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Multiobjective Optimization of Space
Structures under Static and Seismic Loading
Conditions

Nikos D. Lagaros, Manolis Papadrakakis, and Vagelis Plevris

Summary. This chapter presents a evolution strategies approach for multiobjective
design optimization of structural problems such as space frames and multi-layered
space trusses under static and seismic loading conditions. A rigorous approach and
a simplified one with respect to the loading condition are implemented for finding
optimal design of a structure under multiple objectives.

12.1 Introduction

In single-objective optimization problems the optimal solution is usually
clearly defined, this does not hold in real-world problems having multiple
and conflicting objectives. Instead of a single optimal solution, there is rather
a set of alternative solutions, generally denoted as the set of Pareto-optimal
solutions. These solutions are optimal in the wider sense that no other solution
in the search space is superior to them when all objectives are considered.
In the absence of preference information, none of the corresponding trade-
offs can be said to be better than the others. On the other hand, the
search space can be too large and too complex, which, the usual case
of real-world problems, to be solved by the conventional deterministic
optimizers. Thus, efficient optimization strategies are required that are able
to deal with the multiple objectives and the complexity of the search space.
Evolutionary Algorithms (EAs) have several characteristics that are desirable
for this kind of problems and most frequently outperform the deterministic
optimizers. The application of EA in multiobjective optimization problems has
received considerable attention in the last five years due to the difficulty of
conventional optimization techniques, such as the gradient-based optimizers,
to be extended to multi-objective optimization problems. For dealing with the
multi-objective optimization problems there are some typical methods, such as
linear weighting method, distance function method and constraint method. In
treating such a problem using gradient based optimizers, we have to combine
them with the typical methods. On the other hand, the structure of the EA
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optimizers have been recognized to be more appropriate to multiobjective
optimization problems since early in their development [1]. EA optimizers
employ multiple individuals that can search for multiple solutions in parallel.
Using some modifications on the operators used by the EA optimizers the
search process can be driven to a family of solutions representing the set of
Pareto-optimal solutions.

Structural sizing optimization at its early stages of development was
mainly single-objective. The aim was to minimize the weight of the structure
under certain restrictions imposed by design codes. Although some work
has been published in the past dealing with multi-objective optimization [2-
7] this was restricted to simple academic examples. Optimization of large-
scale structures, such as sizing optimization of multi-storey 3D frames and
trusses is a computationally intensive task. The optimization problem becomes
more intensive when dynamic loading is involved [8]. The feasible design
space in structural optimization problems under dynamic constraints is often
disconnected or disjoint [9, 10] which causes difficulties for many conventional
optimizers. Due to the uncertain nature of the seismic loading, structural
designs are often based on design response spectra of the region and on
some simplified assumptions of the structural behavior under earthquakes.
In the case of a direct consideration of the seismic loading the optimization of
structural systems requires the solution of the dynamic equations of motion
which can be orders of magnitude more computationally intensive than the
case of static loading.

In this work, both the rigorous approach and the simplified one with
respect to the loading condition are implemented and their efficiency is
compared in the framework of finding the optimum design of a structure
under multiple objectives. In the context of the rigorous approach a number of
artificial accelerograms are produced from the design response spectrum of the
region for elastic structural response, which constitutes the multiple loading
conditions under which the structures are optimally designed. The elastic
design response spectrum can be seen as an envelope of response spectra,
for a specific damping ratio, of different earthquakes most likely to occur in
the region. This approach is compared with the approximate one based on
simplifications adopted by the seismic codes. The Pareto sets obtained for a
characteristic problem indicate the difference of the two Pareto sets obtained
by the rigorous approach and the simplified one.

12.2 Single-objective Structural Optimization

In sizing optimization problems the aim is to minimize a single-objective
function, usually the weight of the structure, under certain behavioral
constraints on stress and displacements. The design variables are most
frequently chosen to be dimensions of the cross-sectional areas of the members
of the structure. Due to fabrication limitations the design variables are not
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continuous but discrete since cross-sections belong to a certain set. A discrete
structural optimization problem can be formulated in the following form:

min f(s)
subject to gj(s) ≤ 0 j = 1, . . . , k

si ∈ Rd, i = 1, . . . , n
(12.1)

where Rd is a given set of discrete values and the design variables si (i =
1, . . . , n) can take values only from this set.

In the optimal design of 3D frames and trusses the constraints are
the member stresses and nodal displacements or inter-storey drifts. For
rigid frames with I-shapes, the stress constraints, under allowable stress
design requirements specified by Eurocode 3 [11] are expressed by the non-
dimensional ratio q of the following formulas
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where fa is the computed compressive axial stress, fy
b , fz

b are the computed
bending stresses for y and z axis, respectively. σa is the allowable compressive
axial stress, σy

b , σz
b are the allowable bending stresses for y and z axis,

respectively, and σy is the yield stress of the steel. The allowable inter-storey
drift is limited to 1.5% of the height of each storey.

Space truss structures usually have the topology of single or multi-layered
flat or curved grids that can be easily constructed in practice. Most frequently
the constraints are the member stresses, nodal displacements, or frequencies.
The stress constraints can be written as |σ| ≤ |σa|, where σ is the maximum
axial stress in each element group for all loading cases, σa = 0.60 × σy is the
allowable axial stress and σy is the yield stress. Similarly, the displacement
constraints can be written as |d| ≤ da, where da is the limiting value of the
displacement at a certain node, or the maximum nodal displacement.

Euler buckling occurs in truss structures when the magnitude of a
member’s compressive stress is greater than a critical stress that, for the first
buckling mode of a pin-connected member, is equal to

σb =
Pb

A
= − 1

A

(π2EI

L2

)
(12.4)

where Pb is the computed compressive axial force, I is the moment of inertia, L
is the member length. Thus, the compressive stress should be less (in absolute
values) than the critical Euler buckling stress |σ| ≤ |σb|. The values of the
constraint functions are normalized in order to improve the performance of
the optimization procedure as: σ/σa ≤ 1 for tension member σa = 0.60 × σy,

σ/σb ≤ 1 for compression member σb = E
(
π/(l/r)

)2
and d/da ≤ 1.
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The sizing optimization methodology with EA proceeds using the following
steps: (1) At the outset of the optimization the geometry, the boundaries and
the loads of the structure under investigation have to be defined. (2) The
design variables, which may or may not be independent to each other, are also
properly selected. Furthermore, the constraints are also defined in this stage in
order to formulate the optimization problem as in (12.1). (3) A finite element
analysis is then carried out and the displacements and stresses are evaluated.
(4) The design variables are being optimized using the selection, crossover and
mutation operators. If the convergence criteria for the optimization algorithm
are satisfied, then the optimum solution has been found and the process is
terminated, else the optimizer updates the design variable values and the
whole process is repeated from Step (3).

12.3 Multiobjective Structural Optimization

In practical applications of structural optimization of 3D frames and trusses
the weight rarely gives a representative measure of the performance of the
structure. In fact, several conflicting and incommensurable criteria usually
exist in real-life design problems that have to be dealt simultaneously.
This situation forces the engineer to look for a good compromise
design between the conflicting requirements. These kinds of problems are
called optimization problems with many objectives. The consideration of
multiobjective optimization in its present sense originated towards the end
of the last century when Pareto presented the optimality concept in economic
problems with several competing criteria [12]. The first applications in the field
of structural optimization with multiple objectives appeared at the end of the
seventies [2-7]. Since then, although many techniques have been developed
in order to deal with multiobjective optimization problems and a number
of structural optimization problems have been dealt with multiobjectives,
the corresponding applications were confined to mathematical functions or
Pareto-structural optimization problems under only static loading conditions
[13-21].

12.3.1 Criteria and Conflict

Any engineer who looks for the optimum design of a structure is faced
with the question of which criteria are suitable for measuring the economy,
the performance, the strength and the serviceability of a structure. Any
quantity that, when changed, has a direct influence on the economy and/or
the performance, the strength and the serviceability of the structure, can be
considered as a criterion. On the other hand, those quantities that must only
satisfy some imposed requirements are not criteria but they can be treated
as constraints. Most of the commonly used design quantities have a criterion
nature rather than a constraint nature because in the engineer’s mind these
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should take the minimum or maximum possible values. Most of the structural
optimization problems are treated with a single objective, usually the weight
of the structure, subjected to some strength constraints. These constraints are
set as equality or inequality constraints using some upper and lower limits.
Some times there is a difficulty in selecting these limits and these parameters
are treated as criteria.

One important basic property in the multi-criterion formulation is the
conflict that may or may not exist between the criteria. Only those quantities
that are competing should be treated as independent criteria whereas the
others can be combined into a single criterion to represent the whole group.
The concept of the conflict has deserved only a little attention in the literature
while on the contrary the solution procedures have been studied to a great
extent. According to the latter presentation the local conflict between two
criteria can be defined as follows: The functions fi and fj are called locally
collinear with no conflict at point s if there is c > 0 such that ∇fi(s) =
c∇fj(s). Otherwise, the functions are called locally conflicting at s.

According to the previous definition any two criteria are locally conflicting
at a point of the design space if their maximum improvement is achieved in
different directions. The global conflict between two criteria can be defined as
follows: The functions fi and fj are called globally conflicting in the feasible
region � of the design space when the two optimization problems mins∈	 fi(s)
and mins∈	 fj(s) have different optimal solutions.

12.3.2 Formulation of a Multiple Objective Optimization Problem

In formulating an optimization problem the choice of the design variables,
criteria and constraints certainly represents the most important decision made
by the engineer. The designs, which will be considered here, are fixed at this
very early stage. In general the mathematical formulation of a multiobjective
problem includes a set of n design variables, a set of m objective and a set of
k constraint functions and can be defined as follows:

mins∈	 [f1(s), . . . , fm(s)]T

subject to gj(s) ≤ 0 j = 1, . . . , k
si ∈ Rd, i = 1, . . . , n

(12.5)

where the vector s = [s1, . . . , sn]T represents a design variable vector and � is
the feasible set in design space Rn. It is defined as the set of design variables
that satisfy the constraint functions g(s) in the form:

� = {s ∈ Rn|gj(s) ≤ 0} . (12.6)

Usually there exists no unique point which would give an optimum for all
m criteria simultaneously. Thus the common optimality concept used in scalar
optimization must be replaced by a new one, the so-called Pareto optimum:
A design vector s∗ ∈ � is Pareto optimal for the problem of Equation 12.5 if
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and only if there exists no other design vector s ∈ � such that fi(s) ≤ fi(s∗)
for i = 1, . . . , m with fj(s) < fj(s∗) for at least one objective j.

According to the above definition the design vector s∗ is considered as a
Pareto-optimal solution if there is no other feasible design vector that improves
at least one objective without worsening any other objective. The solution of
optimization problems with multiple objectives is the set of the Pareto-optimal
solutions. The problem of Equation 12.5 can be regarded, as being solved
after the set of Pareto-optimal solutions has been determined. In practical
applications, however, it is necessary to classify this set because the engineer
wants a unique final solution. Thus a compromise should be made among the
Pareto-optimal solutions.

12.3.3 Solving the Multiobjective Optimization Problem

Typical methods for generating the Pareto-optimal set combine the objectives
into a single, parameterized objective function by analogy to the decision
making search step. However, the parameters of this function are not set by
the decision making but systematically varied by the optimizer. Basically, this
procedure is independent of the underlying optimization algorithm. Three
previously used methods [ 4-7] are briefly discussed and are compared in
this study in terms of computational time and efficiency with the proposed
modified ES for treating multiobjective optimization problems.

Linear Weighting Method

The first method, called the linear weighting method, combines all the
objectives into a single scalar parameterized objective function by using
weighting coefficients. If wi, i = 1, . . . , m are the weighting coefficients, the
problem of Equation 12.5 can be written as follows:

min
s∈	

m∑
i=1

wifi(s) (12.7)

with no loss of generality the following normalization of the weighting
coefficients is employed:

m∑
i=1

wi = 1 . (12.8)

By varying these weights it is now possible to generate the set of Pareto-
optimal solutions for Equation 12.5. The weighting coefficients correspond
to the preference of the engineer for each criteria. Every combination of
those weighting coefficients correspond to a single Pareto-optimal solution,
thus, performing a set of optimization processes using different weighting
coefficients it is possible to generate the full set of Pareto-optimal solutions.
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In real-world problems there is not a common unit for the objectives
leading to differences of some orders of magnitude between the values of the
objectives. It is therefore suggested that the objectives should be normalized
according to the following expression:

f̃i(s) =
fi(s) − fi,min

fi,max − fi,min
(12.9)

where the normalized objectives f̃i(s) ∈ [0, 1], i = 1, . . . , m, use the same
design space with the non-normalized ones, while fi,min and fi,max are the
minimum and maximum values of the objective function i.

Distance Function Method

The distance methods are based on the minimization of the distance between
the set of the objective function values and some chosen reference points
belonging to the criterion space. Whereas criterion space is defined as the
set of the objective function values that correspond to design vectors of the
feasible domain. The resulting scalar problem is:

min
s∈	

dp(s) (12.10)

where the distance function can be written as follows:

dp(s) =
{ m∑

i=1

wi

[
fi(s) − zi

]p}1/p

(12.11)

where p is an integer number.
This technique has been widely used in structural optimization. The

reference point zid ∈ Rm that is selected by the engineer is also called ideal
or utopian point. A reference point that is frequently used is the following:

zid =
[
fi,min, . . . , fm,min

]T (12.12)

where fi,min is the optimum solution of the single-objective optimization
problem where the ith objective function is treated as the unique objective.
The normalization function Equation 12.8 for the weighting factors wi is also
used. In the case that p = ∞ Equation 12.10 is transformed to the minimax
problem:

min
s∈	

max
i

[
wifi(s)

]
, i = 1, . . . , m . (12.13)

In the case of p = 1 the formulation of the distance method is equivalent to
the linear method when the reference point used is the zero ẑ = 0, while the
case of p = 2 the method is called the weighted quadratic method.
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Constraint Method

According to this method the original multi-criterion problem is replaced by
a scalar problem where one criterion fk is chosen as the objective function
and all the other criteria are removed into the constraints. By introducing
parameters εi into these new constraints an additional feasible set is obtained:

�k(εi) = {s ∈ Rn|fi(s) ≤ εi, i = 1, . . . , m with i �= k} . (12.14)

If the resulting feasible set is denoted by �̄k = � ∩ �k the parameterized
scalar problem can be expressed as:

min
s∈	̄k

fk(s) . (12.15)

The constraint method gives the opportunity to obtain the full domain of
optimum solutions, in the horizontal or vertical direction using one criterion
as the objective function and the other as the constraint.

Modified Evolution Strategies for Multiobjective Optimization

The three above-mentioned methods are the typical ones. The typical methods
have been used in the past combined with mathematical programming
optimization algorithms where one design point was examined at each
optimization step as an optimum design candidate. In order to locate the set
of pareto-optimal solutions a family of optimization runs have to be executed.
On the other hand evolutionary algorithms instead of a single design point,
they work simultaneously with a population of design points, which is a
population of optimum design candidates, in the space of design variables.
This characteristic has been proved very useful since it is easy to implement
these methods in a parallel computing environment. Due to this characteristic,
evolutionary algorithms have a great potential in finding multiple optima, in a
single optimization run, which is very useful in Pareto optimization problems.
Since the early 1990s many researchers have suggested the use of evolutionary
algorithms in multiobjective optimization problems [22-26] an overview of all
these methods can be found in Fonseca and Fleming [1] and Zitzler [27].

In our study the method of Evolution Strategies (ES) is used, and some
changes have to been made in the random operators that are usually used in
order to implement ES in multiobjective optimization problems and guide the
convergence to a population that represent the set of Pareto-optimal solutions.
The idea in those changes is (1) the selection of the parent population at each
generation has to be changed in order to guide the search procedure towards
the set of pareto optimum solutions, and (2) to prevent convergence to a single
design point, and preserve diversity in the population in every generation step.
The first demand can be fulfilled if the selection of the individual is chosen
for reproduction potentially a different objective [22]. A random selection
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of the objective is implemented in this study. While in order to preserve
diversity in the population and fulfill the second requirement, fitness sharing
is implemented [28]. The idea behind sharing is to degrade those individuals
that are represented in the higher percentage of the population. The modified
objectives after sharing are the following:

f ′
i(s) =

fi(s)∑
h sh
(
d(s, h)

) (12.16)

where the sharing function used in the current study is as follows:

sh
(
d(s, h)

)
=
{

1 − (d(s,h)
σshare

)a
if d(s, h) < σshare

0 otherwise
(12.17)

The distance function used is in the objective space:

d(s, h) = ‖f(s) − f(h)‖ . (12.18)

12.4 Structural Design under Seismic Loading

The equations of equilibrium for a finite element system in motion for the ith
design vector, can be written in the usual form:

M(si)üt + C(si)u̇t + K(si)ut = Rt (12.19)

where M(si), C(si) and K(si) are the mass, damping and stiffness matrices
for the ith design vector si; Rt is the external load vector, while ut, u̇t

and üt are the displacement, velocity, and acceleration vectors of the finite
element assemblage, respectively. The solution methods of direct integration
of equations of motion and of response spectrum modal analysis, which is
based on the mode superposition approach, will be considered in the following
paragraphs.

The Newmark integration scheme is adopted in the present study to
perform the direct time integration of the equations of motion where the
equilibrium Equation 12.19 is considered at time t + ∆t

M(si)üt+∆t + C(si)u̇t+∆t + K(si)ut+∆t = Rt+∆t (12.20)

and the variation of velocity and displacement are given by

u̇t+∆t = u̇t + [(1 − δ)üt + δüt+∆t]∆t (12.21)

ut+∆t = ut + u̇t∆t + [(
1
2

− α)üt + αüt+∆t]∆t2 (12.22)

where α and δ are parameters that can be determined to obtain integration
accuracy and stability. Solving for üt+∆t in terms of ut+∆t from Equation
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12.22 and then substituting for üt+∆t in (12.21) we obtain equations for üt+∆t

and u̇t+∆t each in terms of the unknown displacements ut+∆t only. These two
relations for üt+∆t and u̇t+∆t are substituted into Equation 12.20 to solve for
ut+∆t. As a result of this substitution the following well-known equilibrium
equation is obtained at each ∆t

Keff(si)ut+∆t = Reff
t+∆t . (12.23)

12.4.1 Creation of Artificial Accelerograms

The selection of the proper external loading Rt for design purposes is not
an easy task due to the uncertainties involved in the seismic loading. For
this reason a rigorous treatment of the seismic loading is to assume that the
structure is subjected to a set of artificial earthquakes that are more likely to
occur in the region where the structure is located. These seismic excitations
are produced as a series of artificial accelerograms compatible with the elastic
design response spectrum of the region.

In this work the implementation published by Taylor [29] for the generation
of statistically independent artificial acceleration time histories is adopted.
This method is based on the fact that any periodic function can be expanded
into a series of sinusoidal waves:

x(t) =
∑

k

Ak sin(ωkt + ϕk) (12.24)

where Ak is the amplitude, ωk is the cyclic frequency and φk is the phase angle
of the kth contributing sinusoid. By fixing an array of amplitudes and then
generating different arrays of phase angles, different motions can be generated
which are similar in general appearance but different in the ’details’. The
computer uses a random number generator subroutine to produce strings of
phase angles with a uniform distribution in the range between 0 and 2π. The
amplitudes Ak are related to the spectral density function in the following
way:

G(ωk)∆ω =
A2

k

2
(12.25)

where G(ωk)∆ω may be interpreted as the contribution to the total power
of the motion from the sinusoid with frequency ωk. The power of the motion
produced by Equation 12.24 does not vary with time. To simulate the transient
character of real earthquakes, the steady-state motion is multiplied by a
deterministic envelope function I(t):

Z(t) = I(t)
∑

k

Aksin(ωkt + ϕk) . (12.26)

The resulting motion is stationary in frequency content with peak
acceleration close to the target peak acceleration. In this study a trapezoidal
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intensity envelope function is adopted. The generated peak acceleration is
artificially modified to match the target peak acceleration, which corresponds
to the chosen elastic design response spectrum. An iterative procedure is
implemented to smooth the calculated spectrum and improve the matching
[29].

Five artificial uncorrelated accelerograms, produced by the previously
discussed procedure and shown in Figure 12.1, have been used as the
input seismic excitation for the numerical tests. The elastic design response
spectrum considered in the current study is depicted in Figure 12.2 for
damping ratio ξ = 2.5%. The corresponding response spectrum of the first
artificial accelerogram is also depicted in Figure 12.2.

Figure 12.1. The five artificial accelerograms

12.4.2 Response Spectrum Modal Analysis

The response spectrum modal analysis is based on a simplification of the mode
superposition approach with the aim to avoid time history analyses which are
required by both the direct integration and mode superposition approaches. In
the case of the response spectrum modal analysis, Equation 12.19 is modified
according to the modal superposition approach, for the ith design vector, in
the following form:
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Figure 12.2. Elastic design response spectrum of the region and response spectrum
of the first artificial accelerogram (ξ = 2.5%).

M̄(si)üt + C̄(si)u̇t + K̄(si)ut = R̄t (12.27)

where
M̄(si) = ΦT

i MiΦi (12.28)

C̄(si) = ΦT
i CiΦi (12.29)

K̄(si) = ΦT
i KiΦi (12.30)

R̄t = ΦT
i Rt (12.31)

are the generalized values of the corresponding matrices and the loading
vector, while Φi is an eigenmode shape matrix to be defined later. For
simplicity M(si), C(si), K(si) are denoted by Mi, Ci, Ki, respectively. These
matrices correspond to the design, which is defined by the ith vector of the
design parameters, also called the design vector. According to the modal
superposition approach the system of N simultaneous differential equations,
is transformed to a set of N independent normal-coordinate equations.

In the response spectrum modal analysis a number of different formulas
have been proposed to obtain reasonable estimates of the maximum response
based on the spectral values without performing time history analyses for
a considerable number of transformed dynamic equations. The simplest and
most popular of these is the square root of the sum of the squares (SRSS) of the
modal responses. According to this estimate the maximum total displacement
is approximated by

umax =
√

u2
1,max + · · · + u2

N,max (12.32)
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where uj,max corresponds to the maximum displacement calculated from the
jth transformed dynamic equations over the complete time period. The use
of Equation 12.32 permits this type of “dynamic” analysis by knowing only
the maximum modal coordinates uj,max.

The following steps summarize the response spectrum modal analysis
adopted in this study and by a number of seismic codes around the world:

1. Calculate a number m′ < N of eigenfrequencies and the corresponding
eigenmode shape matrices, which are classified in the following order
(ω1

i , . . . , ωm′
i ), Φi = [φ1

i , . . . , φ
m′
i ], respectively, where ωj

i , φj
i are the jth

eigenfrequency-eigenmode corresponding to the ith design vector. m′ is a
user specified number, based on experience or on previous test analyses,
which has to satisfy the requirement of Step 6.

2. Calculate the generalized masses, according to the following equation:

m̄j
i = φj

i

T
Miφ

j
i . (12.33)

3. Calculate the coefficients Lj
i , according to the following equation:

Lj
i = φj

i

T
Mir (12.34)

where r is the influence vector, which represents the displacements of the
masses resulting from static application of a unit, ground displacement.

4. Calculate the modal participation factor Γ j
i , according to the following

equation:

Γ j
i =

Lj
i

m̄j
i

. (12.35)

5. Calculate the effective modal mass for each design vector and for each
eigenmode, by the following equation:

mj
eff,i =

Lj
i

2

m̄j
i

. (12.36)

6. Calculate a number m < m′ of the important eigenmodes. According to
Eurocode the minimum number of the eigenmodes that has to be taken
into consideration is defined by the following assumption: The sum of the
effective eigenmasses must not be less than 90% of the total vibrating mass
mtot of the system, so the first m eigenmodes that satisfy the equation

m∑
j=1

mj
eff,i ≥ 0.90mtot (12.37)

are taken into consideration.
7. Calculate the values of the spectral acceleration Rd(Tj) that correspond

to each eigenperiod Tj of the important modes.
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8. Calculate the modal displacements according to equation

(SD)j =
Rd(Tj)

ω2
j

=
Rd(Tj) × T 2

j

4π2 . (12.38)

9. Calculate the modal displacements:

uj,max = Γ j
i × φj

i × (SD)j . (12.39)

10. The total maximum displacement is calculated by superimposing the
maximum modal displacements according to Equation 12.32.

12.5 Solution of the Optimization Problem

The optimization problem is solved with evolution strategies. Evolution
strategies were proposed for parameter optimization problems in the 1970s by
Rechenberg [30] and Schwefel [31]. Similar to genetic algorithms, ES imitate
biological evolution in nature and have three characteristics that make them
different from other conventional optimization algorithms: (1) in place of
the usual deterministic operators, they use randomized operators: mutation,
selection as well as recombination; (2) instead of a single design point, they
work simultaneously with a population of design points in the space of
variables; (3) they can handle continuous, discrete, and mixed optimization
problems. The second characteristic allows for a natural implementation
of ES on parallel computing environments. The ES were initially applied
for continuous optimization problems, but recently they have also been
implemented in discrete and mixed optimization problems.

12.5.1 ES for Discrete Optimization Problems

The multi-membered ES adopted in the current study, based on the discrete
formulation, use three operators: recombination, mutation, and selection
operators that can be included in the algorithm as follows:

Step 1 (recombination and mutation)

The population of µ parents at gth generation produces λ offsprings. The
genotype of any descendant differs only slightly from that of its parents. For
every offspring vector a temporary parent vector s̃ = [s̃1, . . . , s̃n]T is first built
by means of recombination. For discrete problems the following recombination
cases can be used:

s̃i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sα,i or sb,i randomly
sm,i or sb,i randomly
sbj,i

sα,i or sbj,i randomly
sm,i or sbj,i randomly

(12.40)
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where s̃i is the ith component of the temporary parent vector s̃, sα,i and sb,i

are the ith components of the vectors sa and sb which are two parent vectors
randomly chosen from the population. The vector sm is not randomly chosen
but is the best of the µ parent vectors in the current generation. In case C
of (12.40), s̃i = sbj,i means that the ith component of s̃ is chosen randomly
from the ith components of all µ parent vectors. From the temporary parent
s̃ an offspring can be created following the mutation operator.

Let as consider the temporary parent s
(g)
p of the generation g that produces

an offspring s
(g)
o through the mutation operator as follows:

s(g)
o = s(g)

p + z(g) (12.41)

where z(g) = [z(g)
1 , . . . , z

(g)
n ]T is a random vector. The mutation operator in

the continuous version of ES produces a normally distributed random change
vector z(g). Each component of this vector has a small standard deviation
value σi and zero mean value. As a result of this there is a possibility that
all components of a parent vector may be changed, but usually the changes
are small. In the discrete version of ES the random vector z(g) is properly
generated in order to force the offspring vector to move to another set of
discrete values. The fact that the difference between any two adjacent values
can be relatively large is against the requirement that the variance σ2

i should
be small. For this reason it is suggested that not all the components of a
parent vector, but only a few of them (e.g. k), should be randomly changed in
every generation. This means that n−k components of the randomly changed
vector z(g) will have a zero value. In other words, the terms of vector z(g) are
derived from

z
(g)
i =

{
(κ + 1)δsi for k randomly chosen components

0 for n − k other components (12.42)

where δsi is the difference between two adjacent values in the discrete set and
κ is a random integer number, which follows the Poisson distribution

p(κ) =
(γ)κ

γ!
e−γ (12.43)

where γ is the standard deviation as well as the mean value of the random
number κ. This shows how the random change z

(g)
i is controlled by the

parameter γ. The choice of k depends on the size of the problem and it is
usually taken as 1/5 of the total number of design variables. The k components
are selected using uniform random distribution in every generation according
to Equation 12.42.

Step 2 (selection)

There are two different types of the multi-membered ES:
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• (µ + λ)-ES: The best µ individuals are selected from a temporary
population of (µ+λ) individuals to form the parents of the next generation.

• (µ, λ)-ES: The µ individuals produce λ offsprings (µ ≤ λ) and the selection
process defines a new population of µ individuals from the set of λ
offsprings only.

In order to implement ES in Pareto optimization problems the selection
operator is based on randomly chosen objectives. For discrete optimization
the procedure terminates when the following termination criteria is satisfied:
when the ratio µb/µ has reached a given value εd (=0.5 to 0.8) where µb is the
number of the parent vectors in the current generation with the best objective
function value.

12.5.2 ES in Multiobjective Structural Optimization Problems

The application of EAs in multiobjective optimization problems has received a
lot of attention in the last five years [21-28]due to the difficulty of conventional
optimization techniques, such as gradient based methods, to be extended to
multiobjective optimization problems. EAs, however, have been recognized to
be more appropriate to multiobjective optimization problems since early in
their development [1]. Multiple individuals can search for multiple solutions in
parallel, taking advantage of any similarities available in the family of possible
solutions to the problem.

In the first implementation where the typical methods are used, the
optimization procedure, in order to generate a set of Pareto-optimal solutions,
initiates with a set of parent design vectors needed by the ES optimizer and a
set of weighting coefficients for the combination of all objectives into a single
scalar parameterized objective function. These weighting coefficients are not
set by the engineer but are being systematically varied by the optimizer after
a Pareto-optimal solution has been achieved. There is an outer loop which
systematically varies the parameters of the parameterized objective function,
and is called the decision making loop. The inner loop is the classical ES
process, starting with a set of parent vectors. If any of these parent vectors
gives an infeasible design then this parent vector is modified until it becomes
feasible. Subsequently, the offsprings are generated and checked if they are in
the feasible region. The number of parents and offsprings involved affects the
computational efficiency of the multi-membered ES discussed in this work. It
has been observed that values of µ and λ equal to the number of the design
variables produce better results.

The ES algorithm when combined with the typical methods for multi-
objective structural optimization applications under seismic loading can be
stated as follows:

Outer loop - Decision making loop
Set the parameters wi of the parameterized objective function
Inner loop - ES loop
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1. Selection step: selection of si, (i = 1, 2 . . . , µ) parent vectors of the design
variables

2. Analysis step: solve M(si)ü + C(si)u̇ + K(si)u = Rt, (i = 1, . . . , µ)
3. Evaluation of parameterized objective function
4. Constraints check: all parent vectors become feasible
5. Offspring generation: generate sj , (j = 1, . . . , λ) offspring vectors of the

design variables
6. Analysis step: solve M(sj)ü + C(sj)u̇ + K(sj)u = Rt, (j = 1, . . . , λ)
7. Evaluation of the parameterized objective function
8. Constraints check: if satisfied continue, else change sj and go to step 5
9. Selection step: selection of the next generation parents according to (µ+λ)

or (µ, λ) selection schemes
10. Convergence check: If satisfied stop, else go to step 5

End of Inner loop
End of Outer loop

In the second implementation the special characteristic of the EA optimizers
are used. The ESMO algorithm for multiobjective structural optimization
applications under seismic loading can be stated as follows:

1. Selection step: selection of si, (i = 1, 2 . . . , µ) parent vectors of the design
variables

2. Analysis step: solve M(si)ü + C(si)u̇ + K(si)u = Rt, (i = 1, . . . , µ)
3. Evaluation of parameterized objective function
4. Constraints check: all parent vectors become feasible
5. Offspring generation: generate sj , (j = 1, . . . , λ) offspring vectors of the

design variables
6. Analysis step: solve M(sj)ü + C(sj)u̇ + K(sj)u = Rt, (j = 1, . . . , λ)
7. Evaluation of the parameterized objective function
8. Constraints check: if satisfied continue, else change sj and go to step 5
9. Selection step: random selection of the potential objective for each

individual and selection of the next generation parents according to (µ+λ)
or (µ, λ) selection scheme

10. Fitness sharing
11. Convergence check: If satisfied stop, else go to step 5

12.6 Numerical Results

Three benchmark test examples, one six-storey space frame and one multi-
layered space truss, are investigated. The following abbreviations are used
in this section: DTI refers to the Newmark Direct time Integration Method;
RSMA refers to the Response Spectrum Modal Analysis; LWM refers to the
Linear Weighting Method; DFM refers to the Distance Function Method; CM
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refers to the Constraint Method and ESMO refers to the proposed Evolution
Strategies for treating Multiobjective Optimization problems.

Figure 12.3. I-shape cross section.

12.6.1 Six-storey Space Frame

The modulus of elasticity is 200 GPa and the yield stress is σy = 250 MPa. The
cross section of each member is assumed to be an I-shape and for each member
two design variables are considered, as shown in Figure 12.3. The objective
functions considered for the problems are the weight of the structure, the
maximum displacement and the first eigen period. The first two objective
functions have to be minimized while the third one has to be maximized. The
constraints are imposed on the inter-storey drifts and on the maximum non-
dimensional ratio q of Equations 12.2 and 12.3 for each element group under
a combination of axial force and bending moments. The values of allowable
axial and bending stresses are Fa = 150 MPa and Fb = 165 MPa, respectively,
whereas the maximum allowable inter-storey drift is limited to 4.5 cm which
corresponds to 1.5% of the height of each storey. The test example was run
on a Silicon Graphics Power Challenge computer.

The space frame consists of 63 elements with 180 degrees of freedom as
shown in Figure 12.4. The beams have length L1 = 7.32m and the columns
L2 = 3.66m. The structure is loaded with a 19.16 kPa gravity load on all
floor levels and a static lateral load of 109 kN applied at each node in the
front elevation along the z direction. The element members are divided into
5 groups, each one having two design variables resulting in ten total design
variables.

The Pareto-optimal set of solutions was first computed with the LWM.
The performance of this method for the case of seeking the simultaneous
minimization of weight and maximum displacement is depicted in Figures 12.5
and 12.6 for both static and seismic loading conditions. In Figures 12.5
and 12.6 the performance of the DFM and ESMO methods are also presented.
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Figure 12.4. Six-storey space frame.

Figure 12.5. Six-storey frame: Linear (p = 1), Distance method and ESMO (both
static and seismic loading conditions) using LVM.

For the case of the DFM the zero (0) point was considered as the utopian
point, while three different schemes of the DFM were also examined, p = 1:
equivalent to the LWM, p = 2: called quadratic LWM and p = 8: equivalent to
the p = ∞. The case when the weight and the first eigenperiod are considered
as the objectives of the problem is depicted in Figure 12.9.

The CM is implemented with the following variations: (1) The weight as
the only criterion and the maximum displacement or the first eigenperiod
as constraint; and (2) the maximum displacement or the first eigenperiod
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Figure 12.6. Six-storey frame: Linear (p = 1), Distance method and ESMO (both
static and seismic loading conditions)using LVM.

Figure 12.7. Six-storey frame: Linear (p = 1) and Constraint method (both static
and seismic loading conditions) using CM.



12 Multi-Objective Structural Optimization under Seismic Loading 293

as the only criterion and the weight as constraint. In Figures 12.7 and 12.8
we can see the performance of the CM, for the simultaneous minimization of
weight and maximum displacement. These sets of Pareto optimal solutions are
produced for the following cases: (1) different upper limits for the maximum
displacement, and (2) different upper limits of the weight of the structure.
In Figure 12.10 we can see the performance of the CM, for the simultaneous
minimization of weight and the first eigenperiod and for the cases: (1) with
different upper limits for the first eigenperiod, and (2) for different upper
limits of the weight of the structure.

Figure 12.8. Six-storey frame: Linear (p = 1) and Constraint method (both static
and seismic loading conditions)using CM.

It can also be seen from Figures 12.6 and 12.8 that the Pareto optimal
solutions achieved by the direct time integration approach under the multiple
loading conditions of the five artificial accelerograms given in Figures 12.6
and 12.8 is less than the corresponding design given by the response spectrum
modal analysis. In figures 12.5, 12.6 and in 12.9, 12.10 we can see that there
is little difference in the performance of the typical methods and the ESMO
method, while as can be seen from Table 12.1 there is a difference in the
computing time.
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Figure 12.9. Six-storey frame: Linear (p = 1), Distance method and ESMO
method.

Figure 12.10. Six-storey frame: Linear (p = 1), Constraint method and ESMO
method
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Table 12.1. Example 1 - Time required by classical and EA methods for dealing
with multiobjectives for dynamic loading conditions.

Method Time (sec) Generations FE analyses

p = 1 DTI 254,112 372 2,609
ESMO DTI 35,788 28 367
p = 1 RSMA 109,803 411 2,901
ESMO RSMA 15,171 31 401

12.6.2 Multi-layered Space Truss

The optimum design with multiple objectives of a long span aircraft hangar
is investigated. The objective functions considered for the problems are the
weight of the structure and the maximum deflection, both of which are to be
minimized. The members of the space truss were grouped as follows: Group 1:
Longitudinal members of the top and bottom flanges. Group 2: Cross girders
of the top and bottom flanges. Group 3: Bracing diagonals connecting top and
bottom flanges to top and bottom chords of the space frame. Group 4: Top
and bottom chords of the space frame. Group 5: Diagonal bracing members
connecting top and bottom chords of space frame to middle chords. Group 6:
Middle chords of the space frame. The hangar comprises 3,614 nodes (10,638
d.o.f.) and 12,974 members. Members of group 1 to 3 are to be selected from
the structural sections listed in Table 12.2 and members of groups 4 to 6
from the tube sizes given in Table 12.3. Taking advantage of the symmetry
of the structure, the formulation of the problem was made only for one half
of the hangar which results in a model with 5,269 d.o.f. (see Figure 12.11). A
constraint of 750 mm on the maximum deflection was imposed in addition to
the stress constraints.

The performance of the LWM for the case of the simultaneous
minimization of weight and maximum displacement is depicted in
Figure 12.12. In Figure 12.12 the DFM with p = 1, 2 and 8 and ESMO
methods are also presented. For this test example two cases are considered:
(1) The weight as the only criterion and the maximum displacement as
constraint; and (2) The maximum displacement as the only criterion and
the weight as constraint. Figure 12.13 depicts the performance of the CM, for
the simultaneous minimization of weight and maximum displacement. These
sets of Pareto-optimal solutions, are produced for different upper limits for
the maximum displacement and for different upper limits of the weight of the
structure. In Figures 12.12 and 12.13 we can see that there is little difference
in the performance of the typical methods and the ESMO method, while as
can be seen from Table 12.4 there is significant difference in the computing
time.
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Figure 12.11. Multi-layered space truss.

Figure 12.12. Multi-layered space truss: Linear, Distance and ESMO method.
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Table 12.2. Properties of the structural members (Database 1).

Section number Type Area (mm2)

1 ISMC 100 1170
2 2 x ISMC 75 1740
3 2 x ISMC 100 2340
4 2 x ISMC 125 3238
5 2 x ISMC 150 4176
6 2 x ISMC 175 4878
7 2 x ISMC 200 5642
8 2 x ISMC 225 6802
9 2 x ISMC 250 7734
10 2 x ISMC 300 9128
11 2 x ISMC 350 10732
12 2 x ISMC 400 12585
13 2 x ISMC 400 with 2 x 8mm thick MS Plates 14986
14 2 x ISMC 400 with 2 x 12mm thick MS Plates 16186
15 2 x ISMC 400 with 2 x 16mm thick MS Plates 17386
16 2 x ISMC 400 with 2 x 25mm thick MS Plates 20086
17 4 x ISMC 400 25172
18 4 x ISMC 400 with 2 x 8mm thick MS Plates 30772
19 4 x ISMC 400 with 2 x 16mm thick MS Plates 36372
20 4 x ISMC 400 with 2 x 20mm thick MS Plates 39172
21 4 x ISMC 400 with 2 x 25mm thick MS Plates 42672
22 4 x ISMC 400 with 2 x 32mm thick MS Plates 47572
23 4 x ISMC 400 with 4 x 20mm thick MS Plates 51172
24 4 x ISMC 400 with 4 x 25mm thick MS Plates 57672
25 4 x ISMC 400 with 4 x 32mm thick MS Plates 66772
26 4 x ISMC 400 with 4 x 40mm thick MS Plates 77172
27 4 x ISMC 400 with 4 x 50mm thick MS Plates 90172

Table 12.3. Properties of the structural members (Database 2).

Section number Outer diameter Thickness Area (mm2)

1 60.30 3.25 582.73
2 76.10 4.50 1012.63
3 88.90 4.85 1281.16
4 114.30 5.40 1848.19
5 139.70 5.40 2279.26
6 152.40 5.40 2494.80
7 165.10 5.40 2710.34
8 193.70 5.90 3482.35
9 219.10 5.90 3953.34
10 273.00 5.90 4952.80
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Figure 12.13. Multi-layered space truss: Linear, Distance and ESMO method.

Table 12.4. Example 2 – Time required by classical and EA methods for dealing
with multi-objectives

Method Time (sec) Generations FE analyses

p = 1 7.917 195 1.163
ESMO 2.119 28 312

12.7 Conclusions

Evolution strategies can be considered as an efficient tool for multiobjective
design optimization of structural problems such as space frames and multi-
layered space trusses under static and seismic loading conditions. The LWM
and CM methods compared to the ESMO method appear to be robust and
reliable for treating multiobjective structural optimization problems giving
almost identical results. A generalization of the LWM for p > 1 called the
CM is also examined in this study. The results obtained by the DFM were
somewhat different than those taken by the other two methods, while for large
values of p it produces either too close or disperse points in the Pareto sets.

In terms of computational efficiency it appears that all three typical
methods considered require similar computational effort, with approximately
the same number of generation steps. On the other hand the ESMO method
requires one order of magnitude less computing time than the typical methods.
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The presented results indicate that it is possible to achieve an optimal design
under seismic loading. Both design methodologies based on a number of
artificially generated earthquakes and the response spectrum modal analysis
adopted by the seismic codes have been implemented and compared. The
more rigorous dynamic approach based on time history analyses gives more
economic designs than the approximate response spectrum modal analysis, at
the expense of requiring more computational effort.
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