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A Swarm Intelligence Approach  
for Emergency Infrastructure  
Inspection Scheduling 

Vagelis Plevris*, Matthew G. Karlaftis, and Nikos D. Lagaros 

Abstract. Natural hazards such as earthquakes, floods and tornadoes can cause 
extensive failure of critical infrastructures including bridges, water and sewer 
systems, gas and electricity supply systems, and hospital and communication 
systems. Following a natural hazard, the condition of structures and critical 
infrastructures must be assessed and damages have to be identified; inspections 
are therefore necessary since failure to rapidly inspect and subsequently repair 
infrastructure elements will delay search and rescue operations and relief efforts. 
The objective of this work is scheduling structure and infrastructure inspection 
crews following an earthquake in densely populated metropolitan areas. A model 
is proposed and a decision support system is designed to aid local authorities in 
optimally assigning inspectors to critical infrastructures. A combined Particle 
Swarm – Ant Colony Optimization based framework is developed which proves 
an instance of a successful application of the philosophy of bounded rationality 
and decentralized decision-making for solving global optimization problems. 

1   Introduction 

Infrastructure networks are vital for the well-being of modern societies; national and 
local economies depend on efficient and reliable networks that provide added value 
and competitive advantage to an area’s social and economic growth. The significance 
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of infrastructure networks increases when natural disasters occur since restoration of 
community functions is highly dependent on the affected regions receiving adequate 
relief resources. Infrastructure networks are frequently characterized as the most 
important lifelines in cases of natural disasters; recent experience from around the 
World (hurricanes Katrina and Wilma, Southeastern Asia Tsunami, Loma Prieta and 
Northridge earthquakes and others) suggests that, following a natural disaster, 
infrastructure networks are expected to support relief operations, population 
evacuation, supply chains and the restoration of community activities. 

Infrastructure elements such as bridges, pavements, tunnels, water and sewage 
systems, and highway slopes are highly prone to damages caused by natural 
hazards, a result of possible poor construction or maintenance, of design 
inconsistencies or of the shear magnitude of the natural phenomena themselves. 
Rapid network degradation following these disasters can severely impact both 
short and long run operations resulting in increased fatalities, difficulties in 
population evacuation and the supply of clean water and food to the affected areas. 
Much of the state-of-the-art in this research area indicates that attention must be 
given to three important actions: (i) Failsafe design and construction of 
infrastructure facilities; (ii) Effective maintenance and management of the 
available facilities; and, (iii) Planning and preparing actions to deal with rapid 
reparation of infrastructure following the disasters.  

As can be expected, significant research has been undertaken in emergency 
response to either natural hazards or manmade disasters. Work has concentrated 
on the four main aspects of the process; mitigation, preparedness, response, and 
recovery (an excellent collection of emergency response papers, with a heavy 
focus on quantitative approaches and algorithms, can be found in Altay and Green 
[1]). Work on mitigation includes assessing seismic hazards [2], probabilistic 
damage projection [3-4], and simulation based DSS for integrating the emergency 
process [5-6]. Research on preparedness, a particularly challenging area of 
network related problems, has mainly focused on preparing infrastructure 
networks for dealing with potential disasters and for accommodating evacuation 
needs [7-12]. Response related work has evolved around two main research paths; 
first, planning the response-relief logistics operations [13-16], and, second, 
assessing the performance of the infrastructure system following the natural 
hazard [17-20]. Finally, recovery operations have attracted limited attention 
despite their importance in practice; for example, work has concentrated on 
infrastructure element protection [21], general assessment of relief performance 
[22], and fund allocation for infrastructure repairs following disasters [23].    

It is interesting to note that most research on emergency response, particularly 
following the disaster, has shied away from dealing with the critical step of 
damage assessment and its related issues. For example, following an earthquake, 
all infrastructure elements need to be inspected, damages assessed, and repairs 
prioritized; these needs pose sets of problems such as partitioning the damaged 
area into sub-areas of responsibility for repair crews, determining inspection 
sequences (i.e. which infrastructure elements should be inspected first, second, 
and so on), and allocating funds for repairs, that research has largely ignored to 
date. This chapter is focused on issues that are related to inspecting and repairing 
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infrastructure elements damaged by earthquakes, a highly unpredictable natural 
disaster of considerable importance to many areas around the World. An explicit 
effort is made to initiate the development of a process for handling post-
earthquake emergency response in terms of optimal infrastructure condition 
assessment, based on a combined Particle Swarm Optimization (PSO) – Ant 
Colony Optimization (ACO) framework. Some of the expected benefits from this 
work include improvements in infrastructure network restoration times and 
minimization of adverse impacts from natural hazards on infrastructure networks. 

2   Notation and Symbols 

2.1   Optimization (Generally) 

x Design variables vector 
f(x): Rn→R Objective function 
g(x): Rn→Rm Vector of m inequality constraint functions 
xL, xU Vectors of length n defining the lower and upper bounds 

of the design variables, respectively 

2.2   Optimum Assignment Problem Definition 

( )i
SBn  Number of structural blocks allocated to the ith 

inspection crew 
SBk 

kth structural block 
Ci 

Centre of the ith group of structural blocks (with 
coordinates xCi and yCi) 

d(SBk,Ci) Distance between the SBk building block from the centre 
of the ith group 

D(k) Demand for the kth building block 
G=(N,A)  Weighted graph where N  is the set of nodes and A  is the 

set of arcs (edges or connections) that fully connects the 
components of N . 

di,j (i≠j) The distance between two nodes 
p={p(1), …, p(N)} A permutation, a possible solution to the Travelling 

Salesman Problem (TSP), where {p(1), …, p(N)} are the 
node indices 

L(p) Total length of a solution to the TSP 

2.3   Particle Swarm Optimization 

vj(t) Velocity vector of particle j at time t 
xj(t) Position vector of particle j at time t 
xPb,j Personal ‘best ever’ position of the jth particle 
xGb Global best location found by the entire swarm 
c1, c2 Acceleration coefficients: c1 - cognitive parameter,  c2 - 

social parameter 
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r1, r2 Two random vectors uniformly distributed in the interval 
[0, 1] 

 Hadamard product, i.e. element-wise vector or matrix 
multiplication 

w Inertia weight 
wmax, wmin Maximum and minimum values of the inertia weight, 

respectively  
vmax Vector containing the maximum allowable absolute 

velocity for each dimension 
NP Number of particles 
n Dimension of particles 
tmax Maximum number of iterations for the termination 

criterion 
kf Number of iterations for which the relative improvement 

of the objective function satisfies the convergence check 
fm Minimum relative improvement of the value of the 

objective function 
Gbestt Best value of the objective function found by the PSO at 

iteration t 

2.4   Ant Colony Optimization 

m Number of ants  
Mk

 Memory of an ant k currently at node i, contains the 
nodes already visited 

Nk
i the feasible neighbourhood that is the set of nodes that 

have not yet been visited by ant k 

,
k
i jp  the probability with which ant k, currently at node i, 

chooses to go to node j 
τi,j

 

the amount of pheromone on connection between i and j 
nodes 

a, b superscript parameters a is parameter to control the 
influence of τi,j, β is a parameter to control the influence 
of ηi,j 

ηi,j a heuristic information that is available a priori, denoting 
the desirability of connection i,j 

,i jd  Distance between nodes i and j 

ρ rate of pheromone evaporation 
A  the set of arcs (edges or connections) that fully connects 

the set of nodes 
Δτki,j(t) the amount of pheromone ant k deposits on the 

connections it has visited through its tour Tk  

( )kL T  Total length of tour Tk  of ant k 
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3   Problem Formulation 

A general formulation of a nonlinear optimization problem can be stated as follows 
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where x is the design variables vector of length n, f(x): Rn→R is the objective 
function to be minimized, the vector of m inequality constraint functions g(x): 
Rn→Rm and xL, xU are two vectors of length n defining the lower and upper 
bounds of the design variables, respectively. 

The main objective of this work is to formulate the problem of inspecting the 
structural systems of a city/area as an optimization problem. This objective is 
achieved in two steps: in the first step, the structural blocks to be inspected are 
optimally assigned into a number of inspection crews (assignment problem), while 
in the second step the problem of hierarchy is solved for each group of blocks 
(inspection prioritization problem). In the formulation of the optimization 
problems considered in this work, the city/area under investigation is decomposed 
into NSB structural blocks while NIG inspection crews are considered for inspecting 
the structural condition of all structural and infrastructure systems of the city/area. 

3.1   Step 1: Optimum Assignment Problem 

The assignment problem is defined as a nonlinear programming optimization 
problem as follows 
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where 
( )i
SBn  is the number of structural blocks allocated to the ith inspection crew, 

d(SBk,Ci) is the distance between the SBk building block from the centre of the ith 
group of structural blocks (with coordinates xCi and yCi), while D(k) is the demand 
for the kth building block defined as the product of the building block total area 



206 V. Plevris, M.G. Karlaftis, and N.D. Lagaros
 

times the built-up percentage (i.e. percentage of the area with a structure). This is 
defined as a discrete optimization problem since the design variables x are integer 
numbers denoting the inspection crews to which each built-up block has been 
assigned and thus the total number of the design variables is equal to the number 
of structural blocks and the range of the design variables is [1, NIG]. 

3.2   Step 2: Inspection Prioritization Problem 

The definition of this problem is a typical Travelling Salesman Problem (TSP) 
[24] which is a problem in combinatorial optimization studied in operations 
research and theoretical computer science.  In TSP a salesman spends his time 
visiting N cities (or nodes) cyclically. Given a list of cities and their - pair-wise - 
distances, the task is to find a Hamiltonian tour of minimal length, i.e. to find a 
closed tour of minimal length that visits each city once and only once. For an N 
city asymmetric TSP if all links are present then there are (N-1)! different tours. 
TSP problems are also defined as integer optimization problems, similar to all 
problems that have been proven to be NP-hard [25]. 

Consider a TSP with N cities (vertices or nodes). The TSP can be represented 
by a complete weighted graph G=(N,A) , with N  the set of nodes and A  the set of 
arcs (edges or connections) that fully connects the components of N . A cost 
function is assigned to every connection between two nodes i and j, that is the 
distance between the two nodes di,j (i≠j). In the symmetric TSP, it is di,j=dj,i. A 
solution to the TSP is a permutation p={p(1), …, p(N)} of the node indices 
{1, …, N}, as every node must appear only once in a solution. The optimum 
solution is the one that minimizes the total length L(p) given by 
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Thus, the corresponding prioritization problem is defined as follows 
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where d(SBk, SBk+1) is the distance between building block SBk  and k+1th. The 
main objective is to define the shortest possible route between the structural 
blocks that have been assigned in Step 1 to each inspection group. 

4   Solving the Optimization Problems 

4.1   Particle Swarm Optimization Algorithm 

4.1.1   Introduction to Particle Swarm Optimization 

Many probabilistic-based search algorithms have been inspired by natural 
phenomena, such as Evolutionary Programming, Genetic Algorithms, Evolution 
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Strategies, among others. Recently, a family of optimization methods has been 
developed based on the simulation of social interactions among members of a 
specific species looking for food or resources in general. One of these methods is 
the Particle Swarm Optimization (PSO) [26] method that is based on the behavior 
reflected in flocks of birds, bees and fish that adjust their physical movements to 
avoid predators and seek for food. The method has been given considerable 
attention in recent years among the optimization research community. 

A swarm of birds or insects or a school of fish searches for food, resources or 
protection in a very typical manner. If a member of the swarm discovers a 
desirable path to go, the rest of the swarm will follow quickly. Every member 
searches for the best in its locality, learns from its own experience as well as from 
the others typically from the best performer among them. Even human beings 
show a tendency to behave in this way as they learn from their own experience, 
their immediate neighbors and the ideal performers in the society. The PSO 
method mimics the behavior described above. It is a population-based 
optimization method built on the premise that social sharing of information among 
the individuals can provide an evolutionary advantage.  

PSO has been found to be highly competitive for solving a wide variety of 
optimization problems [27-33]. It can handle non-linear, non-convex design 
spaces with discontinuities. Compared to other non-deterministic optimization 
methods it is considered efficient in terms of number of function evaluations as 
well as robust since it usually leads to better or the same quality of results. Its 
easiness of implementation makes it more attractive as it does not require specific 
domain knowledge information, while being a population-based algorithm, it can 
be straight forward implemented in parallel computing environments leading to a 
significant reduction of the total computational cost. PSO has been successfully 
applied to many fields, such as mathematical function optimization, artificial 
neural network training and fuzzy system control. 

In a PSO formulation, multiple candidate solutions coexist and collaborate 
simultaneously. Each solution is called a “particle” that has a position and a 
velocity in the multidimensional design space. A particle “flies” in the problem 
search space looking for the optimal position. As “time” passes through its quest, 
a particle adjusts its velocity and position according to its own “experience” as 
well as the experience of other (neighbouring) particles. Particle's experience is 
built by tracking and memorizing the best position encountered. As every particle 
remembers the best position it has visited during its “flight”, the PSO possesses a 
memory. A PSO system combines local search method (through self experience) 
with global search method (through neighbouring experience), attempting to 
balance exploration and exploitation. 

4.1.2   Relationship of PSO with Evolutionary Algorithms (EAs) 

PSO shares many similarities with evolutionary computation techniques, such as 
Genetic Algorithms (GA), but the conceptual difference lies in its definition which 
is given in a social rather than a biological context. The common features of the 
two optimization approaches include the population concept of the design vectors, 
initialization with a population of random solutions, a fitness value to evaluate 
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performance, searching for optima by updating iterations (generations) based on a 
stochastic process, no requirement for gradient information or user-defined initial 
estimates and no guaranteed final success. However, unlike GA, PSO has no 
genetic operators such as crossover and mutation. In PSO, the potential solutions, 
fly through the problem space by following a velocity update rule. The 
information sharing mechanism in PSO is significantly different compared to GA. 
In GA chromosomes share information with each other, so the whole population 
moves like one group towards an optimal area. In PSO, only Gbest (the global best 
particle) communicates the information to the others, forming a one-way 
information sharing mechanism. Compared to Genetic Algorithms, according to 
the study of Hassan et al. [34], PSO and GA can both obtain high quality 
solutions, yet the computational effort required by PSO to arrive to such high 
quality solutions is less than the corresponding effort required by GA. According 
to Angeline [35], two main distinctions can be made between PSO and an 
evolutionary algorithm: 
 

i. EAs rely on three mechanisms in their processing: parent representation, 
selection of individuals and the fine tuning of their parameters. In contrast, PSO 
only relies on two mechanisms, since PSO does not adopt an explicit selection 
function. The absence of a selection mechanism in PSO is compensated by the use 
of leaders to guide the search. However, there is no notion of offspring generation 
in PSO as with EAs. 
ii. The manipulation of the individuals is different in EAs and PSO. PSO uses an 
operator that sets the velocity of a particle to a particular direction. This can be 
seen as a directional mutation operator in which the direction is defined by both 
the particle’s personal best and the global best (of the swarm). If the direction of 
the personal best is similar to the direction of the global best, the angle of potential 
directions will be small, whereas a larger angle will provide a larger range of 
exploration. In contrast, EAs use a mutation operator that can set an individual in 
any direction (although the relative probabilities for each direction may be 
different). In fact, the limitations exhibited by the directional mutation of PSO has 
led to the use of mutation operators similar to those adopted in EAs. 

4.1.3   Mathematical Formulation of PSO 

Each particle maintains two basic characteristics, velocity and position, in the 
multi-dimensional search space that are updated as follows 

( ) ( )Pb, Gb
1 1 2 2( 1) ( ) ( ) ( )j j j j jt w t c t c t+ = + − + −v v r x x r x x    (5) 

 ( 1) ( ) ( 1)j j jt t t+ = + +x x v                       (6) 

where vj(t) denotes the velocity vector of particle j at time t, xj(t) represents the 
position vector of particle j at time t, vector xPb,j is the personal ‘best ever’ position 
of the jth particle, and vector xGb is the global best location found by the entire 
swarm. The acceleration coefficients c1 and c2 indicate the degree of confidence in 
the best solution found by the individual particle (c1 - cognitive parameter) and by 
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the whole swarm (c2 - social parameter), respectively, while r1 and r2 are two 
random vectors uniformly distributed in the interval [0, 1]. The symbol “ ” of Eq. 
(5) denotes the Hadamard product, i.e. the element-wise vector or matrix 
multiplication. 

 
Fig. 1 Visualization of the particle’s movement in a two-dimensional design space 

 
Figure 1 depicts a particle’s movement, in a two-dimensional design space, 

according to Eqs. (5) and (6). The particle’s current position xj(t) at time t is 
represented by the dotted circle at the lower left of the drawing, while the new 
position xj(t+1) at time t+1 is represented by the dotted bold circle at the upper 
right hand of the drawing. It can be seen how the particle’s movement is affected 
by: (i) it’s velocity vj(t); (ii) the personal best ever position of the particle, xPb,j, at 
the right of the figure; and (iii) the global best location found by the entire swarm, 
xGb, at the upper left of the figure. 

In the above formulation, the global best location found by the entire swarm up 
to the current iteration (xGb) is used. This is called a fully connected topology 
(fully informed PSO), as all particles share information with each other about the 
best performer of the swarm. Other topologies have also been used in the past 
where instead of the global best location found by the entire swarm, a local best 
location of each particle’s neighbourhood is used. Thus, information is shared 
only among members of the same neighbourhood. 

The term w of Eq. (5) is the inertia weight, essentially a scaling factor 
employed to control the exploration abilities of the swarm, which scales the 
current velocity value affecting the updated velocity vector. The inertia weight 
was not part of the original PSO algorithm [26], as it was introduced later by Shi 
and Eberhart [36] in a successful attempt to improve convergence. Large inertia 
weights will force larger velocity updates allowing the algorithm to explore the 
design space globally. Similarly, small inertia values will force the velocity 
updates to concentrate in the nearby regions of the design space. 
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The inertia weight can also be updated during iterations. A commonly used 
inertia update rule is the linearly-decreasing, calculated by the formula: 

 max min
1 max

max
t

w w
w w t

t+
−= − ⋅                         (7) 

where t is the iteration number, wmax and wmin are the maximum and minimum 
values, respectively, of the inertia weight. In general, the linearly decreasing 
inertia weight has shown better performance than the fixed one. 

Particles' velocities in each dimension i (i = 1, …,n) are restricted to a maximum 
velocity vmax

i. The vector vmax of dimension n holds the maximum absolute 
velocities for each dimension. It is more appropriate to use a vector rather than a 
scalar, as in the general case different velocity restrictions can be applied for 
different dimensions of the particle. If for a given particle j the sum of 
accelerations of Eq. (5) causes the absolute velocity for dimension i to exceed 
vmax

i, then the velocity on that dimension is limited to ±vmax,i. The vector parameter 
vmax is employed to protect the cohesion of the system, in the process of 
amplification of the positive feedback. The basic PSO has only few parameters to 
adjust. In Table 1 there is a list of the main parameters, their typical values as well 
as other information. 

Table 1 Main PSO parameters 

Symbol Description Details 

NP Number of particles A typical range is 10 – 40. For most 
problems 10 particles is sufficient 
enough to get acceptable results. For 
some difficult or special problems the 
number can be increased to 50-100. 

n Dimension of particles It is determined by the problem to be 
optimized. 

w Inertia weight Usually is set to a value less than 1, i.e. 
0.95. It can also be updated during 
iterations. 

xL, xU Vectors containing the 
lower and upper bounds 
of the n design variables, 
respectively 

They are determined by the problem to 
be optimized. Different ranges for 
different dimensions of particles can be 
applied in general. 

vmax Vector containing the 
maximum allowable 
velocity for each 
dimension during one 
iteration 

Usually is set half the length of the 
allowable interval for the given 
dimension: vmax

i = (xU
i - x

L
i)/2. Different 

values for different dimensions of 
particles can be applied in general. 

c1, c2 Cognitive and social 
parameters 

Usually c1=c2=2. Other values can also 
be used, provided that 0 < c1+c2 < 4 
[26]. 
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4.1.4   Convergence Criteria 

Due to the repeated process of the PSO search, convergence criteria have to be 
applied for the termination of the optimization procedure. Two widely adopted 
convergence criteria are the maximum number of iterations of the PSO algorithm 
and the minimum error requirement on the calculation of the optimum value of the 
objective function. The selection of the maximum number of iterations depends, 
generally, on the complexity of the optimization problem at hand. The second 
criterion presumes prior knowledge of the global optimal value, which is feasible 
for testing or fine-tuning the algorithm in mathematical problems when the 
optimum is known a priori, but this is certainly not the case in practical structural 
optimization problems where the optimum is not known a priori. 

Table 2 PSO convergence parameters 

Symbol Description Details 

tmax Maximum number of 
iterations for the 
termination criterion. 

Determined by the complexity of the 
problem to be optimized, in conjunction 
with other PSO parameters (n, NP). 

kf Number of iterations for 
which the relative 
improvement of the 
objective function 
satisfies the convergence 
check. 

fm Minimum relative 
improvement of the 
value of the objective 
function. 

If the relative improvement of the 
objective function over the last kf 
iterations (including the current 
iteration) is less or equal to fm, 
convergence has been achieved. 

 

In our study, together with the maximum number of iterations, we have 
implemented the convergence criterion connected to the rate of improvement of 
the value of the objective function for a given number of iterations. If the relative 
improvement of the objective function over the last kf iterations (including the 
current iteration) is less or equal to a threshold value fm, convergence is supposed 
to have been achieved. In mathematical terms, denoting as Gbestt the best value 
for the objective function found by the PSO at iteration t, the relative improvement 
of the objective function can be written for the current iteration t as follows 

 
1

1

f

f

t k t

m
t k

Gbest Gbest
f

Gbest
− +

− +

−
≤                           (8) 

In Table 2 there is a list of the convergence parameters of the PSO used in this 
study with description and details. A pseudo code of the PSO procedure is given 
in Figure 2. 
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4.1.5   PSO for Integer Optimization 

Since both problems defined in Section 2 are integer optimization problems, 
discrete optimization algorithms are required. For the Step 1 optimization problem 
described in Section 2.1, a discrete version of the PSO algorithm is employed. In 
the continuous version of the PSO method, both particle positions and velocity are 
initialized randomly.  

For each particle j 
Initialize particle position by distributing particles randomly in the 
design space 

End 

Repeat 

For each particle j 
Calculate fitness value for current position 
If the current fitness value is better than the best fitness value 
(Pbest) in the particle’s history then set current fitness value 
as the new Pbest and current position as the new xPb

j 
End 

Set Gbest as the best fitness value of all the particles’ Pbest and 
corresponding position as the new xGb 

For each particle j 

Calculate particle velocity from Eq. (5) 
Update particle position from Eq. (6) 
If, for any dimension i, xi ≤ xLi or xi ≥ xUi, then set xi = xLi or xi 
= xUi respectively and set corresponding vi = 0 

End 

Until maximum iterations is not attained and the relative 
improvement of the objective function is greater than fm over the last 
kf iterations 

Report results 

Fig. 2 Pseudo-code for the main PSO for unconstrained optimization 
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In this work, the particle positions are generated randomly over the design 
space using discrete Latin Hypercube Sampling, thus guaranteeing that the initial 
particle positions will be integers in the acceptable range. Furthermore, in the case 
of discrete optimization and in particular in integer programming, at every step of 
the optimization procedure, integer particle positions should also be generated. In 
order to satisfy this, Eq. (5) is modified as follows 

( ) ( )Pb, Gb
1 1 2 2

( 1)

round ( ) ( ) ( )

j

j j j j

t

w t c t c t

+ =

+ − + −⎡ ⎤⎣ ⎦

v

v r x x r x x
    (9) 

where the vector function round(x) rounds each element of the vector x into the 
nearest integer. 

4.2   Ant Colony Optimization 

4.2.1   Introduction to Ant Colony Optimization 

The Ant Colony Optimization (ACO) algorithm [37,38] is a population-based 
probabilistic technique for solving optimization problems, mainly for finding 
optimum paths through graphs. The algorithm was inspired by the behaviour of 
real ants in nature. In many ant species, individuals initially wander randomly and 
upon finding a food source return to their colony, depositing a substance called 
pheromone on the ground. Other ants smell this substance, and its presence 
influences the choice of their path, i.e. they tend to follow strong pheromone 
concentrations rather than travelling completely randomly, returning and 
reinforcing it if they eventually find food. The pheromone deposited on the ground 
forms a pheromone trail, which allows the ants to find good sources of food that 
have been previously identified by other ants. 

As time passes, the pheromone trails start to evaporate, reducing their strength. 
The more time it takes for an ant to travel down a path and back again, the more 
time the pheromone trail has to evaporate. A short path gets marched over faster 
than a long one, and thus the pheromone density remains high as it is laid on the 
path faster than it can evaporate. If there was no evaporation, the paths chosen by 
the first ants would tend to be excessively attractive to the following ants and as a 
result the exploration of the solution space would be constrained. In that sense, 
pheromone evaporation helps also to avoid convergence to a locally optimal 
solution. Positive feedback eventually leads to most of the ants following a single 
“optimum” path. 

The idea of the ant colony algorithm is to mimic this behavior with simulated 
ants walking around the graph representing the problem to solve. The first 
algorithm was aiming to search for an optimal path in a graph. The original idea 
has since diversified to solve a wider class of numerical problems and, as a result, 
several problems have emerged, drawing on various aspects of the behavior of 
ants. The initial applications of ACO were in the domain of NP-hard  
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combinatorial optimization problems, while it was soon also applied to routing in 
telecommunication networks.  

In ACO, a set of software agents called artificial ants search for good solutions 
to the optimization problem of finding the best path on a weighted graph. The ants 
incrementally build solutions by moving on the graph. The solution construction 
process is stochastic and it is biased on a pheromone model, that is, a set of 
parameters associated with graph components (either nodes or edges) whose 
values are modified at runtime by the ants. 

The advantages of ACO include its easy implementation, the inherent 
parallelism of its procedures, the positive feedback that accounts for rapid 
discovery of good solutions in hard combinatorial optimization problems, its 
suitability to be used in dynamic applications, e.g. in a TSP where the distances 
between the nodes change with time, and its great performance with “ill-
structured” problems like network routing. 

4.2.2   ACO Applied to the TSP 

To apply ACO to the TSP, the construction graph is considered, defined by 
associating the set of cities with the set of vertices on the graph. The construction 
graph is fully connected and the number of vertices is equal to the number of 
cities, since in the TSP it is possible to move from any given city to any other city. 
The length of the edges (connections) between the vertices are set to be equal to 
the corresponding distances between the nodes (cities) and the pheromone values 
and heuristic values are set for the edges of the graph. Pheromone values are 
modified during iterations at runtime and represent the cumulated experience of 
the ant colony, while heuristic values are problem dependent values that, in the 
case of the TSP, are set to be the inverse of the lengths of the edges.  

During an ACO iteration, each ant starts from a randomly chosen vertex of the 
construction graph. Then, it moves along the edges of the graph keeping a 
memory of its path. In order to move from one node to another it probabilistically 
chooses the edge to follow among those that lead to yet unvisited nodes. Once an 
ant has visited all the nodes of the graph, a solution has been constructed. The 
probabilistic rule is biased by pheromone values and heuristic information:  
the higher the pheromone and the heuristic value associated to an edge, the higher 
the probability the ant will choose that particular edge. Once all the ants have 
completed their tour, the iteration is complete and pheromone values on the 
connections are updated: each of the pheromone values is initially decreased by a 
certain percentage and then it receives an amount of additional pheromone 
proportional to the quality of the solutions to which it belongs. 

4.2.3   Ant Colony Optimization Algorithm 

Consider a population of m ants where at each iteration of the algorithm every ant 
constructs a “route” by visiting every node sequentially. Initially, ants are put on 
randomly chosen nodes. At each construction step during an iteration, ant k  
 



A Swarm Intelligence Approach for Emergency Infrastructure Inspection Scheduling 215
 

applies a probabilistic action choice rule, called random proportional rule, to 
decide which node to visit next. While constructing the route, an ant k currently at 
node i, maintains a memory Mk  which contains the nodes already visited, in the 
order they were visited. This memory is used in order to define the feasible 
neighborhood Nk

i that is the set of nodes that have not yet been visited by ant k.  
In particular, the probability with which ant k, currently at node i, chooses to go to 
node j is 

 ( )
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where τi,j is the amount of pheromone on connection between i and j nodes, α is a 
parameter to control the influence of τi,j, β is a parameter to control the influence 
of ηi,j and ηi,j is a heuristic information that is available a priori, denoting the 
desirability of connection i,j, given by 

 ,
,

1
i j

i jd
η =

                                    (11) 

According to Eq. (11), the heuristic desirability of going from node i to node j is 
inversely proportional to the distance between i and j. By definition, the 
probability of choosing a city outside Nk

i is zero. By this probabilistic rule,  
the probability of choosing a particular connection i,j increases with the value of 
the associated pheromone trail τi,j and of the heuristic information value ηi,j. 

The selection of the superscript parameters α and β is very important: if α=0, 
the closest cities are more likely to be selected which corresponds to a classic 
stochastic greedy algorithm (with multiple starting points since ants are initially 
randomly distributed over the nodes). If β=0, only pheromone amplification is at 
work, that is, only pheromone is used without any heuristic bias (this generally 
leads to rather poor results [38]). 

4.2.4   Pheromone Update Rule 

After all the m ants have constructed their routes, the amount of pheromone for 
each connection between i and j nodes, is updated for the next iteration t+1 as 
follows 

 
( ), , ,

1

( 1) 1 ( ) ( ), ( , )
m

k
i j i j i j

k

t t t i jτ ρ τ τ
=
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         (12) 

where ρ is the rate of pheromone evaporation, a constant parameter of the method, 
A  is the set of arcs (edges or connections) that fully connects the set of nodes and 
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Δτki,j(t) is the amount of pheromone ant k deposits on the connections it has visited 
through its tour Tk , typically given by 
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1
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kk
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       (13) 

The coefficient ρ must be set to a value <1 to avoid unlimited accumulation of 
trail [39]. In general, connections that are used by many ants and which are parts 
of short tours, receive more pheromone and are therefore more likely to be chosen 
by ants in future iterations of the algorithm. A pseudo code of the ACO procedure 
is given in the following Figure 3. 

 
Set ACO parameters α, β, ρ 

Initialize pheromone trails matrix τ (N×N) 

Repeat 
Place m ants randomly on the N nodes 

For i=1 to m 

For j=1 to N-1 

Assign probabilities for every feasible connection according 
to Eq. (10) 
Update ant’s position 

End 

The ant returns to its initial place, closing the tour 
End 

Update pheromone for each connection i,j according to Eqs. (12) 
and (13) 

While termination criterion not satisfied 

Fig. 3 Flowchart of the ACO algorithm 

5   Case Studies 

In order to assess the performance of the formulation of the problem defined in 
Section 2 along with the optimization algorithms considered, two case studies are 
examined: an ‘academic’ and a real world case study. 
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5.1   Academic Case Study 

The first case study corresponds to an area/city having a rectangular layout 
composed of 8×8=64 structural blocks, while the centres of adjacent building 
blocks forgo 100 meters. This case study has been considered in order to calibrate 
the optimization algorithms used for solving the two step optimization problem, 
and to also assess the performance in a similar to the real world case study but 
with a known solution.  

In the first step, the optimal assignment problem as defined in Eq. (2) is solved 
by means of the Particle Swarm Optimization algorithm (optimal allocation of 
inspection crews to city blocks). The parameters of the algorithm are: NP=50, 
tmax=500, n=64, c1=2.0, c2=2.0, wstart=0.95 (velocity weight at the beginning), 
wend=0.5 (velocity weight at the end of the PSO iterations). 

In order to validate the performance of the algorithm, two and four inspection 
crews have been considered. Figures 4a and 4b depict the solutions obtained  
for the optimum assignment problem for two and four inspection crews, 
respectively. 
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Fig. 4 Academic case study - Subdivision into structural blocks (a) two and (b) four 
inspection crews 

For the two inspection groups vmax=1 while for the four inspection groups 
vmax=3. For the solution of the assignment problem, the area and structural 
percentage are the same in all structural blocks, thus the solution of this problem is 
reduced into a problem of minimizing the distance between the centres of  
the structural blocks assigned to an inspection crew from the global centre of the 
structural blocks group. As can be seen, the optimal allocations match exactly the 
expected assignment of the structural blocks on the inspection groups both for  
the case that NIG=2 and the case that NIG=4. 
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In the second step, the inspection prioritization problem defined in Eq. (4) is 
solved by means of the Ant Colony Optimization algorithm. This step assigns 
inspection priorities – within the building blocks determined in Step 1 – for 
inspection groups, i.e. the first building to be inspected, the second, and so on. The 
parameters of the method are: evap_rate=0.1 (rate of pheromone evaporation), 
a=1, b=5, iterations were set to 50 while the number of ants was set to 150. 
Figures 5a and 5b depict the optimal routes achieved that correspond to the least 
time consuming route required for each inspection crew starting from a base (the 
base is the same for every inspection group). 
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Fig. 5 Academic case study – Best route (a) two and (b) four inspection crews 
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Fig. 6 Academic case study – Optimization history of the last group (a) for the case of two 
and (b) the case of four inspection crews 
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Figure 6 depicts the convergence histories of the ACO algorithm. The vertical 
axis is the minimum distance path among the ants for every iteration. 

To examine the advantages of the solution obtained for the formulation of the 
TSP problem two alternative formulations were examined: (i) Random route 
selection and (ii) Closest available node. In the first strategy, an agent selects a 
block randomly, from the available blocks that have not yet been visited. In the 
second strategy, an agent selects the block that is closer to his current position, 
from the available blocks that have not yet been visited. If more two or more 
blocks are equally close, then a random selection is done. 

For both solutions, 10000 simulations were examined and the average distance 
was compared to those obtained by the optimizers. Figure 7 depicts a randomly 
selected solution for the two cases. In the first strategy, the average distance was 
10468 which is an increase of 227% compared to the optimal 3200 distance, while 
the average distance for the second strategy was 3480 which is an increase of 9% 
compared to the optimal distance. 
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Fig. 7 Academic case study – Two solutions for the TSP problem (a) Random route 
selection and (b) Closest available node 

5.2   Real World Case Study 

The second test case corresponds to a real world case study, the city of Patras in 
Greece, which was considered in order to define both the problem of the 
inspection assignment and the inspection prioritization. The city of Patras is  
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decomposed into 112 structural blocks having different areas and built-up 
percentages, while two different sets of inspection groups (crews of inspectors) are 
considered. The subdivision of the city of Patras into 112 structural blocks can be 
seen in Figure 8a.  

Two different scenarios were considered with respect to the damage level 
encountered on the structures due to a strong earthquake. In the first, the damages 
are the same in all city blocks, while in the second four areas with differential 
structural damage levels are considered: (i) Level 0 – no damages, (ii) Level 1 – 
slight damages, (iii) Level 2 – moderate damages and (iv) Level 3 – extensive 
damages. The four areas are shown in Figure 8b. 
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Fig. 8 City of Patras – (a) Subdivision into structural blocks and (b) Mean damage level 
distributed over the structural blocks 

5.2.1   Uniform Distribution of Damages 

In the first part of this case study, a uniform distribution of damages is examined. 
Similar to the previous test example, two and four inspection crews were 
examined. Figures 9a and 9b depict the solutions obtained for the optimal 
allocation problem for the two different number of inspection crews. In contrary to 
the academic test example the area and built-up percentages are not the same in 
the structural blocks. 
 



A Swarm Intelligence Approach for Emergency Infrastructure Inspection Scheduling 221
 

3 3.01 3.02 3.03 3.04 3.05 3.06 3.07

x 10
5

4.231

4.232

4.233

4.234

4.235

4.236

4.237

4.238

4.239

4.24

4.241
x 10

6

x

y

 
(a) 

2.98 3 3.02 3.04 3.06 3.08

x 10
5

4.232

4.233

4.234

4.235

4.236

4.237

4.238

4.239

4.24

x 10
6

x

y

 
(b) 

Fig. 9 City of Patras - Subdivision into structural blocks (a) two and (b) four inspection crews 



222 V. Plevris, M.G. Karlaftis, and N.D. Lagaros
 

In the second step, the inspection prioritization problem defined in Eq. (4) is also 
solved by means of the Ant Colony Optimization algorithm. Figures 10a and 10b  
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Fig. 10 City of Patras – Best route (a) two and (b) four inspection groups 
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depict the optimal routes achieved, corresponding to the least time consuming route 
required for each inspection crew departing from their base (the base is the same for 
every inspection crew). 

The distances for the first and second group are 17444 and 28145 respectively 
for the two inspection groups while for the four are 10431, 12986, 9161 and 
16498. Figure 11 depicts the convergence histories of the ACO algorithm. The 
vertical axis is the minimum distance path among the ants for every iteration.  
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Fig. 11 City of Patras – Optimization history of the last group (a) for the case of two and 
(b) the case of four inspection groups 

5.2.2   Non-uniform Distribution of the Damages 

In the second part, a non-uniform distribution of damages is examined. The mean 
damage level for each region is shown in Figure 8b. Damages are assumed to 
follow the Gaussian distribution with mean value 0, 1, 2 and 3 for the four zones 
of Figure 8b. The final distribution of damages over the structural blocks can be 
seen in Figure 12, where a big circle denotes severe damage. In order to account 
for the influence of the distribution of the damages in the city’s regions, the 
formulation of the optimal assignment problem given in Eq. (2) is modified as 
follows 
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where DF(k) is the damage factor corresponding to each damage level, as shown 
in Table 3. Figures 13a and 13b depict the solutions obtained for the optimum 
allocation problem for the two different number of inspection crews. 
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Table 3 Damage Factor (DF) corresponding to each damage level 

Damage level Damage Factor (DF) 

0 1.0 
1 1.2 
2 1.5 
3 2.0 
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Fig. 12 City of Patras – Distribution of the damage levels 
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Fig. 13 City of Patras - Subdivision into structural blocks (a) two and (b) four inspection 
crews 
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Fig. 14 City of Patras – Best route (a) two and (b) four inspection crews 
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In the second step, the inspection prioritization problem defined in Eq. (4) is 
solved by means of the Ant Colony Optimization algorithm. Figures 14a and 14b 
depicts the optimum routes achieved, corresponding to the less time consuming 
route required for each inspection group imitating from their base. The base is the 
same for every inspection crew. The distances for the first and second group are 
17121 and 31540 respectively for the two inspection groups while for the four are 
9633.7, 10939, 11383 and 15740. 
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Fig. 15 City of Patras – Optimization history of the last group (a) for the case of two and 
(b) the case of four inspection crews 
 

Figure 15 depicts the convergence histories of the ACO algorithm. The vertical 
axis is the minimum distance path among the ants for every iteration.  

6   Conclusions 

Following a natural hazard, the condition of the critical infrastructures must be 
assessed and damages have to be identified. Inspections are therefore necessary, 
immediately after the catastrophic event, since failure to quickly inspect, repair 
and/or rehabilitate the infrastructure system, particularly in densely populated 
metropolitan regions, might delay search and rescue operations and relief efforts, 
which increases the suffering of the survivors. Specialized crews must be 
dispatched and inspect critical infrastructures. The objective of the current work 
was to schedule critical infrastructures inspection crews following an earthquake 
in densely populated metropolitan regions. In this chapter two formulations have 
been successfully implemented: in the first, the structural blocks are assigned to 
different inspection groups with an effort to equally distribute the workload 
between the groups, while in the second the optimal route for each group was 
determined with an effort to minimize the distance that each inspection group has 
to cover. A Particle Swarm Optimization and an Ant Colony Optimization-based 
framework were implemented for dealing with the problem at hand and they both 
resulted in tractable and rapid response models. 
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