (99).
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8 Numerical Examples

Four concrete sections will be examined in total. For each section, the direct and the
inverse problem are solved using three methodologies:

1. Analytical calculations
2. Using the design tables provided in Appendix A
3. Using x analytic formulas without the use of tables

Below are the common properties for all numerical examples:

• cc = 1.50, acc = 1
• Steel class B500 (fyk = 500 MPa)
• Es = 200 GPa, cs = 1.15

The main different characteristics of the four test examples are summarized
below:

1. Concrete Class C20/25, no axial force (steel working at full strength).
2. Concrete Class C30/37, with tensile axial force (steel working at full strength).
3. Higher Concrete Class (C70/85), with tensile axial force (steel working at full

strength).
4. Concrete Class C30/37, with compressive axial force (steel working below the

yield limit, with less than full strength).

8.1 Numerical Example 1

The section of the first numerical example has the following properties (Fig. 14):

• Concrete class C20/25, Height h = 50 cm, Width b = 25 cm, d1 = 5 cm
• For the direct problem, we have: Md = 60 kNm, Nd = 0 (no axial force), yN: Not

applicable.

Fig. 14 The direct problem of the 1st numerical example (dimensions in cm)

Design of RC Sections with Single Reinforcement … 239



8.1.1 Direct Problem

In the direct problem, the external forces are known and we need to find the
required steel reinforcement area As.

A. Analytical calculations

1. k = 0.8
2. η = 1
3. fcd = 13,333.33 kPa
4. ecu3 = 3.5 ‰
5. fyd = 434782.61 kPa
6. eys = 2.17 ‰
7. d = 0.45 m
8. ys = Not applicable
9. Msd = 60 kNm
10. Msd,max = 324 kNm, Msd < Msd,max so proceed with the next
calculations
11. Msd,lim = 250.91 kNm, Msd < Msd,lim so the design using
single steel reinforcement is economic (steel working at full
strength)

12. A1 = 1066.67
13. Md = 60 kNm
14. Nd = 0
15. D = 1,184,000
16. x = 0.052 m
17. z = 0.429 m
18. Fc = 139.85 kN
19. Fs = 139.85 kN
20. es = 26.53 ‰
21.
rs = 434,782.61 kPa
22. As = 3.22 cm2

B. Using design tables

After calculatingMsd as above, we calculate lsd from Eq. (25). Then using linear
interpolation we obtain the corresponding value of x from the values of lsd1, lsd2,
x1, x2 of Table 10. Finally, we read the corresponding value of rs from the table
(linear interpolation is not needed for rs, unless we are in the area of lsd > lsd,lim of
uneconomic design) and we calculate the value of As using Eq. (34), as follows

1. Msd = 60 kNm
2. lsd = 0.0889
3. For lsd1 = 0.08, x1 = 0.0835 (Table 10)
4. For lsd2 = 0.09, x2 = 0.0945 (Table 10)
5. x = 0.0933 (obtained with linear interpolation)
6. rs = 434.78 MPa
7. As = 3.22 cm2

C. Using x analytic formulas without the use of tables

Again, after calculating Msd, we calculate lsd from Eq. (25). Then, instead of
using the design tables in order to obtain x and rs, we calculate the value of x
using Eq. (47), the value of es using Eq. (66) and the value of rs using Eq. (6).
Finally, we obtain the value of As again using Eq. (34), as follows

1. Msd = 60 kNm
2. lsd = 0.0889
3. x = 0.0932
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4. es = 26.53 ‰ > eys
5. rs = 434.78 MPa
6. As = 3.22 cm2

8.1.2 Inverse Problem

In the inverse problem, the tensile reinforcement (steel area) As and the axial force
Nd (which is applied at yN) are given and the purpose is to calculate the maximum
bending moment Md that the cross section can withstand. We assume that we have
the same problem as previously, therefore:

• Nd = 0, yN: Not applicable
• As = 3.22 cm2

A. Analytical calculations

1. k = 0.8
2. η = 1
3. fcd = 13333.33 kPa
4. ecu3 = 3.5 ‰
5. fyd = 434782.61 kPa
6. eys = 2.17 ‰
7. d = 0.45 m
8. ys = Not applicable

9. Criterion of Eq. (84) = 12.19 � 1, thus
we have Case A, steel working at full strength
10. Fs = 140.00 kN
11. Fc = 140.00 kN
12. x = 0.053 m
13. es = 26.50 ‰ � eys
14. Msd = 60.06 kNm
15. Md = 60.06 kNm

We see that we get a value of Md equal to 60.06 kNm, instead of 60.00 kNm of
the direct problem. This is because of the fact that in the inverse problem we set
As = 3.22 cm2 while in the direct problem, the exact value of the needed As had
more decimal digits (3.21662 cm2), but it was rounded to two decimal digits for the
definition of the inverse problem.

B. Using design tables

We assume that steel works at full strength. We calculate x using Eq. (100)

• x = 0.0933

We read rs from the table (Table 10) and we confirm that steel works at full
strength (rs = 434.78 MPa), so we proceed with Case A. We take the value of lsd
from the table (linear interpolation is needed):

• For x1 = 0.0835, lsd1 = 0.08 (Table 10)
• For x2 = 0.0945, lsd2 = 0.09 (Table 10)
• With linear interpolation: lsd = 0.0889 < lsd,lim = 0.3717
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Then we calculate Msd from Eq. (101) and Md from Eq. (99) as follows:

• Msd = 60.03 kNm
• Md = 60.03 kNm

C. Using x analytic formulas without the use of tables

We assume that steel works at full strength. We calculate lsd using Eq. (108)

• lsd = 0.0890

It is lsd � lsd,lim = 0.3713, so indeed steel works at full strength and the
assumption was right. We then calculate Msd from Eq. (101) and Md from Eq. (99)
as follows:

• Msd = 60.06 kNm
• Md = 60.06 kNm.

8.2 Numerical Example 2

The section of the second numerical example has the following properties (Fig. 15):

• Concrete class C30/37, Height h = 60 cm, Width b = 30 cm, d1 = 5 cm
• For the direct problem, we have: Md = 100 kNm, Nd = 50 kN, yN = h/

2 = 30 cm.

Fig. 15 The direct problem of the 2nd numerical example (dimensions in cm)
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8.2.1 Direct Problem

A. Analytical calculations

1. k = 0.8
2. η = 1
3. fcd = 20000 kPa
4. ecu3 = 3.5 ‰
5. fyd = 434782.61 kPa
6. eys = 2.17 ‰
7. d = 0.55 m
8. ys = 0.25 m
9. Msd = 87.50 kNm
10. Msd,max = 871.20 kNm, Msd < Msd,max

so proceed with the next calculations

11. Msd,lim = 674.68 kNm, Msd < Msd,lim so the
design using single steel reinforcement is
economic (steel working at full strength)
12. x = 0.034 m
13. z = 0.536 m
14. Fc = 163.12 kN
15. Fs = 213.12 kN
16. es = 53.14 ‰
17. rs = 434782.61 kPa
18. As = 4.90 cm2

B. Using design tables

Using the same methodology as in the first example, we have:

1. Msd = 87.5 kNm
2. lsd = 0.0482
3. For lsd1 = 0.04, x1 = 0.0408 (Table 10)
4. For lsd2 = 0.05, x2 = 0.0513 (Table 10)
5. x = 0.0494 (linear interpolation)
6. rs = 434.78 MPa
7. As = 4.90 cm2

C. Using x analytic formulas without the use of tables

Using the same methodology as in the first example, we have:

1. Msd = 87.50 kNm
2. lsd = 0.0482
3. x = 0.0494
4. es = 53.14 ‰ > eys
5. rs = 434.78 MPa
6. As = 4.90 cm2.

8.2.2 Inverse Problem

We assume that we have the same problem as previously, therefore:

• Nd = 50 kN, yN = h/2 = 30 cm
• As = 4.90 cm2
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A. Analytical calculations

1. k = 0.8
2. η = 1
3. fcd = 20,000 kPa
4. ecu3 = 3.5 ‰
5. fyd = 434782.61 kPa
6. eys = 2.17 ‰
7. d = 0.55 m
8. ys = 0.25 m

9. Criterion of Eq. (84) = 24.46 � 1, thus
we have Case A, steel working at full strength
10. Fs = 213.04 kN
11. Fc = 163.04 kN
12. x = 0.034 m
13. es = 53.17 ‰ � eys
14. Msd = 87.46 kNm
15. Md = 99.96 kNm

Again, there is a small errors due to rounding As to two decimal digits.

B. Using design tables

We assume that steel works at full strength. We calculate x using Eq. (100)

• x = 0.0494

We read rs from the table and we confirm that steel works at full strength
(rs = 434.78 MPa), so we proceed with Case A. We take the value of lsd from the
table (linear interpolation is needed):

• For x1 = 0.0408, lsd1 = 0.04 (Table 10)
• For x2 = 0.0513, lsd2 = 0.05 (Table 10)
• With linear interpolation: lsd = 0.0482 < lsd,lim = 0.3717

Then we calculate Msd from Eq. (101) and Md from Eq. (99) as follows:

• Msd = 87.48 kNm
• Md = 99.98 kNm

C. Using x analytic formulas without the use of tables

We assume that steel works at full strength. We calculate lsd using Eq. (108)

• lsd = 0.0482

It is lsd � lsd,lim = 0.3713, so indeed steel works at full strength and the
assumption was right. We then calculate Msd from Eq. (101) and Md from Eq. (99):

• Msd = 87.46 kNm
• Md = 99.96 kNm.
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8.3 Numerical Example 3

The section of the third numerical example has the following properties (Fig. 16):

• Concrete class C70/85, Height h = 70 cm, Width b = 30 cm, d1 = 5 cm
• For the direct problem, we have: Md = 150 kNm, Nd = 100 kN, yN = h/

2 = 35 cm.

8.3.1 Direct Problem

A. Analytical calculations

1. k = 0.75
2. η = 0.90
3. fcd = 46,667 kPa
4. ecu3 = 2.66 ‰
5. fyd = 434782.61 kPa
6. eys = 2.17 ‰
7. d = 0.65 m
8. ys = 0.30 m
9. Msd = 120 kNm
10. Msd,max = 2495.38 kNm,
Msd < Msd,max so proceed with the next
calculations

11. Msd,lim = 1742.81 kNm, Msd < Msd,lim so
the design using single steel reinforcement is
economic (steel working at full strength)
12. x = 0.020 m
13. z = 0.643 m
14. Fc = 186.74 kN
15. Fs = 286.74 kN
16. es = 84.71 ‰
17. rs = 434782.61 kPa
18. As = 6.60 cm2

B. Using design tables

Using the same methodology as in the previous examples, we have:

1. Msd = 120 kNm
2. lsd = 0.0203

Fig. 16 The direct problem of the 3rd numerical example (dimensions in cm)
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3. For lsd1 = 0.02, x1 = 0.0202 (Table 13)
4. For lsd2 = 0.03, x2 = 0.0305 (Table 13)
5. x = 0.0205 (linear interpolation)
6. rs = 434.78 MPa
7. As = 6.59 cm2

C. Using x analytic formulas without the use of tables

Using the same methodology as in the previous examples, we have:

1. Msd = 120 kNm
2. lsd = 0.0203
3. x = 0.0205
4. es = 84.71 ‰ > eys
5. rs = 434.78 MPa
6. As = 6.60 cm2

8.3.2 Inverse Problem

We assume that we have the same problem as previously, therefore:

• Nd = 100 kN, yN = h/2 = 35 cm
• As = 6.60 cm2

A. Analytical calculations

1. k = 0.75
2. η = 0.90
3. fcd = 46666.67 kPa
4. ecu3 = 2.66 ‰
5. fyd = 434782.61 kPa
6. eys = 2.17 ‰
7. d = 0.65 m
8. ys = 0.30 m

9. Criterion of Eq. (84) = 38.92 � 1, thus
we have Case A, steel working at full strength
10. Fs = 286.96 kN
11. Fc = 186.96 kN
12. x = 0.020 m
13. es = 84.61 ‰ � eys
14. Msd = 120.13 kNm
15. Md = 150.13 kNm

B. Using design tables

We assume that steel works at full strength. We calculate x using Eq. (100)

• x = 0.0205

We read rs from the table and we confirm that steel works at full strength
(rs = 434.78 MPa), so we proceed with Case A. We take the value of lsd from the
table (linear interpolation is needed):
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• For x1 = 0.0202, lsd1 = 0.02 (Table 13)
• For x2 = 0.0305, lsd2 = 0.03 (Table 13)
• lsd = 0.0203 < lsd,lim = 0.2946

Then we calculate Msd from Eq. (101) and Md from Eq. (99) as follows:

• Msd = 120.28 kNm
• Md = 150.28 kNm

C. Using x analytic formulas without the use of tables

We assume that steel works at full strength. We calculate lsd using Eq. (108)

• lsd = 0.0203

It is lsd � lsd,lim = 0.2946, so indeed steel works at full strength and the
assumption was right. We then calculate Msd from Eq. (101) and Md from Eq. (99):

• Msd = 120.13 kNm
• Md = 150.13 kNm

8.4 Numerical Example 4

The section of the fourth numerical example has the following properties:

• Concrete class C30/37, Height h = 50 cm, Width b = 25 cm, d1 = 5 cm
• For the direct problem, we have: Md = 378 kNm, Nd = −50 kN (compressive),

yN = h/2 = 25 cm (Fig. 17).

Fig. 17 The direct problem of the 4th numerical example (dimensions in cm)
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8.4.1 Direct Problem

A. Analytical calculations

1. k = 0.8
2. η = 1
3. fcd = 20000 kPa
4. ecu3 = 3.5 ‰
5. fyd = 434782.61 kPa
6. eys = 2.17 ‰
7. d = 0.45 m
8. ys = 0.20 m
9. Msd = 388 kNm
10. Msd,max = 486.00 kNm,
Msd < Msd,max so proceed with the next
calculations

11. Msd,lim = 376.37 kNm, Msd > Msd,lim so the
design using single steel reinforcement is not
economic (steel not working at full strength)
12. x = 0.291 m
13. z = 0.334 m
14. Fc = 1162.57 kN
15. Fs = 1112.57 kN
16. es = 1.92 ‰ < eys
17. rs = 383803.99 kPa < fyd
18. As = 28.99 cm2

B. Using design tables

Using the same methodology as in the previous examples, we have:

1. Msd = 388 kNm
2. lsd = 0.3832
3. For lsd1 = 0.38, x1 = 0.5101, rs1 = 397.82 (Table 13)
4. For lsd2 = 0.39, x2 = 0.5310, rs2 = 354.70 (Table 13)
5. x = 0.5168 (linear interpolation)
6. rs = 383979.01 kPa (linear interpolation)
7. As = 28.98 cm2

C. Using x analytic formulas without the use of tables

Using the same methodology as in the previous examples, we have:

1. Msd = 388.00 kNm
2. lsd = 0.3832
3. x = 0.5167
4. es = 1.92 ‰ < eys
5. rs = 383803.99 kPa
6. As = 28.99 cm2

8.4.2 Inverse Problem

We assume that we have the same problem as previously, therefore:

• Nd = −50 kN, yN = h/2 = 25 cm
• As = 28.99 cm2
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A. Analytical calculations

1. k = 0.8
2. η = 1
3. fcd = 20,000 kPa
4. ecu3 = 3.5 ‰
5. fyd = 434782.61 kPa
6. eys = 2.17 ‰
7. d = 0.45 m
8. ys = 0.20 m

9. Criterion of Eq. (84) = 0.60 < 1, thus we have Case B, steel
working below full strength
10. A = 4000, B = 1979.30, C = -913.19
11. D = 18,528,588
12. x = 0.291 m
13. es = 1.92 ‰ < eys
14. rs = 383784.87 kPa < fyd
15. Msd = 388.00 kNm
16. Md = 378.00 kNm

B. Using design tables

We first assume that steel works at full strength. Setting rs = fyd in Eq. (33) we
calculate x from Eq. (100) as follows

• xcalc,in = 0.5824

According to the design table, xlim = 0.4935, so it is xcalc,in > xlim. Also, if we
read the design table for the initially calculated x = 0.5824 we will see that steel
works below full strength (rs < fyd), which is in conflict with our assumption. This
means that the design is not economic and the assumption of steel working at full
strength was wrong. We must start the iterative process in order to calculate the real
value of x from the values of the table:

• We start with xlim which essentially corresponds to rs = fyd = 434.78 MPa.
From this value rs = fyd we calculate the new value of x (xcalc,in) with
Eq. (102). For xlim and rs = fyd the calculated value of xcalc should be xcalc,

in > xlim. See the 2nd line of Table 9.
• We continue with the first pair of xtable and rs,table values from the table which

correspond to an uneconomic design (first rs,table for which it is rs,table < fyd). In
our case, this first value is rs1,table = 397.82 MPa. We calculate xcalc again. In
this case, it is again xa,calc > x1,table. See the 3rd line of Table 9.

• We repeat the previous calculation with the next pairs until we find a value of
xcalc for which xcalc < xtable. In our case this happens in the next pair, as shown
in the 4th line of Table 9.

Then we stop and we use Eqs. (103) and (104) to calculate rs and x as follows:

• rs = 383894.86 kPa
• x = 0.5168

Table 9 Iterative process for the solution of the inverse problem of the 4th example

x (from table) rs (from table) x [calculated from rs with Eq. (102)]

xlim = 0.4935 rs = fyd = 434.78 xcalc,in (from rs = fyd) = 0.5824 > xlim

x1,table = 0.5101 rs1,table = 397.82 xa,calc (from rs1,table) = 0.5348 > x1,table

x2,table = 0.5310 rs2,table = 354.70 xb,calc (from rs2,table) = 0.4792 < x2,table
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For the calculation of lsd we then use linear interpolation:

• For x1 = 0.5101, lsd1 = 0.38 (Table 13)
• For x2 = 0.5310, lsd2 = 0.39 (Table 13)
• With linear interpolation we obtain: lsd = 0.3832 > lsd,lim = 0.3717

Then we calculate Msd from Eq. (101) and Md from Eq. (99) as follows:

• Msd = 388.02 kNm
• Md = 378.02 kNm

C. Using x analytic formulas without the use of tables

We first assume that steel works at full strength. We calculate lsd using
Eq. (108)

• lsd = 0.4128

It is lsd > lsd,lim = 0.3717, so the assumption was wrong—steel works below
full strength. We move to Case B. We need to solve a quadratic equation in order to
calculate x. We calculate A3, B3, C3 using Eqs. (114), (115), (116). Then we
calculate x using Eq. (119).

• A3 = 2250.00, B3 = 1979.30, C3 = −1623.44
• D3 = 18,528,588
• x = 0.5167
• lsd = 0.3832

We then calculate Msd from Eq. (101) and Md from Eq. (99) as follows:

• Msd = 388.00 kNm
• Md = 378.00 kNm

9 Conclusions

• Eurocode 2-Part 1-1 gives us new tools in order to design concrete cross sec-
tions. Three approaches may be used for the stress-strain relation of concrete and
another two approaches for the stress-strain relation of the steel reinforcement.
In this study we used the rectangular stress distribution for concrete together
with the bilinear stress-strain distribution for steel with a horizontal top branch
(no hardening, k = 1).

• EC2-1-1 allows the designer not to limit the ultimate strain for steel when a
horizontal top branch is assumed for its stress-strain diagram. In this case, the
concrete zone is assumed to be at the ultimate strain at the ULS and the steel
strain can take any value, without any limitation. This approach is followed in
the present study—in all the methodologies and the examples, concrete is the
critical material in all cases.
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• This chapter presents three detailed methodologies for the design of rectangular
cross sections with tensile (single) reinforcement, covering all concrete classes,
from C12/15 up to C90/105. The purpose in every case is to calculate the
necessary tensile steel reinforcement As. The first methodology provides an
analytical algorithmic procedure that can be easily applied in any programming
language. The second methodology is based on design tables that are provided
in Appendix A. The third methodology provides again analytic formulas that
can replace completely the use of tables and can in fact be used to reproduce
these tables.

• Apart from the direct problem, the inverse problem is also studied, where the
steel reinforcement is given and the purpose is to find the maximum bending
moment that the section can withstand, given also the value and position of the
axial force on the section. Again, the inverse problem is solved using the same
three methodologies of the direct problem.

• All methodologies provide the same results. The results of the two method-
ologies based on analytic formulas coincide, while the use of tables incorporates
small errors that can affect the decimal digits of the final result. The solution of
the inverse problem always leads to the bending moment of the direct problem.
Small errors are due to the fact that the steel area is “rounded” in two decimal
digits when the inverse problem is defined.

• All Eurocode parameters, such as acc, cc, cs, even Es and many others can be
adjusted according to the preferences of the designer, without any limitation.
That is with the exception of the Tables of Appendix where the last columns
(steel stress rs) and the limit values have been calculated for Es = 200 GPa and
cs = 1.15. Nevertheless, using the proposed methodology new tables can be
generated where the values of these parameters can be different.

• In this study detailed guidelines are provided for reinforced concrete section
design accompanied with special design curves for each case. The curves pre-
sented are based on equations which are given in closed form.

• The various regions of reinforced concrete section design are explicitly defined.
Two limits are defined for the normalized design bending moment: lsd,lim and
lsd,max > lsd,lim. We have three cases in general:

1. If for the direct problem, lsd � lsd,lim, then the design is economic and this
should be the case in practice.

2. If lsd,lim < lsd < lsd,max, then the design is possible, but not economic and it
should be avoided, as steel works below its full strength.

3. If lsd � lsd,max then the design is impossible. The dimensions of the section
must be increased and/or compressive reinforcement must be added.
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Appendix A: Tables for the Design of Cross Sections
with Single Reinforcement

Assumptions (in accordance with EC2-1-1 [4]): Es = 200 GPa and cs = 1.15,
affecting the calculation of lsd,lim,xlim and rs values, only (Tables 10, 11, 12, 13, 14
and 15).

Table 10 Design table for Concrete C12/15 up to C50/60

Concretes from C12/15 up to C50/60 − lsd,max = 0.4800

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.3916
xlim = 0.5344

rs (B500)
lsd,lim = 0.3717
xlim = 0.4935

rs (B600)
lsd,lim = 0.3533
xlim = 0.4584

0.01 0.0101 0.0126 0.9950 275.09 347.83 434.78 521.74

0.02 0.0202 0.0253 0.9899 135.09

0.03 0.0305 0.0381 0.9848 88.41

0.04 0.0408 0.0510 0.9796 65.07

0.05 0.0513 0.0641 0.9743 51.06

0.06 0.0619 0.0774 0.9690 41.72

0.07 0.0726 0.0908 0.9637 35.05

0.08 0.0835 0.1044 0.9583 30.04

0.09 0.0945 0.1181 0.9528 26.14

0.10 0.1056 0.1320 0.9472 23.02

0.11 0.1168 0.1460 0.9416 20.47

0.12 0.1282 0.1603 0.9359 18.34

0.13 0.1398 0.1747 0.9301 16.53

0.14 0.1515 0.1893 0.9243 14.99

0.15 0.1633 0.2042 0.9183 13.64

0.16 0.1754 0.2192 0.9123 12.47

0.17 0.1876 0.2345 0.9062 11.43

0.18 0.2000 0.2500 0.9000 10.50

0.19 0.2126 0.2657 0.8937 9.67

0.20 0.2254 0.2818 0.8873 8.92

0.21 0.2384 0.2980 0.8808 8.24

0.22 0.2517 0.3146 0.8742 7.63

0.23 0.2652 0.3314 0.8674 7.06

0.24 0.2789 0.3486 0.8606 6.54

0.25 0.2929 0.3661 0.8536 6.06

0.26 0.3072 0.3840 0.8464 5.62

0.27 0.3218 0.4022 0.8391 5.20

0.28 0.3367 0.4208 0.8317 4.82

0.29 0.3519 0.4399 0.8240 4.46

0.30 0.3675 0.4594 0.8162 4.12

0.31 0.3836 0.4794 0.8082 3.80

0.32 0.4000 0.5000 0.8000 3.50

0.33 0.4169 0.5211 0.7915 3.22

0.34 0.4343 0.5429 0.7828 2.95
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Table 10 (continued)

Concretes from C12/15 up to C50/60 − lsd,max = 0.4800

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.3916
xlim = 0.5344

rs (B500)
lsd,lim = 0.3717
xlim = 0.4935

rs (B600)
lsd,lim = 0.3533
xlim = 0.4584

0.5653 0.7739 2.69

0.36 0.4708 0.5886 0.7646 2.45 489.34

0.37 0.4901 0.6126 0.7550 2.21 442.63

0.38 0.5101 0.6376 0.7449 1.99 397.82 397.82

0.39 0.5310 0.6637 0.7345 1.77 354.70 354.70

0.40 0.5528 0.6910 0.7236 1.57 313.05 313.05 313.05

0.41 0.5757 0.7197 0.7121 1.36 272.67 272.67 272.67

0.42 0.6000 0.7500 0.7000 1.17 233.33 233.33 233.33

0.43 0.6258 0.7823 0.6871 0.97 194.81 194.81 194.81

0.44 0.6536 0.8170 0.6732 0.78 156.81 156.81 156.81

0.45 0.6838 0.8547 0.6581 0.59 118.99 118.99 118.99

0.46 0.7172 0.8964 0.6414 0.40 80.86 80.86 80.86

0.47 0.7551 0.9438 0.6225 0.21 41.67 41.67 41.67

Table 11 Design table for concrete C55/60

Concrete C55/67 − lsd,max = 0.4655

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.3685
xlim = 0.4933

rs (B500)
lsd,lim = 0.3477
xlim = 0.4528

rs (B600)
lsd,lim = 0.3287
xlim = 0.4185

0.01 0.0101 0.0131 0.9948 235.60 347.83 434.78 521.74

0.02 0.0202 0.0263 0.9896 115.61

0.03 0.0305 0.0397 0.9844 75.61

0.04 0.0409 0.0532 0.9790 55.61

0.05 0.0514 0.0669 0.9737 43.60

0.06 0.0620 0.0807 0.9682 35.60

0.07 0.0727 0.0947 0.9627 29.88

0.08 0.0836 0.1089 0.9571 25.58

0.09 0.0946 0.1232 0.9515 22.24

0.10 0.1057 0.1377 0.9458 19.57

0.11 0.1170 0.1524 0.9400 17.38

0.12 0.1285 0.1673 0.9341 15.55

0.13 0.1401 0.1824 0.9282 14.01

0.14 0.1518 0.1977 0.9221 12.68

0.15 0.1638 0.2133 0.9160 11.53

0.16 0.1759 0.2290 0.9098 10.52

0.17 0.1882 0.2451 0.9035 9.63

0.18 0.2006 0.2613 0.8971 8.83

0.19 0.2133 0.2779 0.8906 8.12

0.20 0.2263 0.2947 0.8840 7.48

0.21 0.2394 0.3118 0.8772 6.90

0.22 0.2528 0.3292 0.8704 6.37
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Table 11 (continued)

Concrete C55/67 − lsd,max = 0.4655

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.3685
xlim = 0.4933

rs (B500)
lsd,lim = 0.3477
xlim = 0.4528

rs (B600)
lsd,lim = 0.3287
xlim = 0.4185

0.3469 0.8634 5.88

0.24 0.2803 0.3650 0.8563 5.44

0.25 0.2945 0.3835 0.8490 5.02

0.26 0.3089 0.4024 0.8416 4.64

0.27 0.3238 0.4217 0.8340 4.29

0.28 0.3389 0.4414 0.8262 3.96

0.29 0.3544 0.4616 0.8182 3.65

0.30 0.3703 0.4823 0.8101 3.35

0.31 0.3867 0.5036 0.8017 3.08

0.32 0.4035 0.5255 0.7931 2.82

0.33 0.4208 0.5481 0.7842 2.58 515.41

0.34 0.4387 0.5714 0.7750 2.34 468.92

0.35 0.4572 0.5954 0.7655 2.12 424.66 424.66

0.36 0.4764 0.6204 0.7557 1.91 382.39 382.39

0.37 0.4963 0.6464 0.7455 1.71 341.89 341.89 341.89

0.38 0.5172 0.6735 0.7348 1.51 302.96 302.96 302.96

0.39 0.5390 0.7020 0.7236 1.33 265.39 265.39 265.39

0.40 0.5619 0.7319 0.7118 1.15 229.00 229.00 229.00

0.41 0.5863 0.7635 0.6994 0.97 193.57 193.57 193.57

0.42 0.6122 0.7973 0.6861 0.79 158.88 158.88 158.88

0.43 0.6401 0.8337 0.6717 0.62 124.65 124.65 124.65

0.44 0.6707 0.8735 0.6561 0.45 90.55 90.55 90.55

0.45 0.7046 0.9177 0.6387 0.28 56.09 56.09 56.09

0.46 0.7434 0.9682 0.6188 0.10 20.50 20.50 20.50

Table 12 Design table for Concrete C60/75

Concrete C60/75 − lsd,max = 0.4510

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.3482
xlim = 0.4593

rs (B500)
lsd,lim = 0.3270
xlim = 0.4198

rs (B600)
lsd,lim = 0.3079
xlim = 0.3865

0.01 0.0101 0.0137 0.9947 208.29 347.83 434.78 521.74

0.02 0.0202 0.0275 0.9894 102.14

0.03 0.0305 0.0414 0.9840 66.75

0.04 0.0409 0.0555 0.9785 49.05

0.05 0.0514 0.0698 0.9730 38.43

0.06 0.0620 0.0842 0.9674 31.34

0.07 0.0728 0.0989 0.9617 26.28

0.08 0.0837 0.1137 0.9560 22.48
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Table 12 (continued)

Concrete C60/75 − lsd,max = 0.4510

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.3482
xlim = 0.4593

rs (B500)
lsd,lim = 0.3270
xlim = 0.4198

rs (B600)
lsd,lim = 0.3079
xlim = 0.3865

0.1287 0.9501 19.53

0.10 0.1059 0.1438 0.9443 17.16

0.11 0.1172 0.1592 0.9383 15.23

0.12 0.1287 0.1748 0.9323 13.61

0.13 0.1404 0.1907 0.9261 12.24

0.14 0.1522 0.2067 0.9199 11.07

0.15 0.1642 0.2230 0.9136 10.05

0.16 0.1764 0.2396 0.9072 9.15

0.17 0.1888 0.2564 0.9007 8.36

0.18 0.2013 0.2735 0.8940 7.66

0.19 0.2141 0.2908 0.8873 7.03

0.20 0.2272 0.3085 0.8804 6.46

0.21 0.2404 0.3266 0.8735 5.95

0.22 0.2539 0.3449 0.8663 5.48

0.23 0.2677 0.3636 0.8591 5.05

0.24 0.2818 0.3827 0.8517 4.65

0.25 0.2962 0.4023 0.8441 4.28

0.26 0.3109 0.4222 0.8364 3.95

0.27 0.3259 0.4426 0.8285 3.63

0.28 0.3413 0.4636 0.8204 3.34

0.29 0.3571 0.4851 0.8120 3.06

0.30 0.3734 0.5071 0.8035 2.80

0.31 0.3901 0.5298 0.7947 2.56 511.76

0.32 0.4073 0.5532 0.7856 2.33 465.71

0.33 0.4251 0.5774 0.7763 2.11 422.07 422.07

0.34 0.4435 0.6024 0.7666 1.90 380.58 380.58

0.35 0.4627 0.6284 0.7565 1.71 341.03 341.03 341.03

0.36 0.4826 0.6554 0.7460 1.52 303.18 303.18 303.18

0.37 0.5033 0.6837 0.7351 1.33 266.85 266.85 266.85

0.38 0.5251 0.7133 0.7236 1.16 231.83 231.83 231.83

0.39 0.5481 0.7445 0.7115 0.99 197.93 197.93 197.93

0.40 0.5725 0.7776 0.6987 0.82 164.94 164.94 164.94

0.41 0.5986 0.8130 0.6850 0.66 132.64 132.64 132.64

0.42 0.6267 0.8513 0.6701 0.50 100.77 100.77 100.77

0.43 0.6576 0.8932 0.6539 0.34 68.98 68.98 68.98

0.44 0.6921 0.9401 0.6357 0.18 36.77 36.77 36.77

0.45 0.7321 0.9943 0.6147 0.02 3.30 3.30 3.30

Design of RC Sections with Single Reinforcement … 255



Table 13 Design table for Concrete C70/85

Concrete C70/85 − lsd,max = 0.4219

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.3155
xlim = 0.4079

rs (B500)
lsd,lim = 0.2946
xlim = 0.3712

rs (B600)
lsd,lim = 0.2761
xlim = 0.3405

0.01 0.0101 0.0149 0.9944 175.62 347.83 434.78 521.74

0.02 0.0202 0.0300 0.9888 85.98

0.03 0.0305 0.0452 0.9830 56.09

0.04 0.0409 0.0606 0.9773 41.14

0.05 0.0515 0.0763 0.9714 32.17

0.06 0.0621 0.0921 0.9655 26.19

0.07 0.0730 0.1081 0.9595 21.92

0.08 0.0839 0.1243 0.9534 18.71

0.09 0.0950 0.1408 0.9472 16.21

0.10 0.1063 0.1574 0.9410 14.21

0.11 0.1177 0.1744 0.9346 12.58

0.12 0.1293 0.1915 0.9282 11.21

0.13 0.1411 0.2090 0.9216 10.05

0.14 0.1530 0.2267 0.9150 9.06

0.15 0.1652 0.2447 0.9082 8.20

0.16 0.1775 0.2630 0.9014 7.44

0.17 0.1901 0.2816 0.8944 6.78

0.18 0.2029 0.3005 0.8873 6.18

0.19 0.2159 0.3198 0.8801 5.65

0.20 0.2292 0.3395 0.8727 5.17

0.21 0.2427 0.3596 0.8651 4.73

0.22 0.2566 0.3801 0.8575 4.33

0.23 0.2707 0.4011 0.8496 3.97

0.24 0.2852 0.4225 0.8416 3.63

0.25 0.3000 0.4444 0.8333 3.32

0.26 0.3152 0.4670 0.8249 3.03

0.27 0.3308 0.4901 0.8162 2.76

0.28 0.3468 0.5138 0.8073 2.51 502.63

0.29 0.3633 0.5383 0.7981 2.28 455.63

0.30 0.3804 0.5635 0.7887 2.06 411.42 411.42

0.31 0.3980 0.5896 0.7789 1.85 369.70 369.70

0.32 0.4163 0.6167 0.7687 1.65 330.18 330.18 330.18

0.33 0.4352 0.6448 0.7582 1.46 292.62 292.62 292.62

0.34 0.4550 0.6741 0.7472 1.28 256.80 256.80 256.80

0.35 0.4757 0.7048 0.7357 1.11 222.50 222.50 222.50

0.36 0.4975 0.7370 0.7236 0.95 189.51 189.51 189.51

0.37 0.5205 0.7712 0.7108 0.79 157.64 157.64 157.64

0.38 0.5450 0.8075 0.6972 0.63 126.67 126.67 126.67

0.39 0.5714 0.8465 0.6826 0.48 96.35 96.35 96.35

0.40 0.6000 0.8889 0.6667 0.33 66.40 66.40 66.40
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Table 13 (continued)

Concrete C70/85 − lsd,max = 0.4219

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.3155
xlim = 0.4079

rs (B500)
lsd,lim = 0.2946
xlim = 0.3712

rs (B600)
lsd,lim = 0.2761
xlim = 0.3405

0.41 0.6317 0.9358 0.6491 0.18 36.44 36.44 36.44

0.42 0.6676 0.9891 0.6291 0.03 5.87 5.87 5.87

Table 14 Design table for concrete C80/95

Concrete C80/95 − lsd,max = 0.3929

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.2892
xlim = 0.3695

rs (B500)
lsd,lim = 0.2695
xlim = 0.3358

rs (B600)
lsd,lim = 0.2521
xlim = 0.3078

0.01 0.0101 0.0163 0.9941 156.89 347.83 434.78 521.74

0.02 0.0202 0.0328 0.9881 76.66

0.03 0.0305 0.0496 0.9820 49.92

0.04 0.0410 0.0665 0.9759 36.54

0.05 0.0516 0.0837 0.9697 28.51

0.06 0.0623 0.1011 0.9634 23.16

0.07 0.0731 0.1187 0.9570 19.33

0.08 0.0842 0.1366 0.9505 16.46

0.09 0.0953 0.1547 0.9439 14.22

0.10 0.1067 0.1731 0.9372 12.43

0.11 0.1182 0.1918 0.9305 10.97

0.12 0.1299 0.2108 0.9236 9.74

0.13 0.1418 0.2302 0.9166 8.71

0.14 0.1539 0.2498 0.9094 7.82

0.15 0.1663 0.2698 0.9022 7.05

0.16 0.1788 0.2902 0.8948 6.37

0.17 0.1916 0.3109 0.8873 5.77

0.18 0.2046 0.3321 0.8796 5.24

0.19 0.2179 0.3537 0.8718 4.76

0.20 0.2315 0.3757 0.8638 4.33

0.21 0.2454 0.3983 0.8556 3.93

0.22 0.2597 0.4214 0.8473 3.58

0.23 0.2742 0.4450 0.8387 3.25

0.24 0.2892 0.4693 0.8299 2.94

0.25 0.3046 0.4942 0.8208 2.66

0.26 0.3204 0.5199 0.8115 2.40 480.87

0.27 0.3367 0.5463 0.8020 2.16 432.38 432.38

0.28 0.3535 0.5737 0.7921 1.93 386.99 386.99

0.29 0.3709 0.6019 0.7818 1.72 344.35 344.35 344.35

0.30 0.3890 0.6313 0.7712 1.52 304.14 304.14 304.14

0.31 0.4078 0.6618 0.7601 1.33 266.07 266.07 266.07
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Table 14 (continued)

Concrete C80/95 − lsd,max = 0.3929

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.2892
xlim = 0.3695

rs (B500)
lsd,lim = 0.2695
xlim = 0.3358

rs (B600)
lsd,lim = 0.2521
xlim = 0.3078

0.32 0.4275 0.6937 0.7485 1.15 229.89 229.89 229.89

0.33 0.4481 0.7272 0.7364 0.98 195.35 195.35 195.35

0.34 0.4699 0.7625 0.7236 0.81 162.22 162.22 162.22

0.35 0.4929 0.7999 0.7100 0.65 130.27 130.27 130.27

0.36 0.5176 0.8399 0.6955 0.50 99.26 99.26 99.26

0.37 0.5442 0.8831 0.6799 0.34 68.91 68.91 68.91

0.38 0.5734 0.9305 0.6627 0.19 38.90 38.90 38.90

0.39 0.6061 0.9835 0.6435 0.04 8.74 8.74 8.74

Table 15 Design table for concrete C90/105

Concrete C90/105 − lsd,max = 0.3640

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.2652
xlim = 0.3356

rs (B500)
lsd,lim = 0.2469
xlim = 0.3050

rs (B600)
lsd,lim = 0.2307
xlim = 0.2795

0.01 0.0101 0.0180 0.9937 142.08 347.83 434.78 521.74

0.02 0.0203 0.0362 0.9873 69.28

0.03 0.0306 0.0546 0.9809 45.01

0.04 0.0411 0.0733 0.9743 32.87

0.05 0.0517 0.0923 0.9677 25.58

0.06 0.0624 0.1115 0.9610 20.72

0.07 0.0734 0.1310 0.9541 17.25

0.08 0.0845 0.1508 0.9472 14.64

0.09 0.0957 0.1709 0.9402 12.61

0.10 0.1072 0.1914 0.9330 10.98

0.11 0.1188 0.2122 0.9257 9.65

0.12 0.1307 0.2333 0.9183 8.54

0.13 0.1427 0.2549 0.9108 7.60

0.14 0.1550 0.2768 0.9031 6.79

0.15 0.1675 0.2992 0.8953 6.09

0.16 0.1803 0.3220 0.8873 5.47

0.17 0.1934 0.3453 0.8791 4.93

0.18 0.2067 0.3691 0.8708 4.44

0.19 0.2203 0.3935 0.8623 4.01

0.20 0.2343 0.4184 0.8536 3.61

0.21 0.2486 0.4440 0.8446 3.26

0.22 0.2633 0.4703 0.8354 2.93

0.23 0.2785 0.4973 0.8260 2.63

0.24 0.2940 0.5251 0.8162 2.35 470.36

0.25 0.3101 0.5538 0.8062 2.10 419.05 419.05

0.26 0.3267 0.5834 0.7958 1.86 371.30 371.30
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Table 15 (continued)

Concrete C90/105 − lsd,max = 0.3640

lsd x n = x/d f = z/d es (‰) rs (B400)
lsd,lim = 0.2652
xlim = 0.3356

rs (B500)
lsd,lim = 0.2469
xlim = 0.3050

rs (B600)
lsd,lim = 0.2307
xlim = 0.2795

0.27 0.3439 0.6142 0.7850 1.63 326.68 326.68 326.68

0.28 0.3618 0.6461 0.7739 1.42 284.82 284.82 284.82

0.29 0.3805 0.6794 0.7622 1.23 245.36 245.36 245.36

0.30 0.4000 0.7143 0.7500 1.04 208.00 208.00 208.00

0.31 0.4205 0.7509 0.7372 0.86 172.46 172.46 172.46

0.32 0.4422 0.7897 0.7236 0.69 138.48 138.48 138.48

0.33 0.4653 0.8310 0.7092 0.53 105.78 105.78 105.78

0.34 0.4902 0.8753 0.6936 0.37 74.09 74.09 74.09

0.35 0.5172 0.9235 0.6768 0.22 43.08 43.08 43.08

0.36 0.5470 0.9768 0.6581 0.06 12.34 12.34 12.34
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