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ABSTRACT: Uncertainties are inherent in engineering problems due to various numerical
modeling “imperfections’’ and due to the inevitable scattering of the design parameters from
their nominal values. Under this perspective, there are two main optimal design formulations
that account for the probabilistic response of structural systems: Reliability-based Design Opti-
mization (RBDO) and Robust Design Optimization (RDO). In this work both type of problems
are briefly addressed and realistic engineering applications are presented. The optimization part
of the proposed probabilistic formulations is solved utilizing efficient evolutionary methods.
In both types of problems the probabilistic analysis is carried out with the Monte Carlo Sim-
ulation (MCS) method incorporating the Latin Hypercube Sampling (LHS) technique for the
reduction of the sample size. In order to achieve further improvement of the computational
efficiency a Neural Network (NN) is used to replace the time-consuming FE analyses required
by the MCS. Moreover, various sources of randomness that arise in structural systems are taken
into account in a “holistic’’ probabilistic perception by implementing a Reliability-based Robust
Design Optimization (RRDO) formulation, where additional probabilistic constraints are incor-
porated into the standard RDO formulation. The proposed RRDO problem is formulated as a
multi-criteria optimization problem using the non-dominant Cascade Evolutionary Algorithm
(CEA) combined with the weighted Tchebycheff metric.

1 Introduction

The basic engineering task during the development of any structural system is, among
others, to improve its performance in terms of constructional or life-cycle cost and
structural behaviour. Improvements can be achieved either by using design rules based
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on the experience of the engineer, or via an automated manner by using optimization
methods that lead to optimum structural designs. Strictly speaking, optimal means
that for the formulation considered, no better solution exists. Taking into account the
complexity of a structural optimization problem it is obvious that finding the global
optimum solution is not an easy task. In real world applications, if uncertainties have
not been taken into account, the significance of the optimum solutions would be lim-
ited. This is because, although nearly perfect structural models can be simulated in a
computing environment, real world structures always have imperfections or deviations
from their nominal state defined by the design codes. The optimum that is obtained
through the numerical simulation is never materialized in an absolute way and as a
result a near optimal solution is always applied in practice. A formulation of a struc-
tural optimization problem that ignores the scattering of the various design parameters
is defined as a deterministic one. A numerically feasible optimum design, according
to the deterministic formulation, once applied in a real physical system, may lose its
feasibility due to the unavoidable dispersion on the values of structural parameters
(material properties, dimensions, loads, etc). This happens because the performance
of the applied design may be far worse than expected.

In order to account for the randomness of the most important parameters that affect
the simulation and the response of a structure, a different formulation of the optimiza-
tion problem based on stochastic analysis methodologies has to be used. The recent
developments on the stochastic analysis methods (Schuëller 2005), has stimulated the
interest for the probabilistic optimum design of structures. Over the last decade efficient
probabilistic-based optimization formulations have been developed in order to account
for the various uncertainties that are involved in structural design. There are two dis-
tinguished design formulations that account for the probabilistic systems response:
Robust Design Optimization (RDO) (see Messac and Ismail-Yahaya (2002), Jung and
Lee (2002), Doltsinis and Kang (2004), Lagaros and Papadrakakis (2006), among
others), while detailed literature overview on RDO problems can be found in the
work of (Park et al. 2006), and Reliability-based Design Optimization (RBDO)
(see Frangopol and Soares (2001), Agarwal and Renaud (2004), Tsompanakis and
Papadrakakis (2004), Youn et al. (2005), Agarwal and Renaud (2006), Ba-abbad
et al. (2006) among others). RDO methods primarily seek to minimize the influence
of stochastic variations on the nominal values of the design parameters. On the other
hand, the main goal of RBDO methods is to design for minimum weight/cost, which
satisfies the allowable probability of failure for certain limit state(s). In this study
three characteristic probabilistic optimization problems of realistic steel structures are
presented, in which efficient metamodels based on Neural Networks (NN) are incorpo-
rated in order to improve the computational efficiency of the proposed methodologies.

In all test examples considered, the randomness of loads, material properties, and
member dimensions is taken into consideration using the Monte Carlo Simulation
(MCS) method combined with Latin Hypercube Sampling (LHS). In order to deal
with the increased computational cost required, despite the use of the LHS technique,
by the MCS for lower limits of the probability of violation of the constraints, a NN-
based methodology is adopted for obtaining computationally inexpensive estimates of
the response required during the stochastic analysis. The use of NN is motivated by the
approximate concepts inherent in stochastic analysis and the time consuming repeated
analyses required for MCS. In each case a specially tailored NN is trained, utilizing
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available information generated from selected conventional analyses. Subsequently,
the trained NN is used to fast and accurately predict the output data for the next sets
of random variables. It appears that the use of a properly selected and trained NN can
eliminate any limitation on the sample size used for MCS and on the dimensionality
of the problem, due to the drastic reduction of the computing time required for the
repeated finite element analyses.

Firstly, the reliability-based sizing optimization of large-scale multistorey 3D frames
is investigated. The objective function is the weight of the structure while the con-
straints are both deterministic (stress and displacement limitations) and probabilistic
(the overall probability of failure of the structure). Randomness of loads, material
properties, and member geometry are taken into consideration in the reliability anal-
ysis using Monte Carlo simulation. The probability of failure of the frame structures
is determined via a limit elasto-plastic analysis. The optimization part is solved using
Evolution Strategies (ES), while the limit elasto-plastic analyses required during the
MCS are replaced by fast and accurate NN predictions.

Secondly, an efficient methodology is presented for performing RBDO of steel struc-
tures under seismic loading. Optimum earthquake-resistant design of structures using
probabilistic analysis and performance-based design criteria is an emerging field of
structural engineering. The modern conceptual approach of seismic structural design
constitutes the so-called Performance-based Earthquake Engineering or PBEE (for
details see the excellent book by (Bozorgnia and Bertero 2004)). An important ingredi-
ent of PBEE is structural reliability (Wen 2000): a straightforward consideration of all
uncertainties and variabilities that arise in structural design, construction and service-
ability in order to be able to calculate the level of confidence about the structure’s ability
to meet the desired performance goals. Due to the uncertain nature of the earthquake
loading, structural design is often based on design response spectra of the region of
interest and on some simplified assumptions on the structural behaviour under earth-
quake. In this test example the reliability-based sizing optimization of multistorey steel
frames under seismic loading is investigated, in which the optimization part of RBDO
is solved utilizing Evolution Strategies (ES) algorithm. The objective function is the
weight of the structure, while the constraints are both deterministic (stress and dis-
placement restrictions imposed by the design codes) and probabilistic (limitation on
the overall probability failure of the structure which is defined in terms of maximum
interstorey drift).

Finally, a hybrid Reliability-based Robust Design Optimization (RRDO) formula-
tion is presented, where probabilistic constraints are incorporated into the standard
RDO formulation. A similar RRDO formulation has been used in the work of Youn
and (Choi 2004), where a performance moment integration method is proposed that
employs a numerical integration scheme for output response to estimate the product
quality loss. The proposed RRDO is formulated as a multi-criteria optimization prob-
lem using the non-dominant Cascade Evolutionary Algorithm (CEA) combined with
the weighted Tchebycheff metric. The main goal of this approach is to account for
the influence of probabilistic constraints in the framework of structural RDO prob-
lems, by comparing the RRDO formulation with the standard one. For this purpose,
a characteristic test example of a 3D steel truss is investigated, where the objective
functions considered in the RRDO formulation are the weight and the variance of the
response of the structure, represented by a characteristic node displacement. During
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the optimization process each structural design is checked whether it satisfies the pro-
visions of the European design codes for steel structures (EC3 2003) with a prescribed
probability of violation.

2 Formulations of probabilistic structural
optimization problems

Generally, in structural optimization problems the aim is to minimize the weight of
the structure under certain deterministic behavioural constraints usually imposed on
stresses and displacements. The significant developments of stochastic analysis meth-
ods have stimulated the interest for their application in structural design resulting to
two main categories of probabilistic optimum design formulations: Reliability-based
Design Optimization (RBDO) and Robust Design Optimization (RDO). The main goal
of RBDO methods is to achieve increased safety levels of the structure with respect
to variations of the random design parameters, while RDO methods primarily seek
to minimize the influence of stochastic variations on the mean design of a structural
system. Since the aforementioned method can be complementary to each other, hybrid
Reliability-based Robust Design Optimization (RRDO) formulations have also been
presented, where probabilistic constraints are incorporated into the standard RDO
formulation. There are also several other probabilistic optimization formulations, for
example those based on convex set models, evidence theory, possibility theory, etc,
which are described in other chapters of the present volume. In the sequence, the
three aforementioned major types of stochastic optimization formulations are briefly
described.

2.1 Reliabi l i ty-based design optimization

In reliability-based optimal design additional probabilistic constraints are imposed in
the standard deterministic formulation, in order to take into account various random
parameters and to ensure that the probability of failure for the whole structure or some
of its critical members is within acceptable limits. The probabilistic constraints enforce
the condition that the probability of exceeding a certain limit state’s threshold value
is smaller than a certain value (usually from 10−3 to 10−5). Under this perspective, a
discrete RBDO problem can be formulated in the following form:

min CIN(s, x)
subject to gj(s, x) ≤ 0 j = 1, . . . , m

pf (s, x) ≤ pall

(1)

where CIN(s, x) is the objective function (i.e. the structural weight or the initial con-
struction cost) to be minimized, s (which can take values only from the given discrete
set Rd) and x are the vectors of the design and random variables, respectively. Regard-
ing the constraints, gj(s, x) are the deterministic constraint functions and pf (s, x) is the
probability of failure of the design that it is bound by an upper allowable probability
equal to pall. Most frequently, the deterministic constraints of the structure are the
member stresses and nodal displacements or interstorey drifts. Furthermore, due to



Metamode l-based computat iona l techn iques in probab i l i s t i c opt imizat ion 571

engineering practice demands, the members are divided into groups having the same
design variables. This linking of elements results in a trade-off between the use of more
material and the need of symmetry and uniformity of structures due to practical con-
siderations. Furthermore, it has to be taken into account that due to manufacturing
limitations the design variables are not continuous but discrete since cross-sections
belong to a certain set.

2.2 Robust design optimization

In practical applications, optimizing a single objective function, most often the mate-
rial weight or cost, cannot capture every aspect related to the performance of the
structure. Actually, in real world optimization problems, there are several conflicting
and usually incommensurable criteria that have to be dealt with simultaneously. Such
problems are called multi-objective or multi-criteria optimization problems. In addi-
tion, in the majority of cases the objective functions are conflicting and as a result
there exists no unique point which represents the optimum for all of them. Conse-
quently, the common optimality condition used in single-objective optimization must
be replaced by a “multi-collective’’ concept, the so-called Pareto optimum. Thus, in
the multi-criteria formulation of a robust design structural sizing optimization prob-
lem, implemented in this work, an additional objective function is considered which is
related to the influence of the random nature of the structural parameters on the per-
formance of the structure. The aim is to minimize both the weight and the variance of
the response of the structure. The mathematical formulation of the RDO problem is as
follows

min [CIN(s, x), StDevu(s, x)]T

subject to gj(s, x) ≤ 0 j = 1, ..., k
(2)

where CIN(s, x) is the initial construction cost and StDevu(s, x) is the standard deviation
of the response that correspond to the two objectives to be minimized, s and x are the
vectors of the design and random variables respectively and gj(s, x) are the deterministic
constraint functions.

2.3 Reliabi l i ty-based robust design optimization

In a combined RRDO formulation the constraint functions can also vary, due to the
random nature of the structural parameters. In the proposed RRDO formulation the
probability of violation of the constraints is taken into account as an additional con-
straint function. The mathematical formulation of the RRDO problem implemented
in this work is as follows

min [CIN(s, x), StDevu(s, x)]T

subject to gj(s, x) ≤ 0 j = 1, ..., k
pv,max(s, x) ≤ pall

(3)

where CIN(s, x) is the initial construction cost and StDevu(s, x) is the standard devia-
tion of the response that correspond to the two objectives to be minimized, s and x are
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the vectors of the design and random variables respectively, gj(s, x) are the determin-
istic constraint functions, while pv,max(s, x) is the maximum probability of violation,
among the k behavioural constraint functions, that it is bound by an upper allowable
probability equal to pall. In this study three types of deterministic behavioural con-
straints are imposed to the sizing optimization problem of the truss structure examined:
(i) stress, (ii) compression force (for buckling) and (iii) displacement constraints. On
the other hand, the employed probabilistic constraint enforces the condition that the
probabilities of violation of certain limit state functions are smaller than a certain value.

3 Solving the optimization problem

As mentioned in the previous section, two types of optimization problems are encoun-
tered in the framework of this study: a single and a multi-objective one. Evolutionary
based algorithms are employed for tackling both of them. The two most widely used
optimization algorithms belonging to the class of evolutionary computation that imi-
tate nature by using biological methodologies are the Genetic Algorithms (GA) and
Evolution Strategies (ES). Initially the ES method was introduced in the seventies for
mathematical type of optimization problems (see Schwefel 1981). In this work ES
are used as the optimization tool for addressing demanding probabilistic optimization
problems. Both GA and ES imitate biological evolution in nature and have three charac-
teristics that make them differ from mathematical optimization algorithms: (i) instead
of the usual deterministic operators, they use randomised operators, (ii) instead of
a single design point, they work simultaneously with a population of design points,
(iii) they can handle continuous, discrete and mixed optimization problems. The sec-
ond characteristic allows for a natural implementation of ES on parallel computing
environments (Papadrakakis et al. 1999).

Structural optimization problems have been mainly treated with mathematical pro-
gramming algorithms, such as the sequential quadratic programming (SQP) method,
which need gradient information. In structural optimization problems, and especially
when uncertainties are considered, the objective function and the constraints are par-
ticularly highly non-linear functions of the design variables, thus the computational
effort spent in gradient calculations is usually excessive. In studies by (Papadrakakis
et al. 1999) and (Lagaros et al. 2002), it was found that probabilistic search methods
are computationally more efficient than mathematical programming methods, even
though more optimization steps are required in order to reach the optimum. In the for-
mer case the optimization steps are computationally less expensive than in the latter
case since there is no need for gradient information.

3.1 Solving the single objective optimization problem

The absence of sensitivity analysis in evolutionary methods has even greater importance
in the case of probabilistic problems, since the calculation of the derivatives of the
reliability constraints is very time-consuming. Furthermore, these methodologies can
be considered, due to their random search, as global optimization methods because
they are capable of finding the global optimum, whereas mathematical programming
algorithms may be trapped in local optima. As it can be seen in Flowchart 21.1,
the ES optimization procedure initiates with a set of parent vectors. If any of these
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1. Selection step: selection of si (i=1, 2, . . . , µ) parent design vectors
2. Analysis step: perform structural analysis (i=1, 2, . . . , µ)
3. Constraints check: all parent become feasible
4. Offspring generation: generate sj, ( j=1, 2, . . . , λ) offspring design vectors
5. Analysis step: perform structural analysis ( j=1, 2, . . . , λ)
6. Constraints check: if satisfied continue, else go to step 4
7. Selection step: selection of the next generation parent design vectors
8. Convergence check: If satisfied stop, else go to step 4

Flowchart 21.1 The ES algorithm for single-objective optimization problems.

parent vectors gives an infeasible design, then it is modified until it becomes feasible.
Subsequently, the offspring design vectors are generated and checked if they are in the
feasible region. According to the (µ+λ) selection scheme, in every generation the values
of the objective function of the parent and the offspring vectors are compared and the
worst vectors are rejected, while the remaining ones are considered to be the parent
vectors of the new generation. This procedure is repeated until the chosen termination
criterion is satisfied.

3.2 Solving the mult i-objective optimization problem

A number of techniques have been developed in the past, that adequately deal with
the multi-objective optimization problem (Coello-Coello 2000, Mattson et al. 2004,
Marler and Arora 2004). The multi-objective algorithm employed in this work belongs
to the hybrid methods, where an evolutionary algorithm is combined with a scalar-
izing function. In general, when using scalarizing functions, locally Pareto optimal
solutions are obtained. Global Pareto optimality can be guaranteed only when the
objective functions and the feasible region are both convex or quasi-convex and convex,
respectively. For non-convex cases, such as the majority of structural multi-objective
optimization problems, a global single objective optimizer is required. In this work
the non-dominant Cascade Evolutionary Algorithm using the augmented Tchebycheff
metric (CEATm) is employed for the solution of the Pareto optimization problem
at hand. This implementation was proposed by the authors in a previous work by
(Lagaros et al. 2005), where more details of the present implementation can be found.
The basic steps of the CEATm algorithm are outlined below in Flowchart 21.2, where
it is obvious that the CEATm optimization scheme can easily be applied in two parallel
computing levels, an external and an internal one. In addition, the multi-objective opti-
mization problem is converted into a series of single objective optimization problems,
where the solution of each subproblem can be performed concurrently.

4 Probabilistic analysis using Monte
Carlo simulation

The reliability of a structure or its probability of failure is an important factor in the
design procedure since it quantifies the probability under which a structure will fulfill
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Independent run i, i=1, . . . , nrun
Generate/update the weight coefficients wi,j j=1, . . . , m of the Tchebycheff metric.
CEATm LOOP
1. Initial generation:

1a. Generate sk (k=1, . . . , µ) vectors
1b. Structural analysis step
1c. Evaluation of theTchebycheff metric
1d. Constraint check: if satisfied k=k+1 else k= k. Go to step 1a

2. Global non-dominant search: Check if global generation is accomplished. If yes, then
non-dominant search is performed, else wait until global generation is accomplished.

3. New generation:
3a. Generate s� (�=1, . . . , λ) vectors
3b. Structural analysis step
3c. Evaluation of theTchebycheff metric
3d. Constraint check: if satisfied �=�+1 else �=�. Go to step 3a

4. Selection step: selection of the next generation parents according to (µ+ λ) or (µ, λ) scheme
5. Global non-dominant search: Check if global generation is accomplished. If yes, then

non-dominant search is performed, else wait until global generation is accomplished.
6. Convergence check: If satisfied stop, else go to step 5
END OF CEATm LOOP
End of Independent run i

Flowchart 21.2 The CEATm algorithm for multi-objective optimization problems.

its design requirements. Structural reliability analysis, or probabilistic analysis is a tool
that assists the design engineer to take into account all possible uncertainties during
the design, construction phases and lifetime of a structure in order to calculate its
probability of failure pf , or probability of a limit state violation pviol. In structural
reliability analysis problems, the probability of violation of a limit state function,
expressed as G(x)<0, can be written as

pviol =
∫

G(x)≥0

fx(x) dx (4)

where x= [x1, x2, . . . , xM]T is a vector of the random structural parameters and fx(x)
denotes the joint probability of violation for all random structural parameters.

In probabilistic analysis of structures the Monte Carlo Simulation (MCS) method is
very popular and particularly applicable when an analytical solution is not attainable.
This is mainly the case in problems of complex nature with a large number of random
variables where all other probabilistic analysis methods are not applicable. Despite its
simplicity, MCS method has the capability of handling practically every possible case
regardless of its complexity; it requires, though, excessive computational effort. In
order to improve the computational efficiency of MCS, various techniques have been
proposed.
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Since MCS is based on the theory of large numbers (N∞) an unbiased estimator of
the probability of violation is given by

pviol = 1
N∞

N∞∑
j=1

I(xj) (5)

in which xj is the j-th vector of the random structural parameters, and I(xj) is an
indicator for successful and unsuccessful simulations defined as

I(xj) =
{

1 if G(xj) ≥ 0
0 if G(xj) < 0

(6)

In order to estimate pviol an adequate number of N independent random samples are
produced. The value of the violation function is computed for each random sample xj

and the Monte Carlo estimation of pviol is given in terms of sample mean by

pviol
∼= NH

N
(7)

where NH is the number of successful simulations and N the total number of
simulations.

In general, a vast number of simulations have to be performed in order to achieve
great accuracy, especially for low values of probability of failure. In an effort to
reduce the excessive computation cost of crude MCS using purely random sampling
methodologies, which is considered as the drawback of the method, various sampling
reduction techniques have been proposed. Among them are the importance sam-
pling, adaptive sampling technique, stratified sampling, antithetic variate technique,
conditional expectation technique, and Latin Hypercube Sampling (LHS), which was
introduced by (MacKay et al. 1979). Although LHS is generally recognized as one of
the most efficient size reduction techniques it has been proven to be efficient only in the
case that relatively large probability of violation is to be calculated and in the case of
the calculation of statistical quantities like the mean value and the standard deviation.
In most other cases MCS-LHS performs like the crude MCS (Owen 1997).

In the LHS method, the range of probable values for each random variable is divided
into M non-overlapping segments of equal probability of occurrence. Thus, the whole
parameter space, consisting of N parameters, is partitioned into MN cells. Then the
random sample generation is performed, by choosing M cells from the MN space with
respect to the density of each interval, and the cell number of each random sample
is calculated. The cell number indicates the segment number that the sample belongs
to with respect to each of the parameters. Using LHS technique, sampling is realized
independently, whereas, matching of random samples is performed either randomly,
or in a restricted manner. All necessary random samples are produced and they are
accepted only if they do not agree with any previous combination of the segment
numbers. The advantage of the LHS approach is that the random samples are generated
from all the ranges of possible values, thus giving a more thorough insight into the
tails of the probability distributions.
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5 NN-based MCS for stochastic analysis

Over the last ten years artificial intelligence techniques like neural networks (NNs)
have emerged as a powerful tool that could be used to replace time consum-
ing procedures in many engineering applications (Lagaros and Tsompanakis 2006),
(Tsompanakis et al. 2007). Some of the fields where NNs have been successfully
applied are: pattern recognition, regression (function approximation/fitting), optimiza-
tion, nonlinear system modelling, identification, damage assessment, etc. Function
approximation involves approximating the underlying relationship from a given finite
input-output data set. Feed-forward NNs, such as multi-layer perceptrons (MLP) and
radial basis function networks, have been widely used as an alternative approach
to function approximation since they provide a generic functional representation
and have been shown to be capable of approximating any continuous function
with acceptable accuracy. A trained neural network presents some distinct advan-
tages over the numerical computing paradigm. It provides a rapid mapping of a
given input into the desired output quantities, thereby enhancing the efficiency of
the structural analysis process. This major of a trained NN over the conventional
procedure, under the provision that the predicted results fall within acceptable tol-
erances, leads to results that can be produced in a few clock cycles, representing
orders of magnitude less computational effort than the conventional computational
process.

In this work the application of NNs is focused on the simulation (i.e. probabilistic
analysis of structures) of demanding computational problems of probabilistic mechan-
ics. Many sources of uncertainty (material, geometry, loads, etc) are inherent in
structural design and functioning. Probabilistic analysis of structures leads to safety
measures that a design engineer has to take into account due to the aforementioned
uncertainties. Probabilistic analysis problems, especially when earthquake loadings
are considered, are highly computationally intensive tasks since in order to calculate
the structural behaviour under seismic loads a large number of numerical analyses
are required. In general, soft computing techniques are used in order to reduce the
aforementioned computational cost. The aim of the present study is to train a neural
network to provide computationally inexpensive estimates of analysis outputs required
during the MCS process.

In the present work the ability of neural networks to predict characteristic mea-
sures that quantify the response of a structure considering uncertainties is presented.
This objective comprises the following tasks: (i) select the proper training set, (ii) find
suitable network architecture, and (iii) perform the training/testing of the neural net-
work. The learning algorithm, which was employed for the training, is the well-known
Back-Propagation (BP) algorithm (Rummelhart and (McClelland 1986). An important
factor governing the success of the learning procedure of NN architecture is the selec-
tion of the training set. A sufficient number of input data properly distributed in the
design space together with the output data resulting from complete structural analyses
are needed for the BP algorithm in order to provide satisfactory results. Overload-
ing the network with unnecessary similar information results to over training without
increasing the accuracy of the predictions. The required training patterns are generated
randomly using the LHS technique, where a parametric study is performed for defining
the size of the training set for the efficient training of NN. The basic NN configuration
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Output layer Hidden layerInput layer

Figure 21.1 Typical neural network configuration.

employed for all the test cases examined in this study is selected to have one hidden
layer, as shown in Figure 21.1.

6 Numerical results

6.1 RBDO of steel 3D frames under static loading using
elasto-plast ic analysis

Firstly, the reliability-based sizing optimization of multistorey 3D frame structures
under static loading is investigated. The objective function is the weight of the structure
while the constraints are both deterministic (stress and displacement limitations) and
probabilistic (the overall probability of failure of the structure). Randomness of loads,
material properties, and member geometry are taken into consideration in reliability
analysis using the MCS method. The probability of failure of the frame structures is
determined via a limit elasto-plastic analysis. The optimization part is solved using ES
and two methodologies combining evolution strategies and neural networks (ES-NN)
are examined.

In the first one, a trained NN utilizing information generated from a number of
properly selected design vectors, computed by conventional finite element and reliabil-
ity analyses, is used to perform both deterministic and probabilistic constraints checks
during the optimization process. The data obtained from these analyses are processed
in order to obtain the necessary input and output pairs which are subsequently used
for training the NN. The trained NN is then applied to predict the response of the
structure in terms of deterministic and probabilistic constraints checks due to dif-
ferent sets of design variables. The NN training is considered successful when the
predicted values resemble closely the corresponding values of the conventional anal-
yses which are considered exact. In the second methodology the limit elasto-plastic
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analyses required during the MCS are replaced by NN predictions of the structural
behaviour up to collapse. For every MCS that is required in order to perform the
probabilistic constraints check, a NN is trained utilizing available information gener-
ated from selected conventional elasto-plastic analyses. The limit state analysis data
are processed to obtain input and output pairs, which are used for training the NN.
The trained NN is then used to predict the critical load factor due to different sets
of basic random variables. A fully connected network, as shown in Figure 21.1,
is used.

6.1.1 Rel iab i l i t y-based st ructura l opt imizat ion us ing MCS, ES and NN

In reliability analysis of elasto-plastic structures using MCS the computed critical load
factors are compared to the corresponding external loading leading to the computa-
tion of the probability of structural failure. The probabilistic constraints enforce the
condition that the probability of a local failure of the system or the global system
failure is smaller than a certain value (i.e. 10−5 to 10−3). In this work the overall
probability of failure of the structure, as a result of limit elasto-plastic analyses, is
taken as the global reliability constraint. The probabilistic design variables are cho-
sen to be the cross-sectional dimensions of the structural members and the material
properties (E, σy).

MCS requires a number of limit elasto-plastic analyses that can be dealt indepen-
dently and concurrently. This allows the natural implementation of the MCS method in
parallel computing environment as well. The most straightforward parallel implemen-
tation of the MCS method is to assign one limit elasto-plastic analysis to every processor
without any need of inter-processor communication during the analysis phase. In the
present study the parallel computations were performed on a Silicon Graphics Power
Challenge shared memory computer where the number (p) of activated processors is
equal to the number of the parent or offspring design vectors since µ= λ.

6.1.2 NN used for determin i s t i c and probab i l i s t i c const ra in ts check

In this methodology, a trained NN utilizing information generated from a number of
properly selected design vectors is used to perform both the deterministic and proba-
bilistic constraints checks during the optimization process. After the selection of the
suitable NN architecture the training procedure is performed using a number (M) of
data sets, in order to obtain the I/O pairs needed for the NN training. The trained NN
is then applied to predict the response of the structure in terms of deterministic and
probabilistic constraint checks due to different sets of design variables.

The combined ES-NN optimization procedure is performed in two phases. The
first phase includes the training set selection, the corresponding structural analysis
and MCS for each training set required to obtain the necessary I/O data for the NN
training, and finally the training and testing of a suitable NN configuration. The sec-
ond phase is the ES optimization stage where the trained NN is used to predict the
response of the structure in terms of the deterministic and probabilistic constraint
checks due to different sets of design variables. This algorithm is summarized in
Flowchart 21.3.
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• NN training phase:
1.Training set selection step: select M input patterns
2. Deterministic constraints check: perform the check for each input pattern vector
3. Monte Carlo Simulation step: perform MCS for each input pattern vector
4. Probabilistic constraints check: perform the check for each input pattern vector
5.Training step: training of the NN
6.Testing step: test the trained NN

• ES-NN optimization phase:
1. Parents Initialization
2. NN (deterministic-probabilistic) constraints check: all parents become feasible
3. Offspring generation
4. NN (deterministic-probabilistic) constraints check: if satisfied continue, else go to step 3
5. Parents’ selection step
6. Convergence check

Flowchart 21.3 The ES-NN1 methodology.

6.1.3 NN pred ic t ion of the cr i t i ca l load in s t ructura l fa i lu re

In the second methodology the limit elasto-plastic analyses required during the MCS
are now replaced by NN predictions of the structural behaviour up to collapse. For
every MCS an NN is trained utilizing available information generated from selected
conventional elasto-plastic analyses. The limit state analysis data is processed to obtain
input and output pairs, which are used for training the NN. The trained NN is
then used to predict the critical load factor due to different sets of basic random
variables.

At each ES cycle (generation) a number of MCS are carried out. In order to replace the
time consuming limit elasto-plastic analyses by predicted results obtained with a trained
NN, a training procedure is performed based on the data collected from a number of
conventional limit elasto-plastic analyses. After the training phase is concluded the
trained NN predictions replace the conventional limit elasto-plastic analyses, for the
current design. This algorithm is summarized in Flowchart 21.4.

6.1.4 Twenty-s torey space f rame RBDO example

A characteristic 3D building frame shown in Figure 21.2, has been tested in order to
illustrate the efficiency of the proposed methodologies for reliability-based sizing opti-
mization problems. The cross section of each member of the space frame considered
is assumed to be a W-shape and for each structural member one design variable is
allocated corresponding to a member of the W-shape data base. The objective func-
tion is the weight of the structure. The deterministic constraints are imposed on the
interstorey drifts and for each group of structural members, on the maximum stresses
due to axial forces and bending moments. The values of allowable axial and bend-
ing stresses are Fa=150 MPa and Fb=165 MPa, respectively, whereas the allowable
interstorey drift is restricted to 1.5% of the height of each storey.
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1. Parents Initialization
2. Deterministic constraints check: all parents become feasible
3. Monte Carlo Simulation step:

3a. Selection of the NN training set
3b. NN training for the limit load
3c. NN testing
3d. Perform MCS using NN

4. Probabilistic constraints check: all parents become feasible
5. Offspring generation
6. Deterministic constraints check: if satisfied continue, else go to step 5
7. Monte Carlo Simulation step:

7a. Selection of the NN training set
7b. NN training for the limit load
7c. NN testing
7d. Perform MCS using NN

8. Probabilistic constraints check: if satisfied continue, else go to step 5
9. Parents’ selection step

10. Convergence check

Flowchart 21.4 The ES-NN2 methodology.

The probabilistic constraint is imposed on the probability of structural collapse due
to successive formation of plastic hinges and is set to pall =0.001. The probability
of failure caused by uncertainties related to material properties, geometry and loads
of the structures is estimated using MCS with the LHS technique. External loads,
yield stresses, elastic moduli and the dimensions of the cross-sections of the structural
members are considered to be random variables. The loads follow a log-normal prob-
ability density function, while random variables associated with material properties
and cross-section dimensions follow a normal probability density function.

The twenty-storey space frame shown in Figure 21.2 consists of 1,020 members with
2,400 degrees of freedom. This example is selected in order to show the efficiency of
the proposed methodologies in relatively large-scale RBDO problems. The basic load
of the structure is a uniform vertical load of 4.78 kPa at each storey and a horizontal
pressure of 0.956 kPa acting on the x-z face of the frame. The members of the frame
are divided into eleven groups, as shown in Figure 21.4, and the total number of
design variables is eleven. The deterministic constraints are twenty-three, two for the
stresses of each element group and one for the interstorey drift. The type of probability
density functions, mean values, and variances of the random parameters are shown in
Table 21.1. A typical load-displacement curve of a node in the top-floor is depicted in
Figure 21.3, corresponding to the following design variables: 14WF176, 14WF158,
14WF142, 14WF127, 12WF106, 12WF85, 10WF60, 8WF31, 12WF27, 16WF36,
16WF36.

For this test case the (µ+ λ)-ES approach is used with µ= λ=10, while a sample size
of 500 and 1,000 simulations is taken for the MCS-LHS. Table 21.2 depicts the perfor-
mance of the optimization procedure for this test case. As can be seen, the probability
of failure corresponding to the optimum computed by the deterministic optimiza-
tion procedure is much larger than the specified value of 10−3. For this example the
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Figure 21.2 Description of the twenty-storey frame.

Table 21.1 Characteristics of the random variables.

Random variable Probability density function (pdf ) Mean value Standard deviation (σ)

E N 200 0.10E
σy N 25.0 0.10σy
Design variables N si 0.1si
Loads Log-N 5.2 0.2
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Figure 21.3 Load-displacement curve.

Table 21.2 Performance of the methods.

Optimization ES pf** Optimum Sequential Parallel time (h)
procedure Gens. weight (kN) time (h)

p= 5 p= 10 p= 20

DBO 83 0.197 10−0 6,771 2.0 0.7 0.3 0.3
RBDO (500 siml.) 126 0.103 10−2 9,114 141.0 28.4 14.1 7.1
RBDO-NN1 (500 siml.) 129 0.102 10−2 9,121 34.5 7.2 3.5 1.8
RBDO-NN2 (500 siml.) 126 0.103 10−2 9,114 15.8 3.3 1.7 0.9
RBDO (1,000 siml.) 120 0.103 10−2 9,156 250.3 50.1 25.1 12.6
RBDO-NN1 (1,000 siml.) 127 0.101 10−2 9,172 68.5 13.8 6.9 3.5
RBDO-NN2* 122 0.97 10−3 9,255 17.0 4.1 2.2 1.2

* For 100,000 simulations.
** For each final design and with 100,000 simulations using the NN2 scheme.

increase on optimum weight achieved, when probabilistic constraints are considered,
is approximately 26% of the deterministic one, as can be observed in Table 21.2.
In Table 21.2 showing the results of the test example, DBO stands for the conven-
tional Deterministic-based Optimization approach, RBDO stands for the conventional
Reliability-based Optimization approach, while RBDO-NNi corresponds to the
proposed Reliability-based Optimization with NN incorporating algorithm i (i=1, 2).

For the application of the RBDO-NN1 methodology the number of NN input units
is equal to the number of design variables. Consequently, the NN configuration used in
this case has one hidden layer with 15 nodes resulting in an 11-15-1 NN architecture
which is used for all runs. The training set consists of 200 training patterns capturing
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the full range of possible designs. For the application of the RBDO-NN2 methodology
the number of NN input units is equal to the number of random variables, whereas
one output unit is needed corresponding to the critical load factor. Consequently the
NN configuration with one hidden layer results in a 3-7-1 NN architecture which is
used for all runs. The number of conventional step-by-step limit analysis calculations
performed for the training of NN is 60 corresponding to different groups of random
variables properly selected from the random field. As can be seen in Table 21.2 the
proposed RBDO-NN2 optimization scheme manages to achieve the optimum weight in
one tenth of the CPU time required by the conventional RBDO procedure in sequential
computing implementation. Table 21.2 also depicts the performance of the proposed
methodologies in a straightforward parallel mode, with 5, 10 or 20 processors in which
5, 10 or 20 Monte Carlo simulations are performed independently and concurrently. It
can be seen that the parallel versions of RBDO, RBDO-NN1 and RBDO-NN2 reached
the perfect speedup irrespectively of the number of processors used.

The aim of the proposed RBDO procedure was threefold. To reach an optimized
design with controlled safety margins with regard to various model uncertainties, while
at the same time minimizing the weight of the structure and reducing substantially the
required computational effort. The solution of realistic RBDO problems in structural
mechanics is an extremely computationally intensive task. In the test example con-
sidered in this study the conventional RBDO procedure was found over seventy times
more expensive than the corresponding deterministic optimization procedure. The goal
of decreasing the computational cost by one order of magnitude in sequential mode
was achieved using: (i) NN predictions to perform both deterministic and probabilistic
constraints check, or (ii) NN predictions to perform the structural analyses involved
in MCS. Furthermore, the achieved reduction in computational time was almost two
orders of magnitude in parallel mode with the proposed NN methodologies.

6.2 RBDO of structures under seismic loading

In this section the reliability-based sizing optimization of multistorey framed structures
under earthquake loading is investigated. The discrete RBDO problem is formulated
in the form of Eq. (1), where CIN(s, x) is the initial construction cost to be minimized,
s and x are the vectors of the design and random variables respectively, gj(s) are the
deterministic stress and displacement constraints. The overall probability of failure
of the structure, as a result of multi-modal response spectrum analysis, is taken as
the global reliability constraint. Failure is detected when the maximum interstorey
drift exceeds a threshold value, here considered as 4% of the storey height, defined as
p(θ10/50 >θall) the probability that the drift θ10/50 for the 10/50 hazard level exceeds the
allowable drift θall, that is bound by an upper allowable probability equal to pall. For
rigid frames with W-shape cross sections as in this study, the design constraints were
taken from the design requirements specified by Eurocode 3 (2003) and Eurocode 8
(2004).

During the solution of the optimization problems a number of MCS runs are carried
out for each different set of design variables. In order to replace the time consuming
FE analyses by predicted results obtained with a trained NN, a training procedure
is performed based on the data collected from a number of previously performed FE
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analyses. After the training phase is concluded the NN predictions replace all conven-
tional FE analyses, for the current design. For the selection of the suitable training pairs,
the sample space for each random variable is divided into equally spaced distances.
The central points within the intervals are used as inputs for the FE analyses.

The random variables considered are the cross-sectional dimensions of the struc-
tural members, the material properties (E, σy) and the loading conditions. Under the
proposed approach the FE analyses required during the MCS are replaced by NN pre-
dictions of the structural response. For every design a NN is trained utilizing available
information generated from selected conventional FE analyses. The trained NN is then
used to predict the structural response for different sets of random variables depending
on the type of problem examined.

6.2.1 Earthquake load ing of s tee l f rames

In Eurocodes earthquake loading is taken as a random action, therefore it must be
considered for the structural design with the following loading combination:

Sd =
∑

G
kj

“+’’ Ed“+’’
∑

ψ2iQki (8)

where “+’’ implies “to be combined with’’, � implies “the combined effect of’’, Gkj

denotes the characteristic value of the permanent action j, Ed is the design value of the
seismic action, and Qki refers to the characteristic value of the variable action i, while
ψ2i is the combination coefficient for quasi permanent value of the variable action i,
here taken as 0.30. Design code checks are implemented in the optimization algorithm
as constraints. Each structural member should be checked for actions that correspond
to the most severe load combination obtained from Eq. (8) and the permanent load
combination:

Sd = 1.35
∑

Gkj“+’’ 1.50
∑

Qki (9)

It should be pointed out that the seismic action is obtained from the elastic spectrum
reduced by the behaviour factor q. This is done because the structure is expected
to absorb energy by deforming inelastically. Maximum values for the q-factor are
suggested by design codes and vary according to the material and the type of the
structural system. For the framed steel structures considered in this study q=4.0.

The most common approach for the definition of the seismic input is the use of
design code response spectra, a general approach that is easy to implement. However,
if higher precision is required, the use of spectra derived form natural earthquake
records is more appropriate. Since significant dispersion on the structural response
due to the use of different natural records has been observed, these spectra must be
scaled to the same desired earthquake intensity. The most commonly applied scaling
procedure is based on the peak ground acceleration (PGA). Dynamic analysis of simple
frames is most frequently performed using the multi-modal response spectrum analysis,
which is based on the mode superposition approach and is briefly described in the next
section.
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6.2.2 Dynamic ana lys i s us ing Mul t i-moda l Response Spect rum

In general, the equations of equilibrium for a finite element system in motion can be
written in the usual form

Mü(t)+ Cu̇(t)+ Ku(t) = R(t) (10)

where M, C, and K are the mass, damping and stiffness matrices; R(t) is the external
load vector, while u(t), u̇(t) and ü(t) are the displacement, velocity, and acceleration
vectors of the finite element assemblage, respectively. A design approach based on the
Multi-modal Response Spectrum (MmRS) analysis, which, in turn, is based on the
mode superposition approach, has been used in the present study.

The MmRS method is based on a simplification of the mode superposition approach
with the aim to avoid time history analyses which are required by both the direct inte-
gration and mode superposition approaches. In the case of the multi-modal response
spectrum analysis Eq. (10) is modified according to the modal superposition approach
to a system of independent equations

Miÿi(t)+ Ciẏi(t)+ Kiyi(t) = Ri(t) (11)

where

Mi = �T
i M�i, Ci = �T

i C�i, Ki = �T
i K�i and R(t) = �T

i R(t) (12)

are the generalized values of the corresponding matrices and the loading vector, while
�i is the i-th eigenmode shape matrix. According to the modal superposition approach
the system of N differential equations, which are coupled with the off-diagonal terms
in the mass, damping and stiffness matrices, is transformed to a set of N independent
normal-coordinate equations. The dynamic response can therefore be obtained by solv-
ing separately for the response of each normal (modal) coordinate and by superposing
the response in the original coordinates.

In the MmRS analysis a number of different formulas have been proposed to
obtain reasonable estimates of the maximum response based on the spectral values
without performing time history analyses for a considerable number of transformed
dynamic equations. The simplest and most popular one is the Square Root of Sum of
Squares (SRSS) of the modal responses. According to this estimate the maximum total
displacement is approximated by

umax =
(

N∑
i=1

u2
i,max

)1/2

ui,max = �iyi,max

(13)

where ui,max corresponds to the maximum displacement vector corresponding to the
i-th eigenmode.
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Figure 21.4 RBDO Test example – Geometry, member grouping.

6.2.3 Three-storey plane frame under earthquake loads RBDO example

One test example has been considered in the present study in order to illustrate the effi-
ciency of the proposed methodology for reliability-based sizing optimization problems
under earthquake loading. This test example is a four-bay, three-storey moment resist-
ing plane frame shown in Figure 21.4. The frame has been previously studied by Gupta
and Krawinkler (2000), where a detailed description of the structure is given. The
frame consists of rigid moment connections and fixed supports. Each bay has a span
of 9.15 m (30 ft), while each storey is 3.96 m (13ft) high. The permanent action consid-
ered is equal to 5 kN/m2 while the variable action is equal to 2 kN/m2, both distributed
along the beams. The frame is considered to be part of a 3D structure where each frame
is 4.5 m (15ft) apart. The median spectrum used for the determination of the base shear
corresponds to a peak ground acceleration of 0.32 g. Structural members are divided
into five groups, as shown in Figure 21.4, corresponding to the five design variables of
a discrete structural optimization problem. The cross-sections are W-shape beam and
column sections available from manuals of the American Institute of Steel Construction
(AISC). The objective function is the weight of the structure, to be minimized.

In this study a suite of twenty natural accelerograms, shown in Table 21.3, is used. It
can be seen that each record corresponds to different earthquake magnitudes and soil
conditions. The records of this suite comprise a wide range of PGA and peak acceler-
ation over peak displacement ratio (a/v) values. The latter parameter is considered to
describe the damage potential of the earthquake more reliably than PGA. The records
are scaled to the same PGA and their response spectra that are subsequently derived
are shown in Figure 21.5. It has been observed that the response spectra follow the
lognormal distribution. Therefore the median spectrumx̂, also shown in Figure 21.5,
and the standard deviation δ are calculated from the above suite of spectra using the
following expressions:

x̂ = exp
[∑n

i=1 ln (Rdi(T))
n

]
(14)
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Figure 21.5 Natural record response spectra and their median.

Table 21.4 Characteristics of the random variables.

Random variable Probability density Mean value Standard
function deviation

E N 2.1 106 MPa 0.10E
σy N 235 MPa 0.10σy
Seismic load Log-N Median Spectrum δ (Eq. 15)

(Eq. 14)

δ =
[∑n

i=1

(
ln (Rdi(T))− ln (x̂)

)2

n− 1

]1/2

(15)

where Rdi(T) is the response spectrum value for period equal to T of the i-th record
(i=1, . . . , n, where n=20 in this study). For a given period value, the acceleration Rd
is obtained as a random variable following the log-normal distribution with its mean
value equal to x̂ and the standard deviation equal to δ.

The deterministic constraints are related to stress and displacement constraints for
steel frames according to Eurocodes. The probabilistic constraint is imposed on the
probability of structural collapse which is set equal to pall=0.001. The probability
of failure caused by uncertainties related to seismic loads and material properties of
the structure is estimated using MCS with the LHS technique. The earthquake ground
motion parameter, as described in Eq. (14), the yield stress and the elastic modulus
are considered to be random variables. The type of probability density functions,
mean values, and variances of the random parameters are shown in Table 21.4. The
seismic action follows a log-normal probability density function, while the rest of
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Table 21.5 Performance of the methods.

Optimization ES pf Time Time
procedure cycles sequential (h) parallel (p= 5) (h)

DBO 157 0.0932 0.3 0.08
RBDO-MCS (5,000 siml.) 65 0.0008 557.3 140.1
RBDO-LHS (1,000 siml.) 72 0.001 149.1 40.6
RBDO-NN (100,000 siml.) 68 0.0009 42.1 16.2

the random variables follow a normal probability density function. For more details
on probabilistic formulations of uncertainties the reader is referred to JCSS (2001)
guidelines.

For this test case the (µ+ λ)-ES approach is used with µ= λ=5 (equal to the number
of design variables), while a sample size of 5000 simulations is taken. Table 21.5
depicts the performance of the optimization procedure for this test case. As it can
be seen, the probability of failure corresponding to the optimum computed by the
deterministic optimization procedure is much larger than the specified value of 10−3,
thus unacceptable. On the other hand, the increase in safety results also in a significant
increase on optimum weight. When probabilistic constraints are considered the weight
increase is approximately 26% compared to the deterministic one, from 125.3 to
167.4 tn. Furthermore, the computation times are also enlarged in the case of RBDO,
however, the use of NN as well as parallel computation reduces drastically the excessive
computational cost of the process.

As far as the NN implementation is concerned, it was performed in a similar manner
as the ES-NN1 algorithm that was described in the previous section. The NN configu-
ration used has the typical architecture shown in Figure 21.1. It consists of three layers:
one input, one hidden, and one output layer with varying number of nodes per layer.
After an initial investigation on the optimum number of hidden layers and their nodes,
one hidden layer was used having 10 nodes. The input data of the NN are the eleven
random variables (two for each of the five element groups plus the seismic coefficient),
while the output is one, i.e. the maximum interstorey drift value, which defines the
limit-state violation. Thus, the NN configuration that was used was the following:
16-20-1. The training-testing set of the NN consisted of two hundred input/output
pairs, twenty of which were used for testing the generalization capabilities of the
trained NN. The application of NN reduces the computing time in a fraction of the
time required for the conventional FE analyses. In addition, it does not affect the accu-
racy of the MCS method, in fact it can increase it since the fast NN approximations
allow the use of much greater sampling size.

6.3 Hybrid RRDO 3D truss test example

For the purposes of this study a 3D steel truss structure has also been considered. For
this test example, two objective functions have been taken into account, the initial
construction cost and the standard deviation of a characteristic node displacement
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representing the response of the structure. Two sets of constraints are enforced, deter-
ministic constraints on stresses, element buckling and displacements imposed by the
European design codes and probabilistic ones. Furthermore, due to manufacturing
limitations the design variables are not continuous but discrete since cross-sections
belong to a certain predefined set provided by the manufacturers. The discrete design
variables are treated in the same way as in single optimum design problems using the
discrete evolution strategies. The design variables considered are the dimensions of the
members of the structure taken from the Circular Hollow Section (CHS) table of the
Eurocode. The random variables related to the cross-sectional dimensions, for both
test examples, are two per design variable: the external diameter D and the thickness t
of the circular hollow section. Apart from the cross-sectional dimensions of the struc-
tural members, the material properties (modulus of elasticity E and yield stress σy) and
the lateral loads have also been considered as random variables. The robustness of
the constraints is also considered using the overall probability of maximum violation
of the behavioural constraints, as a result of the variation of the uncertain structural
parameters.

The test example considered is the 3D truss tower shown in Figures 6(a) to 6(c). The
height of the truss tower is 128 m, while its basis is a rectangle of side 17.07 m. The FE
model consists of 324 nodes and 1254 elements which are divided into 12 groups that
play the role of the design variables. The applied loading consists of: (i) self weight
(dead load), (ii) live loads and (iii) wind actions according to the (Eurocode 1 2003).
The type of probability density function, the mean value, and the variance of the
random variables are shown in Table 21.6.

In the present implementation an investigation is performed on the ability of the NN
to predict the required data for the evolution of the RRDO process. The inputs of the
NN correspond to the random variables, while the outputs are the characteristic node
displacement and the maximum displacement, stress and compression force required
for the calculation of the probability of violation. The appropriate selection of I/O
training data constitutes the most important parts in the NN training. The number of
training patterns may not be the only concern, as the distribution of samples is of great
importance also. Having chosen the NN architecture and trained the neural network,
the probability of violation and the standard deviation of the response can be obtained
in orders of magnitude less computing time. The modulus of elasticity, yield stress,
diameter D and thickness t of the circular hollow cross-section as well as the loading
have been considered as random variables for the structures examined. The inputs of
the NN correspond to the random variables, while the outputs are the characteris-
tic node displacement and the maximum displacement, stress and compression force
required for the calculation of the probability of violation.

The previously described multi-criteria optimization (CEATm) algorithm employed
is denoted as CEATm(µ+ λ)nruns,csteps where µ, λ are the number of the parent and off-
spring vectors used in the ES optimization strategy, nruns is the number of independent
CEA runs and csteps is the number of cascade stages employed. The basic steps inside
an independent run of the multi-objective algorithm when the NN is embedded in the
optimization process, as adopted in this test case, are described in Flowchart 21.5.

For the solution of the multi-objective optimization problem in question the
non-dominant CEATm(µ+ λ)nrun,csteps optimization scheme was employed, where
µ= λ=5, nrun=10 and csteps=3. The resultant Pareto front curves for the RDO
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Independent run do i= 1, nrun

CEATm LOOP

1. Initial generation:
do while sk not feasible k= 1, µ
Generate sk (k=1,… , µ) vectors
Analysis step
Evaluation of theTchebycheff metric
Deterministic constraints check: if satisfied continue else regenerate sk design
Monte Carlo Simulation step:

Selection of the NN training set
NN training for the limit load
NN Monte Carlo Simulations

Probabilistic constraint check
end do

2. Global non-dominant search: Check if global generation is accomplished. If yes, then
non-dominant search is performed, else wait until global generation is accomplished.

3. New generation:
do while s� not feasible �= 1, λ
Generate s� (k= 1, . . . , µ) vectors
Analysis step
Evaluation of theTchebycheff metric
Deterministic constraints check: if satisfied continue else regenerate sk design
Monte Carlo Simulation step:

Selection of the NN training set
NN training for the limit load
NN Monte Carlo Simulations

Probabilistic constraint check
end do

4. Selection step: selection of the next generation parents according to (µ+ λ) or
(µ, λ) scheme

5. Global non-dominant search: Check if global generation is accomplished. If yes, then
non-dominant search is performed, else wait until global generation is accomplished.

6. Convergence check: If satisfied stop, else go to step 3

END OF CEATm LOOP

End do of Independent run

Flowchart 21.5 The CEATm algorithm combined with NN.

Table 21.6 3D truss tower example: Characteristics of the random variables.

Random Description Probability Mean Standard σ/µ 95% of Values
variable density value (µ) deviation (σ) interval

function

E (kN/m2) Young’s Modulus Normal 2.10E+ 08 1.50E+ 07 7.14% (1.81E+ 08, 2.39E+ 08)
σy(kN/m2) Allowable stress Normal 355000 35500 10.00% (2.85E+ 05, 4.25E+ 05)
F (kN) Horizontal loading Normal Fµ 0.4 Fµ 40.00% (2.16 Fµ, 17.84 Fµ)
D CHS Diameter Normal d∗i 0.02 di 2% (0.9618 di, 1.039 di)
t CHS Thickness Normal t∗i 0.02 ti 2% (0.9618 ti, 1.039 ti)

* Taken from the Circular Hollow Section (CHS) table of the Eurocode, for every design.
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Figure 21.6 3D truss tower example: (a) 3D view, (b) Side view, (c) Top view.

formulations are depicted in Figure 21.7, with the structural weight on the horizontal
axis and the standard deviation of the characteristic node displacement on the vertical
axis. The displacement in the x-direction of the top node is selected as the characteris-
tic one (Figure 21.6c). As can be seen in Figure 21.7 the trend on the influence of the
probabilistic constraint is similar to that of the first example, where the Pareto front
curves coincide in different parts.

Four different formulations of the RDO problem have been considered in this
study: (i) the standard RDO formulation, (ii) RRDO with allowable probability
equal to 2% denoted as RRDO_2%, (iii) RRDO with allowable probability equal
to 0.1% denoted as RRDO_0.1% and (iv) RRDO with allowable probability equal
to 0.01% denoted as RRDO_0.01%. As can be seen in Figure 21.7 the presence of
the probabilistic constraint influences the Pareto curves near the DBO area (designs
Ai, i=1, . . . , 4) of the Pareto front, where the weight of the structure is the dominant
criterion. On the contrary, the four Pareto front curves almost coincide at the areas
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Figure 21.7 3D truss tower example: Comparison of the Pareto front curves.

where the importance of the second criterion (standard deviation of the response)
increases.

The performance of the NN prediction is depicted in Figures 21.8a to 21.8d, where
the prediction of the characteristic displacement, the maximum displacement, the max-
imum compressive force and the maximum tensile force are shown, respectively. Three
different training sets, of size 100, 200 and 500, respectively have been examined, ran-
domly generated using LHS, while 50 patterns have been used for testing. As can be
seen in Figure 21.8, 100 samples are enough for efficiently training the NN. The MCS
sample sizes used in this test example are 10,000, 100,000 and 500,000. In the RDO
and RRDO_2% formulations a sample size of 10,000 simulations has been used, while
in RRDO_0.1% and RRDO_0.01% a sample size of 100,000 and 500,000 simulations
has been employed. The different formulations and consequently the different sample
sizes lead to a significantly different computing cost. In order to reduce the increased
computing cost, especially of the last two formulations, a neural network formulation
has been applied.

The NN configuration implemented in this example has one hidden layer with 50
nodes resulting in a 27-50-4 NN architecture (see Figure 21.1), which is used for all
runs. The computing cost is depicted in Table 21.7, where the conventional and the
corresponding NN computing times are reported. It has to be mentioned that the
denoted basic computing costs for the RRDO_0.1% and RRDO_0.01% formulations
are estimations due to the excessive computing cost required for these two cases. It
can be seen that the NN-based methodology requires up to four orders of magnitude
less computing time compared to the conventional one.
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Table 21.7 3D truss tower example: Computing times.

Formulation No of simulations Time (hours)

Basic NN

RDO 10,000 5.33E+01 5.87E−01
RRDO 2% 10,000 5.42E+01 5.96E−01
RRDO 0.01% 100,000 5.59E+02* 6.15E−01
RRDO 0.001% 500,000 2.79E+03* 6.14E−01

* Estimated.
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Figure 21.8 3D truss tower: Performance of NN with respect to the number of the training
patterns (a) characteristic displacement, (b) maximum displacement, (c) maximum
compressive force, and (d) maximum tensile force.

7 Conclusions

In most cases the optimum design of structures is based on nominal values of the design
parameters and is focused on the satisfaction of the deterministically defined design
code provisions. The deterministic optimum is not always a “safe’’ design, since there
are many random factors that affect the design, i.e. manufacturing and performance of
a structure during its lifetime. In order to find a “real’’ optimum the designer has to take
into account all necessary random variables. In order to alleviate this deficiency, two
types of formulations have been proposed in the past: RBDO and RDO. In the present
work, apart from presenting successful RBDO applications, the combined RRDO is
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also proposed, where probabilistic constraints are incorporated into the robust design
optimization formulation.

In the examined RBDO formulations, under static or dynamic loads, the reliability
analysis of the structure has to be performed in order to determine its optimum design
taking into account a desired level of probability of structural failure. Only after form-
ing and solving this RBDO problem, even with additional cost in weight and computing
time, can a “global’’ and realistic optimum structural design be found. The aim of the
proposed RBDO procedure is to increase the safety margins of the optimized structures
under various uncertainties, while at the same time minimizing its weight, and reduc-
ing substantially the required computational effort. The solution of realistic RBDO
problems in structural mechanics is an extremely computationally intensive task. As
it can be observed from the numerical results, the computational cost for the solution
of realistic RBDO problems is orders of magnitude larger than the corresponding cost
for a deterministic optimization problem. Due to the size and complexity of RBDO
problems, a non-conventional, stochastic evolutionary optimization method – such as
ES – appears to be a suitable choice.

In a similar manner, in order to implement the hybrid RRDO formulation, structural
reliability analyses for every candidate design have to be performed for the evaluation
of the probability of violation. Depending on the value of the allowable probability
of violation, different sample sizes are employed in order to calculate with sufficient
accuracy the statistical quantities under consideration i.e. the standard deviation of the
response and the probability of violation of the constraints. The Pareto front curves
obtained for the presented RRDO formulation and the RDO formulation appear to be
different when the weight objective function is predominant, while they approach each
other in the areas of the Pareto fronts where the significance of the standard deviation
of the response criterion increases. In other words, for the same standard deviation
value, the optimum weight achieved by the RRDO formulation are larger than the
corresponding weight achieved by the conventional RDO approach. Furthermore, it
was observed that the presence of the standard deviation as an objective function forces
the RDO formulation to produce results very close to those obtained by the RRDO
formulation close to the right end of the Pareto front curve.

Concluding, the aim of this work was twofold: to examine the influence of the
probabilistic parameters and constraints in structural optimization, and to deal with
computationally demanding tasks in probabilistic mechanics. The computational effort
involved in the conventional MCS becomes excessive in large-scale problems, espe-
cially when earthquake loading is considered, due to the enormous sample size and the
computing time required for each Monte Carlo run. Although the LHS technique has
been implemented for improving the computational efficiency of the MCS method, the
computational cost remains excessive, making the solution of large-scale probabilistic
optimization problems computationally unsolvable. Thus, a neural network assisted
methodology has been proposed in order to obtain the structural response results
required during the Monte Carlo simulations inexpensively. The achieved reduction
in computational time was several orders of magnitude compared to the conventional
procedure making tractable the optimization of real world structures under probabilis-
tic constraints. The use of NN can practically eliminate any limitation on the scale of
the problem and the sample size used for MCS without deteriorating the accuracy of
the results.
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