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ABSTRACT

Optimization is a field where extensive research has been conducted over the last decades. Many types 
of problems have been addressed, and many types of algorithms have been developed, while their range 
of applications is continuously growing. The chapter is divided into two parts; in the first part, the 
life-cycle cost analysis is used as an assessment tool for designs obtained by means of prescriptive and 
performance-based optimum design methodologies. The prescriptive designs are obtained through a 
single-objective formulation, where the initial construction cost is the objective to be minimized, while 
the performance-based designs are obtained through a two-objective formulation where the life-cycle 
cost is considered as an additional objective also to be minimized. In the second part of the chapter, the 
problem of inspection of structures and routing of the inspection crews following an earthquake in densely 
populated metropolitan areas is studied. A model is proposed and a decision support system is developed 
to aid local authorities in optimally assigning inspectors to critical infrastructures. A combined particle 
swarm – ant colony optimization based framework is implemented, which proves to be an instance of a 
successful application of the philosophy of bounded rationality and decentralized decision-making for 
solving global optimization problems.

DOI: 10.4018/978-1-4666-1640-0.ch007



153

Metaheuristic Optimization in Seismic Structural Design and Inspection Scheduling of Buildings

INTRODUCTION

Earthquake loading transfers large amounts of en-
ergy in short periods of time, which might produce 
severe damages on the structural systems. During 
the last century, significant advances have been 
made towards the improvement of the seismic 
design codes. The philosophy underlying modern 
codes is that the building structures should remain 
elastic for frequent earthquake events. Under 
rare earthquakes, however, damages are allowed 
given that life safety is guaranteed. Hence, the 
main task of the design procedures is to achieve 
more predictable and reliable levels of safety 
and operability against natural hazards. Through 
extensive research studies it was found that the 
Performance-Based Design (PBD) concept can 
be integrated into a structural design procedure in 
order to obtain designs that fulfill the provisions 
of a safety structure in a more predictable way 
(ATC-40,1996, FEMA-350, 2000, ASCE/SEI 
Standard 41-06, 2006, FEMA-445, 2006, ATC-
58, 2009). According to the PBD framework the 
structural behavior is assessed in multiple hazard 
levels of increased intensity. Consequently, it is 
very important to use robust and computation-
ally efficient methods for predicting the seismic 
response of the structure in order to assess its 
capacity under different seismic hazard levels.

In the first part of the chapter, 3D reinforced 
concrete (RC) buildings with regular and ir-
regular plan views were considered in order to 
examine the sensitivity of life-cycle cost value 
with reference to the analysis procedure (static or 
dynamic), the number of seismic records imposed, 
the performance criterion used and the structural 
type (regular or irregular). In particular, nonlin-
ear static analysis and multiple stripe analysis, 
which is a variation of IDA, were applied for the 
calculation of the maximum inter-story drift and 
the maximum floor acceleration. The life-cycle 
cost was calculated for both regular and irregular 
in plan test examples taking into consideration 
the damage repair cost, the cost of loss of con-
tents due to structural damage, quantified by the 

maximum inter-story drift and floor acceleration, 
the loss of rental cost, the income loss cost, the 
cost of injuries and the cost of human fatalities. 
Furthermore, the influence of uncertainties on the 
seismic response of structural systems and their 
impact on Life Cycle Cost Analysis (LCCA) is 
examined. In order to take into account the uncer-
tainty on the material properties, the cross-section 
dimensions and the record-incident angle, the 
Latin hypercube sampling method is integrated 
into the incremental dynamic analysis procedure. 
In addition, the LCCA methodology is used as an 
assessment tool for the designs obtained by means 
of prescriptive and performance-based optimum 
design methodologies. The prescriptive design 
procedure is formulated as a single-objective op-
timization problem where the initial construction 
cost is the objective to be minimized; while the 
performance-based design procedure is defined 
as a two-objective optimization problem where 
the life-cycle cost is considered as an additional 
objective also to be minimized.

Infrastructure networks are vital for the well-
being of modern societies; national and local 
economies depend on efficient and reliable net-
works that provide added value and competitive 
advantage to an area’s social and economic growth. 
The significance of infrastructure networks in-
creases when natural disasters occur since restora-
tion of community functions is highly dependent 
on the affected regions receiving adequate relief 
resources. Infrastructure networks are frequently 
characterized as the most important lifelines 
in cases of natural disasters; recent experience 
from around the World (hurricanes Katrina and 
Wilma, Southeastern Asia Tsunami, Loma Prieta 
and Northridge earthquakes and others) suggests 
that, following a natural disaster, infrastructure 
networks are expected to support relief opera-
tions, population evacuation, supply chains and 
the restoration of community activities.

Infrastructure elements such as bridges, pave-
ments, tunnels, water and sewage systems, and 
highway slopes are highly prone to damages 
caused by natural hazards, a result of possible 
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poor construction or maintenance, of design 
inconsistencies or of the shear magnitude of the 
natural phenomena themselves. Rapid network 
degradation following these disasters can severely 
impact both short and long run operations resulting 
in increased fatalities, difficulties in population 
evacuation and the supply of clean water and food 
to the affected areas. Much of the state of the art 
in this research area indicates that attention must 
be given to three important actions: (i) Fail-safe 
design and construction of infrastructure facili-
ties; (ii) Effective maintenance and management 
of the available facilities; and, (iii) Planning and 
preparing actions to deal with rapid reparation 
of infrastructure following the disasters (Altay 
et al. 2006, Dong et al., 1987, Peizhuangm et 
al. 1986, Tamura et al., 2000, Mendonca et al., 
2001, Mendonca et al., 2006, Karlaftis et al. 2007, 
Lagaros et al., 2011).

The second part of the chapter focuses on is-
sues that are related to inspecting and repairing 
infrastructure elements damaged by earthquakes, a 
highly unpredictable natural disaster of consider-
able importance to many areas around the world. 
An explicit effort is made to initiate the develop-
ment of a process for handling post-earthquake 
emergency response in terms of optimal infrastruc-
ture condition assessment, based on a combined 
Particle Swarm Optimization (PSO) – Ant Colony 
Optimization (ACO) framework. Some of the 

expected benefits of this work include improve-
ments in infrastructure network restoration times 
and minimization of adverse impacts from natural 
hazards on infrastructure networks.

LIFE-CYCLE COST 
ASSESSMENT OF OPTIMALLY 
DESIGNED REINFORCED 
CONCRETE BUILDINGS 
UNDER SEISMIC ACTIONS

In the framework of the present study, two multi-
story 3D RC buildings, shown in Figure 1 (a) and 
(b), have been optimally designed to meet the 
Eurocode (EC2 (2004) and EC8 (2004)) or the 
PBD requirements. Furthermore, the two buildings 
(optimally designed according to EC2 and EC8) 
have been considered in order to study the influ-
ence of various factors on LCCA procedure and 
to perform critical assessment of seismic design 
procedures. Therefore, the investigation presented 
in this study is composed by three parts. In the 
first part the single and multi-objective optimiza-
tion problems are solved, in the second part the 
influence of various parameters on the LCCA 
procedure is quantified while in the last part a 
critical assessment of the two design procedures 
with reference to the life-cycle cost is presented.

Figure 1. Test cases: (a) Eight-story 3D view, (b) Five-story 3D view
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Single and Multi-Objective 
Optimization Problems

In the following paragraphs, the single and the 
two-criteria design optimization problems and the 
optimum designs obtained are presented.

Problem Formulations

The mathematical formulation of the optimization 
problem for the single-objective formulation, as it 
was presented in (Lagaros et al., 2004), is defined 
as follows:
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where s represents the design vector, F is the 
feasible region where all the serviceability and 
ultimate constraint functions (gSERV and gULT) 
are satisfied. In this formulation the boundaries 
of the feasible region are defined according to 
the recommendations of the EC8. The single 
objective function considered is the initial con-
struction cost CIN, while Cb(s), Csl(s), Ccl(s) and 
Cns(s) correspond to the total initial construction 
cost of beams, slabs, columns and non-structural 
elements, respectively. The term “initial cost” of 
a new structure corresponds to the cost just after 
construction. The initial cost is related to material, 
which includes concrete, steel reinforcement, and 
labor costs for the construction of the building. The 
solution of the resulting optimization problem is 
performed by means of Evolutionary Algorithms 
(EA) (Mitropoulou, 2010).

In practical applications of sizing optimiza-
tion problems, the initial cost rarely gives a 
representative measure of the performance of 
the structure. In fact, several conflicting and 
usually incommensurable criteria usually exist 

in real-life design problems that have to be dealt 
with simultaneously. This situation forces the 
designer to look for a good compromise among 
the conflicting requirements. Problems of this kind 
constitute multi-objective optimization problems. 
In general, a multi-objective optimization problem 
can be stated as follows:
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where s represents the design vector, F is the 
feasible region where all the constraint functions 
gCapacity and gPBD are satisfied for the PBD formula-
tion. The objective functions considered are the 
initial construction cost CIN and the life-cycle 
cost CLS. Several methods have been proposed for 
treating structural multi-objective optimization 
problems (Coello, 2000, Marler & Arora, 2004). 
In this work, the Nondominated Sorting Evolu-
tion Strategies II (NSES-II) algorithm, proposed 
by Lagaros and Papadrakakis (2007), is used in 
order to handle the two-objective optimization 
problem at hand. This algorithm is denoted as 
NSES-II(μ+λ) or NSES-II(μ,λ), depending on the 
selection operator.

Various sources of uncertainty are considered: 
on the ground motion excitation which influences 
the level of seismic demand and on the model-
ing and the material properties which affects the 
structural capacity. The structural stiffness is 
directly connected to the modulus of elasticity 
Es and Ec of the longitudinal steel reinforcement 
and concrete respectively, while the strength is 
influenced by the yield stress fy of the steel and 
the cylindrical strength for the concrete fc and the 
hardening b of the steel. In addition to the mate-
rial properties, the cross-sectional dimensions are 
considered as random variables. Thus, both for 
beams and columns four random variables are 
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considered; the modulus of elasticity (Es and Ec), 
the yield and cylindrical strength stresses (fy and 
fc), the hardening parameter b of the stress-strain 
curve and the cross-sectional dimensions (B and 
H). One random variable is considered for both 
confined and unconfined concrete. Furthermore, 
one random variable is considered for the ground 
motion excitation and one for the incident angle. 
In order to account for the randomness of the in-
cident angle, the ground motions are applied with 
a random angle with respect to the structural axes 
uniformly distributed in the range of 0 to 180 de-
grees. The characteristics of the random variables 
are given in Table 1, i.e. probability density func-
tion (PDF), mean value, coefficient of variation 
(CoV) and type. Therefore, the total number of 
random variables considered is: 54 (4+2 groups 
of structural elements times 9 random variables) 
for the eight-story RC building (since 4 groups of 
columns and 2 groups of beams are considered) 
and 45 (3+2 groups of structural elements times 9 
random variables) for the five-story RC building 
(since 3 groups of columns and 2 groups of beams 
are considered) plus one random variable for the 
seismic record and one for the incident angle.

Optimum Design Results

For both formulations the designs variables of 
the optimization problems are defined through 
the dimensions of the columns’ and beams’ cross-
section. The columns are chosen to be rectangular 
and they are grouped into four categories (C1, C2, 
C3 and C4) for the eight-story test example while 
they are grouped into three categories (C1, C2 
and C3) for the five-story test example, while the 
beams for both test examples are grouped into two 
categories (more details can be found in a study of 
Lagaros et al. (2004)). The two dimensions of the 
columns/beams along with the longitudinal, trans-
verse reinforcement and its spacing are the five 
design variables that are assigned to each group 
of the columns/beams. Therefore, the structural 
elements (beams and columns) are separated into 
14 groups, 12 groups for the columns and 2 for 
the beams, resulting into 70 design variables for 
the eight-story test example; while for the five-
story test example the structural elements (beams 
and columns) are separated into 10 groups, 8 for 
the columns and 2 for the beams, resulting in 50 
design variables in total.

Table 1. Random variables (Ellingwood et al., 1980, Dolsek, 2009) 

Random 
variable Distribution (PDF) Mean CoV Type

Earthquake Uniform - - aleatory

Incident angle* Uniform - - aleatory

Material

mean fc Lognormal 20 MPa 4% epistemic

fc Lognormal mean fc 15% aleatory

Ec Lognormal 2.9×107 kN/m² 15% aleatory

mean fy (steel) Lognormal 500 MPa 4% epistemic

fy (steel) Lognormal mean fy 5% aleatory

Es (steel) Lognormal 2.1×108 kN/m² 5% aleatory

b (steel) Lognormal 1% 5% aleatory

Design variables
b Normal design value 5% aleatory

h Normal design value 5% aleatory

* In the Range of 0 to 180 degrees.
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Based on the prescriptive seismic design for-
mulation, both buildings have been designed for 
minimum initial cost following an optimization 
strategy proposed by Mitropoulou et al. (2010). 
In particular, for the solution of the single objec-
tive optimization problem formulated as shown 
in Eq. (4) the EA(μ + λ) optimization scheme is 
employed (Lagaros et al. 2004) with ten parent 
and offspring (μ=λ=10) design vectors for both 
test examples. On the other hand, the second op-
timization problem is formulated as a two-criteria 
design optimization problem, as presented in Eq. 
(5) where the initial construction cost CIN and the 
life-cycle cost CLS are the two objectives both to 
be minimized, while for solving the problem the 
NSES-II(100+100) optimization scheme was 
employed.

Solving the optimization problem of Eq. (4) 
results to a single design denoted as Ddescr corre-
sponding to the prescriptive design procedure. On 
the other hand, solving the optimization problem of 
Eq. (5) results to a group of designs that define the 
Pareto curve. In order to compare the behavior of 
the different designs of the Pareto front curve two 
characteristic designs were selected, correspond-
ing to the PBD optimum designs, which they are 
denoted as DPBD1 obtained from the region where 

the initial cost is the dominant criterion and DPBD2 
obtained from the region where the life-cycle cost 
is the dominant criterion. The steel and concrete 
quantities for the columns and the beams along 
with the RC frame cost and total initial cost, for 
the three optimum designs, are presented in Tables 
2 and 3 corresponding to the designs of the eight-
story and five-story test example, respectively.

For the eight-story symmetric test example, 
as shown in Table 2, it can be said that compared 
to Ddescr the DPBD1 requires 9% more concrete both 
for beams and columns while it requires 22% and 
31% more longitudinal steel reinforcement for 
the beams and the columns, respectively. On the 
other hand, DPBD2 requires 37% and 30% more 
concrete for beams and columns, respectively; 
while it requires 70% and 56% more longitudinal 
steel reinforcement for the beams and the columns, 
respectively. Furthermore, with reference to the 
RC frame initial cost, where the cost of the plates 
is also included, it can be said that DPBD1 is by 
10% more expensive compared to Ddescr; while 
DPBD2 is by 26% more expensive. On the other 
hand though, with reference to the initial cost, the 
three designs vary by 2% and 4% only.

The five-story non-symmetric test example has 
a similar trend. Based on the concrete and steel 

Table 2. Eight-story test example: comparison of steel and concrete quantities in the three designs 

Design 
procedure

Columns Beams CIN, RC Frame 
(103MU)

CIN
(103MU)Concrete (m3) Steel (kg.) Concrete (m3) Steel (kg.)

Ddescr 1.68E+02 1.84E+04 2.27E+02 1.06E+04 2.40E+02 1.44E+03

DPBD1 1.84E+02 2.41E+04 2.48E+02 1.29E+04 2.64E+02 1.46E+03

DPBD2 2.19E+02 2.87E+04 3.11E+02 1.80E+04 3.03E+02 1.50E+03

Table 3. Five-story test example: comparison of steel and concrete quantities in the three designs 

Design 
procedure

Columns Beams CIN, RC Frame 
(103MU)

CIN
(103MU)Concrete (m3) Steel (kg.) Concrete (m3) Steel (kg.)

Ddescr 8.86E+01 5.20E+03 6.57E+01 1.45E+03 1.11E+02 7.36E+02

DPBD1 1.04E+02 6.87E+03 7.40E+01 1.75E+03 1.20E+02 7.45E+02

DPBD2 1.27E+02 8.24E+03 9.16E+01 2.50E+03 1.33E+02 7.58E+02
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reinforcement quantities and initial costs given 
in Table 3, it can be said that compared to Ddescr 
the DPBD1 requires 13% and 18% more concrete 
for beams and columns, respectively; while it 
requires 21% and 32% more longitudinal steel 
reinforcement for the beams and the columns, 
respectively. On the other hand, DPBD2 requires 39% 
and 43% more concrete for beams and columns, 
respectively; while it requires 72% and 59% more 
longitudinal steel reinforcement for the beams 
and the columns, respectively. Furthermore, with 
reference to the RC frame initial cost, where the 
cost of the plates is also included, it can be said 
that DPBD1 is by 8% more expensive compared to 
Ddescr; while DPBD2 is by 19% more expensive. On 
the other hand though, with reference to the initial 
cost, the three designs vary by 1% and 3% only.

Prescriptive vs Performance-
Based Design

The difference between EC8 and PBD formula-
tions is demonstrated in terms of the life-cycle 
cost analysis of selected designs. The EC8 for-
mulation implements a linear analysis procedure 
where the behavioral factor q is used to take into 
account the inelastic behavior of the structure. 
Most of the contemporary seismic design codes 
rely on the ability of the structure to absorb energy 
through inelastic deformation using the reduction 
or behavior factor q. The capacity of a structure 
to resist seismic actions in the nonlinear range 
generally permits the design seismic loads to be 
smaller than the loads corresponding to a linear 

elastic response. Thus, the seismic design loads 
are reduced by the behavior factor q. According 
to EC8, the nonlinear deformation of the structure 
caused by the seismic load is equal to q times the 
corresponding deformation of the linear analysis.

In accordance to the previous section, the three 
designs are also considered for the comparative 
study with reference to the life-cycle cost and the 
impact of the various sources of randomness of 
the LCCA procedure. The median values of the 
life-cycle cost of the three designs are shown in 
Tables 4 to 7 corresponding to the deterministic and 
probabilistic formulations, while the histograms of 
Figures 2 and 3 show the probabilistic distribution 
of the life-cycle cost values for the deterministic 
and probabilistic formulations implemented into 
the Multi-Stripe Dynamic Analysis (MSDA) for 
the three different designs along with the 90% 
confidence bounds.

For the eight-story symmetric test example, 
comparing the histograms of Figures 2(a) and 
2(b) it can be noticed that the width of the 90% 
confidence bounds of the life-cycle cost values 
of design DPBD2, is much narrower compared to 
the other two confidence bounds both for the 
deterministic and probabilistic formulations. 
Furthermore, it can be said that with reference to 
the mean value of the life-cycle cost (as shown 
in Table 4) DPBD1 is by 18% less expensive com-
pared to Ddescr; while DPBD2 is by 52% less expen-
sive when the deterministic formulation is imple-
mented for 60 records. On the other hand, as 
shown in Table 5, it can be said that design DPBD1 
is by 5% less expensive compared to Ddescr; while 

Table 4. Eight-story test example: median value of the life-cycle cost (103 MU) for the four cases and 
the three designs for the deterministic formulation 

Design
Number of records

10 20 40 60

Ddescr 3.13E+03 2.73E+03 2.61E+03 2.72E+03

DPBD1 2.87E+03 2.02E+03 1.83E+03 2.30E+03

DPBD2 1.91E+03 1.82E+03 1.79E+03 1.79E+03
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DPBD2 is by 57% less expensive when the proba-
bilistic formulation is also implemented for 60 
records. For the five-story symmetric test ex-
ample, comparing the histograms of Figure 3(a) 
it can be noticed that the width of the 90% con-
fidence bounds of the life-cycle cost values, of 
design Ddescr, is much narrower compared to the 
other two confidence bounds both for the deter-
ministic formulation while for the probabilistic 
one it is DPBD2 design that shows the narrower 
confidence bounds. Furthermore, it can be said 
that with reference to the mean value of the life-
cycle cost (as shown in Table 6) DPBD1 is by 38% 
less expensive compared to Ddescr; while DPBD2 is 

by 52% less expensive when the deterministic 
formulation is implemented for 60 records. On 
the other hand, as shown in Table 7, it can be said 
that design DPBD1 is by 40% less expensive com-
pared to Ddescr; while DPBD2 is by 53% less expen-
sive when the probabilistic formulation is also 
implemented for 60 records. Comparing the de-
terministic with the probabilistic formulation with 
reference to the median values, they appear to be 
increased by 12% to 30% for the eight-story test 
example and by 11% to 13% for the five-story 
building.

Figure 2. Eight-story test case – Prescriptive vs PBD (a) frequency of occurrence deterministic approach 
and (b) frequency of occurrence probabilistic approach, all for the case of 60 records

Figure 3. Five-story test case – Prescriptive vs PBD (a) frequency of occurrence deterministic approach 
and (b) frequency of occurrence probabilistic approach, all for the case of 60 records
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METAHEURISTIC OPTIMIZATION 
FOR THE INSPECTION SCHEDULING 
OF BUILDINGS

Natural hazards such as earthquakes, floods and 
tornadoes can cause extensive failure of critical 
infrastructures including bridges, water and sewer 
systems, gas and electricity supply systems, and 
hospital and communication systems. Follow-
ing a natural hazard, the condition of structures 
and critical infrastructures must be assessed and 
damages have to be identified; inspections are 
therefore necessary since failure to rapidly inspect 

and subsequently repair infrastructure elements 
will delay search and rescue operations and relief 
efforts. The objective of this work is scheduling 
structure and infrastructure inspection crews 
following an earthquake in densely populated 
metropolitan areas. A model is proposed and a 
decision support system is designed to aid lo-
cal authorities in optimally assigning inspectors 
to critical infrastructures. A combined Particle 
Swarm – Ant Colony Optimization based frame-
work is developed which proves an instance of 
a successful application of the philosophy of 
bounded rationality and decentralized decision-

Table 6. Five-story test example: median value of the life-cycle cost (103 MU) for the four cases and the 
three designs for the deterministic formulation 

Design
Number of records

10 20 40 60

Ddescr 5.10E+03 3.54E+03 3.28E+03 4.18E+03

DPBD1 4.70E+03 3.17E+03 2.84E+03 3.04E+03

DPBD2 4.37E+03 2.58E+03 2.27E+03 2.75E+03

Table 5. Eight-story test example: median value of the life-cycle cost (103 MU) for the four cases and 
the three designs for the probabilistic formulation 

Design
Number of records

10 20 40 60

Ddescr 3.16E+03 3.04E+03 3.08E+03 3.14E+03

DPBD1 3.25E+03 2.97E+03 2.95E+03 2.98E+03

DPBD2 2.05E+03 2.00E+03 1.99E+03 2.00E+03

Table 7. Five-story test example: median value of the life-cycle cost (103 MU) for the four cases and the 
three designs for the probabilistic formulation 

Design
Number of records

10 20 40 60

Ddescr 4.79E+03 4.71E+03 4.47E+03 4.72E+03

DPBD1 3.90E+03 3.26E+03 3.17E+03 3.36E+03

DPBD2 3.66E+03 3.00E+03 2.90E+03 3.08E+03
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making for solving global optimization problems 
(Plevris et al., 2010).

Problem Formulation

A general formulation of a nonlinear optimization 
problem can be stated as follows

min ( ) [ , , ]

( ) , ,

x R
n

k

n
f x x

g k m

∈
=

≤ =

≤ ≤

x x

x
x x x

1

0 1





T

L U

Subject to 	 (3)

where x is the design variables vector of length 
n, f(x): Rn→R is the objective function to be 
minimized, the vector of m inequality constraint 
functions g(x): Rn→Rm and xL, xU are two vectors 
of length n defining the lower and upper bounds 
of the design variables, respectively.

The main objective of this work is to formulate 
the problem of inspecting the structural systems 
of a city/area as an optimization problem. This 
objective is achieved in two steps: in the first step, 
the structural blocks to be inspected are optimally 
assigned into a number of inspection crews (as-
signment problem), while in the second step the 
problem of hierarchy is solved for each group of 
blocks (inspection prioritization problem). In the 
formulation of the optimization problems consid-
ered in this work, the city/area under investigation 
is decomposed into NSB structural blocks while 
NIG inspection crews are considered for inspect-
ing the structural condition of all structural and 
infrastructure systems of the city/area.

STEP 1: OPTIMUM 
ASSIGNMENT PROBLEM

The assignment problem is defined as a nonlinear 
programming optimization problem as follows
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where nSB
i( )  is the number of structural blocks al-

located to the ith inspection crews, d(SBk,Ci) is the 
distance between the SBk building block from the 
centre of the ith group of structural blocks (with 
coordinates xC and yC), while D(k) is the demand 
for the kth building block defined as the product 
of the building block total area times the built-up 
percentage (i.e. percentage of the area with a 
structure). This is defined as a discrete optimiza-
tion problem since the design variables x are in-
teger numbers denoting the inspection crews to 
which each built-up block has been assigned and 
thus the total number of the design variables is 
equal to the number of structural blocks and the 
range of the design variables is [1, NIG].

STEP 2: INSPECTION 
PRIORITIZATION PROBLEM

The definition of this problem is a typical Travel-
ling Salesman Problem (TSP) (Colorni et al., 1992) 
which is a problem in combinatorial optimization 
studied in operations research and theoretical 
computer science. In TSP a salesman spends his 
time visiting N cities (or nodes) cyclically. Given 
a list of cities and their - pair-wise - distances, 
the task is to find a Hamiltonian tour of minimal 
length, i.e. to find a closed tour of minimal length 
that visits each city once and only once. For an N 
city asymmetric TSP if all links are present then 
there are (N-1)! different tours. TSP problems are 
also defined as integer optimization problems, 
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similar to all problems that have been proven to 
be NP-hard (Lawler, 1985).

Consider a TSP with N cities (vertices or 
nodes). The TSP can be represented by a complete 
weighted graph G=(N,A), with N the set of nodes 
and A the set of arcs (edges or connections) that 
fully connects the components of N. A cost func-
tion is assigned to every connection between two 
nodes i and j, that is the distance between the two 
nodes di,j (i≠j). In the symmetric TSP, it is di,j=dj,i. 
A solution to the TSP is a permutation p={p(1), 
…, p(N)} of the node indices {1, …, N}, as every 
node must appear only once in a solution. The 
optimum solution is the one that minimizes the 
total length L(p) given by

L d dp i p i
i

N

p N p( ) ( ), ( ) ( ), ( )p = ( )++
=

−

∑ 1
1

1

1 	 (5)

Thus, the corresponding prioritization problem 
is defined as follows
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where d(SBk, SBk+1) is the distance between the 
building block SBk and k+1th. The main objective 
is to define the shortest possible route between 
the structural blocks that have been assigned in 
Step 1 to each inspection group.

PARTICLE SWARM 
OPTIMIZATION ALGORITHM

In a PSO formulation, multiple candidate solutions 
coexist and collaborate simultaneously. Each solu-
tion is called a “particle” that has a position and 
a velocity in the multidimensional design space. 
A particle “flies” in the problem search space 
looking for the optimal position. As “time” passes 
through its quest, a particle adjusts its velocity 

and position according to its own “experience” 
as well as the experience of other (neighbouring) 
particles. Particle’s experience is built by tracking 
and memorizing the best position encountered. 
As every particle remembers the best position it 
has visited during its “flight”, the PSO possesses 
a memory. A PSO system combines local search 
method (through self-experience) with global 
search method (through neighbouring experience), 
attempting to balance exploration and exploitation.

Mathematical Formulation of PSO

Each particle maintains two basic characteristics, 
velocity and position, in the multi-dimensional 
search space that are updated as follows

v vj j j j j( ) ( ) ( ) ( )t w t c t c t+ = + −( )+ −( )1 1 1 2 2r x x r x x 

Pb, Gb 	
(7)

x xj j j( ) ( ) ( )t t t+ = + +1 1v 	 (8)

where vj(t) denotes the velocity vector of particle 
j at time t, xj(t) represents the position vector of 
particle j at time t, vector xPb,j is the personal ‘best 
ever’ position of the jth particle, and vector xGb is 
the global best location found by the entire swarm. 
The acceleration coefficients c1 and c2 indicate 
the degree of confidence in the best solution found 
by the individual particle (c1 - cognitive param-
eter) and by the whole swarm (c2 - social param-
eter), respectively, while r1 and r2 are two random 
vectors uniformly distributed in the interval [0, 
1]. The symbol “ ” of Eq. (7) denotes the Had-
amard product, i.e. the element-wise vector or 
matrix multiplication.

Figure 4 depicts a particle’s movement, in 
a two-dimensional design space, according to 
Eqs. (7) and (8). The particle’s current position 
xj(t) at time t is represented by the dotted circle 
at the lower left of the drawing, while the new 
position xj(t+1) at time t+1 is represented by the 
dotted bold circle at the upper right hand of the 
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drawing. It can be seen how the particle’s move-
ment is affected by: (i) it’s velocity vj(t); (ii) the 
personal best ever position of the particle, xPb,j, 
at the right of the figure; and (iii) the global best 
location found by the entire swarm, xGb, at the 
upper left of the figure.

In the above formulation, the global best loca-
tion found by the entire swarm up to the current 
iteration (xGb) is used. This is called a fully con-
nected topology (fully informed PSO), as all 
particles share information with each other about 
the best performer of the swarm. Other topologies 
have also been used in the past where instead of 
the global best location found by the entire swarm, 
a local best location of each particle’s neighbour-
hood is used. Thus, information is shared only 
among members of the same neighbourhood.

The term w of Eq. (7) is the inertia weight, 
essentially a scaling factor employed to control 
the exploration abilities of the swarm, which 
scales the current velocity value affecting the 
updated velocity vector. The inertia weight was 
not part of the original PSO algorithm (Kennedy 

& Eberhart,1995), as it was introduced later by 
Shi and Eberhart (1998) in a successful attempt 
to improve convergence. Large inertia weights 
will force larger velocity updates allowing the 
algorithm to explore the design space globally. 
Similarly, small inertia values will force the veloc-
ity updates to concentrate in the nearby regions 
of the design space.

The inertia weight can also be updated during 
iterations. A commonly used inertia update rule is 
the linearly-decreasing, calculated by the formula:

w w
w w

t
tt+ = −

−
⋅1 max

max min

max

	 (9)

where t is the iteration number, wmax and wmin are the 
maximum and minimum values, respectively, of 
the inertia weight. In general, the linearly decreas-
ing inertia weight has shown better performance 
than the fixed one.

Particles’ velocities in each dimension i (i = 1, 
…,n) are restricted to a maximum velocity vmax

i. 
The vector vmax of dimension n holds the maximum 

Figure 4. Visualization of the particle’s movement in a two-dimensional design space
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absolute velocities for each dimension. It is more 
appropriate to use a vector rather than a scalar, as 
in the general case different velocity restrictions 
can be applied for different dimensions of the 
particle. If for a given particle j the sum of ac-
celerations of Eq. (7) causes the absolute velocity 
for dimension i to exceed vmax

i, then the velocity 
on that dimension is limited to ±vmax,i. The vector 
parameter vmax is employed to protect the cohesion 
of the system, in the process of amplification of 
the positive feedback. The basic PSO has only few 
parameters to adjust. In Table 8 there is a list of 
the main parameters, their typical values as well 
as other information (Perez & Behdinan, 2007).

Convergence Criteria

Due to the repeated process of the PSO search, 
convergence criteria have to be applied for the 
termination of the optimization procedure. Two 
widely adopted convergence criteria are the 
maximum number of iterations of the PSO algo-
rithm and the minimum error requirement on the 
calculation of the optimum value of the objective 
function. The selection of the maximum number 
of iterations depends, generally, on the complexity 
of the optimization problem at hand. The second 

criterion presumes prior knowledge of the global 
optimal value, which is feasible for testing or fine-
tuning the algorithm in mathematical problems 
when the optimum is known a priori, but this 
is certainly not the case in practical structural 
optimization problems where the optimum is not 
known a priori.

In our study, together with the maximum 
number of iterations, we have implemented the 
convergence criterion connected to the rate of 
improvement of the value of the objective function 
for a given number of iterations. If the relative 
improvement of the objective function over the 
last kf iterations (including the current iteration) is 
less or equal to a threshold value fm, convergence is 
supposed to have been achieved. In mathematical 
terms, denoting as Gbestt the best value for the 
objective function found by the PSO at iteration t, 
the relative improvement of the objective function 
can be written for the current iteration t as follows

Gbest Gbest

Gbest
f

t k t

t k
m

f

f

− +

− +

−
≤

1

1

	 (10)

In Table 9 there is a list of the convergence 
parameters of the PSO used in this study with 
description and details.

Table 8. Main PSO parameters 

Symbol Description Details

NP Number of particles A typical range is 10 – 40. For most problems 10 particles is sufficient 
enough to get acceptable results. For some difficult or special prob-
lems the number can be increased to 50-100.

n Dimension of particles It is determined by the problem to be optimized.

w Inertia weight Usually is set to a value less than 1, i.e. 0.95. It can also be updated 
during iterations.

xL, xU Vectors containing the lower and upper 
bounds of the n design variables, respec-
tively

They are determined by the problem to be optimized. Different ranges 
for different dimensions of particles can be applied in general.

vmax Vector containing the maximum allowable 
velocity for each dimension during one 
iteration

Usually is set half the length of the allowable interval for the given 
dimension: vmax

i = (xU
i - x

L
i)/2. Different values for different dimen-

sions of particles can be applied in general.

c1, c2 Cognitive and social parameters Usually c1=c2=2. Other values can also be used, provided that 0 < 
c1+c2 < 4 (Perez & Behdinan, 2007)
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PSO for Integer Optimization

Since both problems defined in previous section 
are integer optimization problems, discrete opti-
mization algorithms are required. For the Step 1 
optimization problem described in previous sec-
tion, a discrete version of the PSO algorithm is 
employed. In the continuous version of the PSO 
method, both particle positions and velocity are 
initialized randomly. In this work, the particle 
positions are generated randomly over the design 
space using discrete Latin Hypercube Sampling, 
thus guaranteeing that the initial particle positions 
will be integers in the acceptable range. Further-
more, in the case of discrete optimization and in 
particular in integer programming, at every step 
of the optimization procedure, integer particle 
positions should also be generated. In order to 
satisfy this, Eq. (7) is modified as follows

v vj j j j j( ) ( ) ( ) ( )t w t c t c t+ = + −( )+ −( )
1 1 1 2 2round r x x r x x 

Pb, Gb 

	

(11)

where the vector function round(x) rounds each 
element of the vector x into the nearest integer.

ANT COLONY OPTIMIZATION

The Ant Colony Optimization (ACO) algorithm 
is a population-based probabilistic technique for 
solving optimization problems, mainly for finding 
optimum paths through graphs (Dorigo, 1992). 

The algorithm was inspired by the behaviour of 
real ants in nature. In many ant species, individu-
als initially wander randomly and upon finding 
a food source return to their colony, depositing 
a substance called pheromone on the ground. 
Other ants smell this substance, and its presence 
influences the choice of their path, i.e. they tend 
to follow strong pheromone concentrations rather 
than travelling completely randomly, returning 
and reinforcing it if they eventually find food. 
The pheromone deposited on the ground forms 
a pheromone trail, which allows the ants to find 
good sources of food that have been previously 
identified by other ants.

As time passes, the pheromone trails start to 
evaporate, reducing their strength. The more time 
it takes for an ant to travel down a path and back 
again, the more time the pheromone trail has to 
evaporate. A short path gets marched over faster 
than a long one, and thus the pheromone density 
remains high as it is laid on the path faster than 
it can evaporate. If there was no evaporation, the 
paths chosen by the first ants would tend to be 
excessively attractive to the following ants and 
as a result the exploration of the solution space 
would be constrained. In that sense, pheromone 
evaporation helps also to avoid convergence to 
a locally optimal solution. Positive feedback 
eventually leads to most of the ants following a 
single “optimum” path.

The idea of the ant colony algorithm is to mimic 
this behaviour with simulated ants walking around 
the graph representing the problem to solve. The 

Table 9. PSO convergence parameters 

Symbol Description Details

tmax Maximum number of iterations for the 
termination criterion.

Determined by the complexity of the problem to be optimized, in 
conjunction with other PSO parameters (n, NP).

kf Number of iterations for which the relative 
improvement of the objective function satis-
fies the convergence check.

If the relative improvement of the objective function over the last kf 
iterations (including the current iteration) is less or equal to fm, con-
vergence has been achieved.

fm Minimum relative improvement of the value 
of the objective function.
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first algorithm was aiming to search for an optimal 
path in a graph. The original idea has since diversi-
fied to solve a wider class of numerical problems 
and, as a result, several problems have emerged, 
drawing on various aspects of the behaviour of 
ants. The initial applications of ACO were in the 
domain of NP-hard combinatorial optimization 
problems, while it was soon also applied to rout-
ing in telecommunication networks.

In ACO, a set of software agents called artificial 
ants search for good solutions to the optimization 
problem of finding the best path on a weighted 
graph. The ants incrementally build solutions by 
moving on the graph. The solution construction 
process is stochastic and it is biased on a phero-
mone model, that is, a set of parameters associated 
with graph components (either nodes or edges) 
whose values are modified at runtime by the ants.

To apply ACO to the TSP, the construction 
graph is considered, defined by associating the 
set of cities with the set of vertices on the graph. 
The construction graph is fully connected and 
the number of vertices is equal to the number of 
cities, since in the TSP it is possible to move from 
any given city to any other city. The length of the 
edges (connections) between the vertices are set to 
be equal to the corresponding distances between 
the nodes (cities) and the pheromone values and 
heuristic values are set for the edges of the graph. 
Pheromone values are modified during iterations at 
runtime and represent the cumulated experience of 
the ant colony, while heuristic values are problem 
dependent values that, in the case of the TSP, are 
set to be the inverse of the lengths of the edges.

During an ACO iteration, each ant starts from 
a randomly chosen vertex of the construction 
graph. Then, it moves along the edges of the 
graph keeping a memory of its path. In order to 
move from one node to another it probabilisti-
cally chooses the edge to follow among those 
that lead to yet unvisited nodes. Once an ant has 
visited all the nodes of the graph, a solution has 
been constructed. The probabilistic rule is biased 
by pheromone values and heuristic information: 

the higher the pheromone and the heuristic value 
associated to an edge, the higher the probability 
the ant will choose that particular edge. Once all 
the ants have completed their tour, the iteration is 
complete and pheromone values on the connec-
tions are updated: each of the pheromone values 
is initially decreased by a certain percentage and 
then it receives an amount of additional phero-
mone proportional to the quality of the solutions 
to which it belongs.

Ant Colony Optimization Algorithm

Consider a population of m ants where at each 
iteration of the algorithm every ant constructs a 
“route” by visiting every node sequentially. Ini-
tially, ants are put on randomly chosen nodes. At 
each construction step during an iteration, ant k 
applies a probabilistic action choice rule, called 
random proportional rule, to decide which node to 
visit next. While constructing the route, an ant k 
currently at node i, maintains a memory Mk which 
contains the nodes already visited, in the order 
they were visited. This memory is used in order 
to define the feasible neighbourhood Nk

i that is 
the set of nodes that have not yet been visited by 
ant k. In particular, the probability with which ant 
k, currently at node i, chooses to go to node j is

p ji j
k i j i j
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where τi,j is the amount of pheromone on con-
nection between i and j nodes, α is a parameter 
to control the influence of τi,j, β is a parameter to 
control the influence of ηi,j and ηi,j is a heuristic 
information that is available a priori, denoting the 
desirability of connection i,j, given by

ηi j
i jd

,
,

=
1 	 (13)
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According to Eq. (13), the heuristic desirability 
of going from node i to node j is inversely propor-
tional to the distance between i and j. By definition, 
the probability of choosing a city outside Nk

i is 
zero. By this probabilistic rule, the probability of 
choosing a particular connection i,j increases with 
the value of the associated pheromone trail τi,j and 
of the heuristic information value ηi,j.

The selection of the superscript parameters α 
and β is very important: if α=0, the closest cities 
are more likely to be selected which corresponds 
to a classic stochastic greedy algorithm (with 
multiple starting points since ants are initially 
randomly distributed over the nodes). If β=0, only 
pheromone amplification is at work, that is, only 
pheromone is used without any heuristic bias (this 
generally leads to rather poor results (Dorigo & 
Stützle, 2004).

Pheromone Update Rule

After all the m ants have constructed their routes, 
the amount of pheromone for each connection 
between i and j nodes, is updated for the next 
iteration t+1 as follows

τ ρ τ τi j i j i j
k

k

m

t t t i j, , ,( ) ( ) ( ), ( , )+ = −( )⋅ + ∀ ∈
=
∑1 1

1

∆ A 	
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where ρ is the rate of pheromone evaporation, a 
constant parameter of the method, A is the set of 
arcs (edges or connections) that fully connects 
the set of nodes and Δτk

i,j(t) is the amount of 
pheromone ant k deposits on the connections it 
has visited through its tour Tk, typically given by
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The coefficient ρ must be set to a value <1 to 
avoid unlimited accumulation of trail (Colorni et 

al., 1992). In general, connections that are used 
by many ants and which are parts of short tours, 
receive more pheromone and are therefore more 
likely to be chosen by ants in future iterations of 
the algorithm.

CASE STUDY

The real world case study considered is the city of 
Patras in Greece, which is used in order to define 
both the problem of the inspection assignment and 
the inspection prioritization. The city of Patras 
is decomposed into 112 structural blocks having 
different areas and built-up percentages, while 
two different sets of inspection groups (crews of 
inspectors) are considered. A non-uniform distri-
bution of damages is examined with respect to the 
damage level encountered on the structures due 
to a strong earthquake. Four areas with different 
structural damage levels are considered: (i) Level 
0 – no damages, (ii) Level 1 – slight damages, 
(iii) Level 2 – moderate damages and (iv) Level 
3 – extensive damages. The subdivision of the city 
of Patras into 112 structural blocks and the mean 
damage level for each region are shown in Figure 
5. Damages are assumed to follow the Gaussian 
distribution with mean value 0, 1, 2 and 3 for the 
four zones of Figure 5. The final distribution of 
damages over the structural blocks can be seen in 
Figure 6, where a big circle denotes severe damage.

In order to account for the influence of the 
distribution of the damages in the city’s regions, 
the formulation of the optimal assignment problem 
given in Eq. (4) is modified as follows
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where DF(k) is the damage factor corresponding to 
each damage level, as shown in Table 10. Figures 
7(a) and 7(b) depict the solutions obtained for the 
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optimum allocation problem for the two different 
numbers of inspection crews.

In the second step, the inspection prioritization 
problem defined in Eq. (6) is solved by means of 
the Ant Colony Optimization algorithm. Figures 
8(a) and 8(b) depict the optimum routes achieved, 
corresponding to the least time consuming route 
required for each inspection group imitating from 
their base. The base is the same for every inspec-
tion crew. The distances for the first and second 
group are 17121 and 31540 respectively for the 
two inspection groups while for the four are 9633.7, 
10939, 11383 and 15740.

Figure 9 depicts the convergence histories of 
the ACO algorithm. The vertical axis is the 
minimum distance path among the ants for every 
iteration.

CONCLUSION

In this study the application of metaheuristic op-
timization and in particular Evolution Strategies, 
Particle Swarm Optimization and Ant Colony 
Optimization is examined in two problems of 
great significance, the structural seismic design 
optimization problem and the inspection schedul-
ing problem after a seismic hazard attack.

In the first problem examined in this study it 
was found that with reference to the factors in-
fluencing the life-cycle cost estimation it can be 
concluded that 10 to 20 records are not enough to 
obtain reliable life-cycle cost analysis prediction 
results. The structural type of the building affects 
its structural performance. It has been verified that 
a symmetrical structure sustains less damage and 
therefore less repair cost during its life compared 
to a non-symmetric structure. In both test examples 
the effect of the other sources of uncertainty like 
material properties, damping and mass proper-
ties is very significant varying considerably the 
mean, the standard deviation and the fractiles of 
the seismic response. Neglecting the influence of 
modeling uncertainties (i.e. material properties and 
design variables) in the prediction of the seismic 
response can significantly underestimate the val-
ues of the seismic damage indices considered. As 
a result the estimated value of the life cycle cost 
varies considerably (up to 30%) compared to the 
case where the cumulative impact of all sources 
of randomness is considered. Furthermore, it has 
been shown that designs obtained in accordance 
to the European seismic design code are more 

Table 10. Damage Factor (DF) corresponding to 
each damage level 

Damage level Damage Factor (DF)

0 1.0

1 1.2

2 1.5

3 2.0

Figure 5. City of Patras – Subdivision into struc-
tural blocks and the mean damage level distributed 
over the structural blocks
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Figure 6. City of Patras – Distribution of the damage levels

Figure 7. City of Patras - Subdivision into structural blocks (a) two and (b) four inspection crews
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Figure 8. City of Patras – Best route (a) two and (b) four inspection crews

Figure 9. City of Patras – Optimization history of the last group (a) for the case of two and (b) the case 
of four inspection crews
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vulnerable to future earthquakes compared to 
similar designs, in terms of initial construction 
cost, obtained with the performance-based design 
procedure. This vulnerability increases for designs 
selected from the part of the Pareto front curves 
where the initial construction cost is the dominant 
criterion. Even though these conclusions cannot 
be generalized, they provide an indication of the 
quality of the designs obtained according to a 
prescriptive design code and to a performance-
based design procedure.

On the other hand following a natural hazard, 
the condition of the critical infrastructures must 
be assessed and damages have to be identified. 
Inspections are therefore necessary, immediately 
after the catastrophic event, since failure to quickly 
inspect, repair and/or rehabilitate the infrastructure 
system, particularly in densely populated metro-
politan regions, might delay search and rescue 
operations and relief efforts, which increases the 
suffering of the survivors. Specialized crews must 
be dispatched and inspect critical infrastructures. 
The objective of the present work was to schedule 
critical infrastructures inspection crews following 
an earthquake in densely populated metropolitan 
regions. In this work two formulations have been 
successfully implemented: in the first, the struc-
tural blocks are assigned to different inspection 
groups with an effort to equally distribute the 
workload between the groups, while in the second 
the optimal route for each group was determined 
with an effort to minimize the distance that each 
inspection group has to cover. A Particle Swarm 
Optimization and an Ant Colony Optimization-
based framework were implemented for dealing 
with the problem at hand and they both resulted 
in tractable and rapid response models.
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