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Abstract

Uncertainties in structural mechanics, and in particular in the phase of analysis and de-
sign, can play an extremely important role, affecting not only the safety and reliability of
structures and their mechanical components, but also the quality of their performance.
The response of a structural system may be very sensitive to uncertainties in the material
properties, manufacturing conditions, external loading and analytical or numerical mod-
eling. In order to account for these issues, stochastic analysis methods have been devel-
oped over the last decades. The optimum result obtained by a deterministic optimization
formulation that ignores scatter of any kind of the parameters affecting its response has
limited value and reliability, as it can be severely affected by the uncertainties that are
inherent in the model. The deterministic optimum can be associated with unaccepted
probabilities of failure, or it can be vulnerable to slight variations of some uncertain pa-
rameters. The development of probabilistic analysis methods over the last two decades
has stimulated the interest for considering also randomness and uncertainty in the for-
mulation of structural design optimization problems. In order to account for uncertain-
ties in a structural optimization framework, probabilistic-based formulations of the op-
timization problem have to be used, utilizing stochastic simulation and probabilistic
analysis.

The goal of the thesis is to unify the concepts of probability-based safety analysis and
structural optimization and provide the necessary numerical tools to deal with optimiza-
tion problems considering uncertainties. This goal is addressed by developing algorithms
for solving the probabilistic structural optimization problems encountered. In order to
deal with these problems efficiently, various algorithms and methodologies have to be
used, such as efficient single- and multi-objective optimizers and efficient stochastic
problems formulations for the stochastic analysis process. Despite the advances on these
issues, the computational cost for considering the uncertainties in a structural design
optimization problem remains extremely large, especially for real-world large-scale prob-
lems with many design and/or random variables. To alleviate the computational burden,
the implementation of Neural Network (NN) metamodels is also proposed in this thesis
for further reducing the computational cost, providing acceptable numerical results at an
affordable computational time.

The dissertation consists of nine chapters in total, plus the bibliography and three ap-
pendices. It is organized as follows: following the introduction of Chapter 1, Chapter 2
deals with the concept of uncertainty in structural engineering in general. Chapter 3
presents the formulation of single objective optimization problems, while Chapter 4 dis-
cusses the multi-objective optimization problem. The basics of Neural Networks and
their implementation in structural engineering are presented in Chapter 5. Chapter 6
discusses the problem of structural optimization considering uncertainties, where the
basic problems of this kind, namely the Reliability-Based Design Optimization (RBDO),
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the Robust Design Optimization (RDO) and the combination Reliability-based Robust
Design Optimization (RRDO) problems are presented, among others.

The numerical applications of the dissertation are divided into two parts, A and B, pre-
sented in Chapters 7 and 8, respectively. Part A (Chapter 7) contains the deterministic
optimization test examples, where uncertainties are not taken into account. In Part B
(Chapter 8), the probabilistic optimization test examples are discussed, where uncertain-
ties play a significant role.

Chapter 9 contains the conclusions, the original contribution of the thesis, and direc-
tions for future research. Finally, the bibliography is presented followed by three appen-
dices: Appendix A, containing the notation and symbols used in the dissertation; Appen-
dix B with the acronyms and abbreviations used; and Appendix C with a listing of publi-
cations by the author.



MNepiAnyn

Ot afePoudtnteg otn dopootatiky Unyovikn, kKot laitepa katd tn ddon g avdAvong
KO TOU OYESLGHOV HING KATAOKEUTNG, LTOPOUV VX Ti&OUV GTHAVTIKO pOAO, emnpedlovtog
OxL pOvo TNV aoddAelo Kal TNV olOMOTIN TNG KATAOKEUNG KOL TWV HEPWV QIO TA OO
amoteAeital, AAAG KL TNV TOLOTNTA TwV emiddoewv tnG. H amodxpion evog Sopkou cuotn-
potog pmopei va givan Blaitepa evaicOnen otig offefoudtnreg Twv ISIOTATWY TWV VAIKWY,
TWV oUVONKW®WVY TNG KATAOKEUNG, TWV €EWTEPIKWV POPTIWV KAl TWV AVIAUTIK®V 1) oplOpn-
TIKwV pebddwv mov xpnotpomomriOnkay yio TV mpocopoiwaor Tou Guoikov TpoBAUaTog.
[N vae AndBovv umoyn autég ot affefouotnteg, €xouv avamtuyBei tig TeAevtaieg dekaetieg
KOATAAANAgg péBodol otoyaoTikhg avdAvong twv kataokevwv. To BéAtioto amotéAeopa
mov TpokUmTeL oo pia mpoodioplotiky (cutiokpartikn)) Bewpnon tng Swdikaoiog PeAti-
otomoinong n omoix ayvoel TN SLeTOPd TWV TIHWYV TWV THPAHUETPWY TTOU ETNPEALOUV TNV
QTOKPLOT] TNG KATKOKEVNG, €xEL Teploplopévn adio ko alomiotia, kabwg pmopel va emn-
peaoTel onpovTIKa amd eyyeveig afefatdtnteg tOco Tou Puoikoly TPOPANHATOG 0600 Ko
Tov aplBuntikol mpocopolwpatog. To mpoadioplotikd BEATIOTO Pmopel EMOUEVWG VO O)E-
Tifetou pe pn amodektr) TP g mMOavOTNTAG aoTo)ing, 1) Hropei va givat laxitepa gvai-
00NTo o€ OYETIKA HIKPEG SLKUPAVOELG K&molwV Tapapétpwy. H avamtuén otoxaotikav -
mlovotikwv peBOSwV avdAuong katd Tig SUo teAeutaieq dekaetieg €xel kevtpioel To eviL-
ab€pov TWV EPEVVITWV YIX TNV EI0XYWYT] TWV EVVOLWV NG affefoudtntag Ko Tng Tuxnpo-
TIKOTNTOG OTI( SIHTUTIWOELS TWV TPOPANHETWwY PEATIOTOU 0XESINOHOU TWV KATOOKEUWY.
[N vae AndBouv umdPn ot afePardtnteg ot mAaiolo vog mpoPAnpatog BeAtiotomoinong,
npemeL v xpnotpomotnBouv Siutunwoelg Paociopéveg otnv mbovotikn ¢puon touv mpoPAn-
HOTOG, XPTOLHOTIOLWVTAG TN OTOXAOTIKT avéAvon kot T Oewpia mbovotritwy.

O otdx0¢ ™G STpIPrig €ivat 1) EVOTTONUEVT] KVTIHETWTLOT) TNG OTOXAOTIKNG CVAAUVGTG Ko
Tou BéATIoTOU OXESINOHOU TWV KOTAOKEVWDV KAl 1) TTOXPOYT] TWV ATAUPAITNTWY UTOAOYIOTL-
KOV epyaAeiwV ylo TNV emiAvon tou TpoPANpatog tng PEATIOTOMOMONG TWV KATAOKEVWV
pe Bewpnon ofePatotntwy. O oTdY0G UTOG ETITUYYXAVETAL HE TNV oVATTTUEN KATAAANAWY
aAyopiBpwv yio tnv emidvon tou otoxaotikol mpoPAnpatog BeAtiotomoinong. I v o-
VTIPETWTIOTOUV QUTA T TPOPANata e amodoTikO TPOTOo, TPEMeL Vo Xprotpomronfoly
dtadopot cAyopiBpot kou pebodoroyieg BéATioTou oYedIaGHOU, TOGO Yiot TPOPANpOTA Hing
000 Kol YLt TTPOPBAUATH TTOAAWV QVTIKEILEVIKWOV CUVOPTHOEWY, KaBWG KAl EMAPKEIG He-
BodoAoyieg ylot TNV QVTIHETWTION TOU O0TOXAOTIKOU TpoPAfpHatog. [Tapd v edappoyn
TPOXWPNHEVWY HEBOSOAOYIMOV VIO TNV AVTIHETWTION TWV TUPATEVW TPOPRANHETWY, TO U-
TOAOYLOTIKO KOOTOG yia tn) Bedpnon twv afefototitwv o eva mpoPAnpa BeAtiotonoin-
ong mapopevel e€alpetikd vPMAO, €8IKA Yot TPOPANHATA TPAYUATIKWOV KOTHOKEVWDV |LE-
YOANG KAIpOKOG He TOAAEG peToffANTEG oxediaopot 1/kou aféfoieg mapoperpoug. I'a tov
TEPLOPLONO TOU TPOPANUATOG cwTOU Kot TN HEIWOT) TOU UTOAOYIOTIKOU KOGTOUG, GTNV 1o~
povoa SatpiPn mpoteivetou 1 epappoyry Nevpwvikwv Aiktvwv (Neural Networks, NNs)
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w¢ peto-povreAwy (metamodels), ta omoia Sivouv ikavomomntikeég AVoelg pe Saitepa xa-

HNAS voAoytotikd kdoTOoG.

H Siotpiffr) amoteAgiton ouvoAikd amd evvéa keddAaua, tn BiBAoypadio kot tpio mapap-
mpota. H SidpBpwon) g €xet wg €8¢ Metd amtd v elooywyr) tov 17° KedpoAaiov, to 2°
Keddarawo e€etdlel to O¢pa twv afefatotitwy og mpoPfANpata SOHOCTATIKNG UNYOVIKTG.
To 3° KepdAawo mapovoidlel tn Statinwon tov mpoPAfpatog BeAtiotonoinong pe pio o-
VTIKEIHEVIKT) ouvdptnon (single-objective optimization), evd to 4° KedbdAauo e€etaler to
pofAnpa ¢ PeAtiotomoinong pe moAAEG avTikelpevikeG ouvaptroelg (multi-objective
optimization). Ta Baocikd ototysia Twv Nevpwvik®dv Awxtiwv (Neural Networks) kot ot
edappoyeg toug og mpoPAnpata SopooTATIKNG Hnyovikng mapovotdlovtal oto 5° Kedd-
Aato. To 6° KedbdAauo e€etdlel to mpoPAnpa tng PeAtiotonoinong Kataokevwy e Bewpn-
on ofePototritwy, oto omoio mapovoidlovtal HETal GAAWY Ol KUPLOTEPES SIATUTTWOELG
AUTWOV TV TpoPAnudtwy, to mpdPAnpa tov BéAtiotov Zxedinopot pe Bdon tnv Alomi-
otia (Reliability-Based Design Optimization, RBDO), to mpépAnpa tov Evpwotouv BéAti-
otov Xxediaopov (Robust Design Optimization, RDO) kot to cuvduacpévo mpdBAnpa tou
Evpwotov Zxediaopov pe Baon tnv Adlomotia (Reliability-based Robust Design Optimi-
zation, RRDO).

Ot ap1Bpuntikeg ebappoyég g StatpiPrg eivar ywplopéveg oe dVo evotntes - Mépn A kou
B, Tt omoia mapovoidlovren oto 7° kau 8° KedbdAauo, avtiotoya. To Mépog A (7° Kedad-
Ado0) TepLEXEL TIG TPOOSIoPLoTIKEG aplOunTikég edoappoyeg, omov ot afefoudtnreg dev
AxpBévovton vtdyn oto aplBuntikd Tpocsopoiwpa. Xto Mépog B (8° KeddAawo) e€etdlo-
vtau ot bovotikég aplOuntikég epappoyeg, dmov ot affefoudtnreg Sadpapatifovv Seomo-
{ovta poAo.

To 9° KedpdAauo mepiéyel ta ovpmepdopoata g SarpiPng, thv mpwtdtumn ouvvelohopd
™G kat katevBuvoelg yio peAdovtiky épevva. Tédog, mapovataleton n PipAoypadia kot
tpia mopaptripata: To [Mapaptnua A mepiéyet n onpeloypadio Kot Toug podnpotikolg
ouppoAlopots mov vioBetOnkav, to IMapdptnpo B mepiexel ta axpwvipio Kal TIg ovu-
VTuioelg mov xpnotpomoiOnkoy, kat to Napdptnpo C mepiéyet pio aovoAutikn Alota pe Tig
dnpootevoelg Tou ouyypadea.
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Chapter 1

1 Introduction

1.1 Motivation

The primal engineering task during the design of any structural system is to minimize its
construction and operational costs and improve its structural performance. Improve-
ments during the design stage can be achieved either by using simple design rules based
on experience, or by an automated way using structural optimization procedures. Taking
into account the complexity of a structural optimization problem, it is obvious that find-
ing the mathematical global optimum solution may not be an easy task.

In engineering problems, uncertainty is inherent and the scatter of parameters from
their nominal values is unavoidable. Uncertainties in structural mechanics, and in par-
ticular in the phase of analysis and design, can play an extremely important role, affect-
ing not only the safety and reliability of structures and their mechanical components,
but also the quality of their performance. Under given circumstances, the response of a
structural system can be very sensitive to uncertainties in the material properties, manu-
facturing conditions, external loading and analytical or numerical modeling. Stochastic
analysis methods have been developed significantly over the last decades in order to ac-
count for the uncertainty encountered in structural mechanics.

The optimum result obtained by a deterministic optimization formulation that ignores
scatter of any kind of the parameters affecting its response has limited value, as it can be
severely affected by the uncertainties that are inherent in the model. The deterministic
optimum can be associated with unacceptable probabilities of failure, or it can be quite
vulnerable to slight variations of some uncertain parameters. Consequently, a determi-
nistically optimum design may result in an infeasible design. In real-world conditions the
significance of any “optimum” solution would be limited if the uncertainties involved in
the geometric and material description of the structure as well as in the loading condi-
tions are not taken into consideration. This is because real-world structures have always
imperfections which induce deviations from the nominal state assumed at the analysis
phase by the design codes. The development by the scientific community of probabilistic
analysis methods over the last two decades has stimulated the interest for considering
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also randomness and uncertainty in the formulation of the structural design optimiza-
tion problem (Schuéller 2005; Tsompanakis et al. 2008). In order to account for uncer-
tainties in a structural design optimization framework, probabilistic-based formulations
of the optimization problem have to be used, utilizing stochastic simulation and proba-
bilistic analysis.

The probabilistic-based design optimization methodologies can be widely classified in
the following two generic formulations:

i.  Robust Design Optimization (RDO);
ii.  Reliability-Based Design Optimization (RBDO).

RDO methods primarily seek to minimize the influence of random variations of the no-
minal structural dimensions, material parameters and loading on the response of the
structure.

On the other hand, the main goal of RBDO methods is to find the optimum design,
which at the same time satisfies the objective of the minimum weight in conjunction
with limitations on the allowable probability of failure or the probability of exceeding
certain characteristic structural response quantities or the problem’s constraints.

1.2 Objectives and scope

The goal of the thesis is to explore the available methodologies on the subject, unify the
concepts of probability-based safety analysis and structural optimization and provide
innovative numerical tools to deal with optimization problems considering uncertain-
ties. This goal is addressed by developing algorithms and methodologies for efficiently
solving the RBDO and RDO problems, as well as the combined Reliability-based Robust
Design Optimization (RRDO) problem.

In order to address these problems efficiently, various algorithms and methodologies
have to be used. First, a single-objective optimization algorithm is required, capable of
finding the global optimum, without being trapped in local optima, with a satisfactory
convergence rate and consequently not requiring excessive computational effort. For the
stochastic analysis part of the methodology, special care is required in order to calculate
the statistical quantities that are affected by the random variables of the model. For the
multi-objective optimization problem encountered in the RDO formulation or in RBDO
formulations considering multiple objectives, efficient multi-objective optimization algo-
rithms have to be implemented, able to provide a complete and detailed Pareto Front.

The computational cost for considering the uncertainties in a structural design optimiza-
tion problem can be enormous, especially when real-world large-scale structures with
many design variables and/or random variables are considered. To alleviate the compu-
tational burden, it is necessary to use efficient optimization algorithms and efficient
sampling techniques for the stochastic analysis process. In many practical cases, even
these techniques prove not to be enough. For this reason, in this thesis Neural Network
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(NN) metamodels are implemented for further reducing the computational cost, provid-
ing acceptable numerical results at very low computational cost.

All the issues described above, in the two previous paragraphs, have been addressed in
the thesis, as will be described in detail in the following chapters. Furthermore, via nu-
merical applications of real-world large scale structures the proposed computational
framework is evaluated and tested. The original contribution of the thesis is presented in
detail in Section 9.1 of the Conclusions (Chapter 9).

1.3 Organization and outline

The thesis consists of nine chapters in total, plus the bibliography and three appendices
at the end of it. Its structure is organized as follows:

Chapter 1 is the introduction of the dissertation which provides a general description of
the motivation, the goals pursued, as well as a brief description of the contents of each
chapter.

Chapter 2 deals with the concept of uncertainty in structural engineering in general. The
notions of reliability, failure, the performance function of a structural system and struc-
tural resistance and demand are discussed. Various methodologies for addressing the
stochastic analysis problem are also discussed, namely the First- and Second-Order Relia-
bility Methods (FORM/SORM), the Response Surface Method (RSM) and the Monte Carlo
Simulation (MCS) method, highlighting the strengths and drawbacks of every methodol-
ogy. Sampling methods for MCS are also discussed, such as the Latin Hypercube Sam-
pling (LHS), Importance Sampling (IS), and other methodologies.

Chapter 3 discusses the notion of single objective optimization. First, the concept of op-
timum structural design is presented, followed by the formulation of a single objective
optimization problem and some necessary definitions. Various methods for solving the
problem are presented, including mathematical programming methods and in particular
the SQP method, evolutionary methods and in particular the Evolution Strategies (ES)
method for both continuous and discrete problems. The idea of cascade optimization is
illustrated, as well as the method of Particle Swarm Optimization (PSO) and the pro-
posed hybrid PSO-SQP methodology which combines the local search of the SQP ma-
thematical optimizer with the global search of PSO.

Chapter 4 discusses the issue of multi-objective optimization. First, the concept of multi-
objective optimization is presented, followed by the formulation of the multi-objective
optimization problem and some necessary definitions. The concepts of local and global
Pareto optimality, domination and non-domination, conflict and criteria, search and de-
cision making are also discussed. Various methods for solving the multi-objective opti-
mization problem are presented. The standard methods include the Linear Weighting
Method (LWM), Distance Function Method (DFM) and Constraint Method (CM). Two
ES-based multi-objective optimization methodologies are proposed, namely the ESMO
algorithm and the CEATm cascade evolutionary algorithm.
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Neural Networks and their applications in structural engineering are presented in Chap-
ter 5. First a historical background is given, followed by the description of biological
neural networks, and their comparison with artificial NNs. The characteristics of NNs
and their use as metamodels are discussed. Neural network elements, transfer functions,
network topologies and NN training are also presented. The back-propagation training
algorithm is described in detail and finally some problems that may arise with NNs are
discussed.

In Chapter 6 the problem of structural optimization considering uncertainties is dis-
cussed, where the two basic problems, namely the RBDO and RDO problems are pre-
sented among others. The concepts of reliability and robustness, as well as the formula-
tions of the RBDO and RDO problems are discussed, followed by a presentation of the
combined RRDO formulation. Finally, the formulation and application of the proposed
NN methodologies for the solution of the RBDO, RDO and RRDO problems are pre-
sented.

The numerical applications of the dissertation are divided into two parts, A and B, pre-
sented in Chapters 7 and 8, respectively. Part A of the numerical applications (Chapter 7)
discusses the deterministic optimization cases, where the uncertainties are not taken
into account. The chapter is divided into two sections, with five test examples in total: In
the first section (Section 7.1), two multi-objective optimization test examples are exam-
ined, using either standard methods or the proposed ESMO algorithm for solving the
multi-objective optimization problem. In the second section (Section 7.2), three single-
objective Particle Swarm Optimization (PSO) examples are considered, namely a plane
truss and two space trusses, using either the proposed enhanced PSO methodology for
constrained structural optimization or the proposed hybrid PSO-SQP methodology.

Part B of the numerical applications (Chapter 8) discusses the probabilistic optimization
cases, where uncertainties play a significant role. In this chapter, ten test examples are
examined in total. The chapter is divided into five sections: In the first section (Section
8.1), two Robust Design Optimization test examples are considered, implementing stan-
dard methods for solving the multi-objective optimization problem. In the second sec-
tion (Section 8.2), two RDO test examples are considered, using the proposed non-
dominant CEATm methodology for solving the multi-objective optimization problem. In
the third section (Section 8.3), two Reliability-Based Design Optimization test examples
are considered, using NN predictions to reduce the computational cost. In the fourth
section (Section 8.4), two Reliability-based Robust Design Optimization test examples
are considered. In the fifth section (Section 8.5), two RRDO test examples are consid-
ered, using NN predictions in order to reduce the computational cost.

In Chapter 9 the conclusions of the research work are presented. The original contribu-
tion of the thesis is clearly stated in Section 9.1. The overall conclusions are presented in
Section 9.2. Natural extensions of this work and ideas for future work on the subject of
the thesis are given in Section 9.3 of the dissertation.
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Finally, the bibliography is presented in a parenthetical author-date referencing system,
followed by three appendices: Appendix A, containing the notation and symbols used in
the dissertation; Appendix B with the acronyms and abbreviations used; and Appendix C

with a listing of publications by the author.






Chapter 24

2 Uncertainty in Structural Engineering

2.1 Theoretical approaches to uncertainty

In the past, natural science, which arose from the mathematical interpretation of natural
phenomena, showed a trend to interpret the random results of experiments as a defi-
ciency of the mathematical models rather than as a property of nature itself. In those
times, uncertainty was rejected as a natural phenomenon because of the enthusiastic il-
lusion of a science being able to provide exact answers. The foremost example of this de-
terministic world-view was Newtonian physics and classical mechanics as developed by
Galileo and Newton.

However, in later times, the introduction of mathematical models for probability and
randomness became an absolute necessity in order to explain physical phenomena in
thermodynamics and quantum mechanics. From that point on, the old paradigm of an
exact science was abandoned in those areas where the evidence and the magnitude of
randomness could no longer be ignored.

Two broad types of uncertainties can be considered in general: (i) aleatory uncertainty;
and (ii) epistemic uncertainty. The word aleatory derives from the Latin word alea, which
means the rolling of dice. Thus, an aleatory uncertainty is one that is presumed to be the
intrinsic randomness of a phenomenon arising because of natural, unpredictable varia-
tion in the performance of the system under study. The word epistemic derives from the
Greek word «emotijun», which means science. Thus, an epistemic uncertainty is one that
is presumed as being caused by lack of knowledge (or data) about the behavior of the
system. Most problems of engineering interest involve both types of uncertainties. The
distinction between these two types can be useful in engineering analysis because epis-
temic uncertainty is reducible. Although some have suggested that a clear distinction
between the two types can be made, in the modeling phase it is often difficult to deter-
mine whether a particular uncertainty should be put in the aleatory category or the epis-
temic one and thus the distinction is rather determined by our modeling choices (Der
Kiureghian and Ditlevsen 2009). It has been found that both aleatory and epistemic un-
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certainty can be treated and analyzed, either separately or combined, using probability
theory and statistics.

2.2 Uncertainty in structural engineering

Uncertainties in structural mechanics, analysis and design play an extremely important
role. They affect not only the safety and reliability of structures and mechanical compo-
nents, but also the quality of their performance. Structural engineering requires safety
levels that correspond to extremely low probabilities of significant consequences on the
structures. Although this has been mankind’s prime structural safety requirement for
centuries, the means to achieve it has varied widely over time. In an effort to increase
safety and structural reliability, safety factors were adopted by code committees in the
1970s in a subjective manner - without a probability basis - and they applied reasonably
well to standard common structures. The factors had developed through experience and
had been adjusted over the years as confidence developed in the various building me-
thods and systems. When confidence in a system was high and good performance had
been shown over the years, the safety factors were gradually reduced by small incre-
ments over a number of versions of the applicable code. On the other hand, when acci-
dents or failures occurred, there was a corresponding increase in safety factors. The
codes we use today for structural engineering design needs have been largely formed
based on this slow, adaptive process.

The trial and error process described above, for the determination of safety factors, is
slow and costly and it is quite incapable to adapting to new technologies and new envi-
ronments in time. As we enter into periods of rapid technology developments, this adap-
tive method has become unable to account for our increasing needs. Probability-based
methods, with the means to apply measures to uncertainty, are the obvious choice for
the development of safety factors for these new technologies, providing the means to ac-
commodate new loadings, materials and systems and to drive the appropriate informa-
tion acquisition to the proper design of such systems.

Nowadays, although there are fields of science where the consideration of randomness is
well established, such as quantum mechanics and other branches of modern physics,
structural engineering practice follows the trend of classical mechanics not to include
uncertainty models in the design process. Probability theory is the logical basis for deal-
ing with uncertainty, thus it should be the basis to structural safety. Despite the fact that
over the past 50 years there have been many contributions to the development of the
field of structural safety using probability theory, statistics, decision analysis, fuzzy logic
and others, widespread acceptance of these concepts by the design community has not
occurred until recently (Sexsmith 1999). It is a paradox that structural engineers, on the
one hand, do not include probabilities into their calculations, but on the other hand,
have long before recognized the importance of uncertainties in the design practice, by
using safety factors of several kinds and statistical analysis of experiments for calibrating
various code specified parameters (Hurtado 2008).
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It can be said that randomness has been in fact considered in structural design in the
past, but not in a systematic manner from an analytical - mathematical point of view.
While in conventional, deterministic procedures the qualitative assessment of uncertain-
ties is considered to be sufficient, more modern developments concentrate on their ra-
tional assessment, i.e. by quantification. This is accomplished by applying methods of
statistics and probability and more recently also methods based on fuzzy sets. The fields
which emerged from those developments are denoted as Computational Stochastic Me-
chanics as well as Structural Reliability.

It should be noted that the basic objective of these methods is not only to account for
the probabilities, but mainly to make decisions about structural safety issues, thus prob-
abilities are to be used in a decision making context. It is obvious that the reliability re-
quires a scientifically-oriented calculation, whereas safety factors are a mere practical
tool for producing a qualified product. Probability-based safety analysis should become
the basis for safety factors in codes of practice and standards, and it is increasingly used
to set structural safety requirements for specific structural systems. Its application is ra-
tional, in the sense that it uses probability theory to deal with uncertainty. It permits the
code committees and individuals responsible for setting safety standards, with the means
to be accountable. It permits the evolution of safety standards to proceed by adapting to
new information without waiting for unfortunate events to occur in order to trigger
changes in safety levels, as was the case in the past. Therefore, in the near future, proba-
bility-based safety analysis is bound to move into the mainstream of structural engineer-
ing practice.

2.3 Reliability analysis of structures

2.3.1 Definition of failure

Although its definition may seem obvious, the term failure means different things to dif-
ferent people. One can claim that a structure fails if it cannot perform its intended func-
tion. However, this is a vague definition because the desirable function of the structure
has not been specified exactly. In structural reliability analysis, the concept of a limit
state is used in order to define failure. A limit state is a boundary between desired and
undesired performance of a structure. This boundary is often represented mathematical-
ly by a limit state function or performance function. Three broad types of limit state func-
tions can be considered in general: (i) Ultimate Limit States (ULSs), mostly related to the
loss of load-carrying capacity; (ii) Serviceability Limit States (SLSs), related to gradual
deterioration, loss of user’s comfort under routine conditions, or maintenance costs; and
(iii) Fatigue Limit States (FLSs), related to the accumulation of damage and eventual loss
of strength under repeated loads.
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2.3.2 The notion of the performance function

The design of a structure requires the verification of a certain number of rules resulting
from the knowledge of mechanics and the experience of the designer and the construc-
tor. These rules come from the necessity to limit loading effects such as stresses and dis-
placements. Each rule represents an elementary event and the occurrence of several
events leads to a failure scenario for the structure. In addition to deterministic variables
used in the model, the uncertainties are modeled by stochastic variables (or random va-
riables) affecting the failure scenario. Each stochastic variable is described by statistical
information on its value, typically by a given Probability Density Function (PDF) or by
the type of PDF and some statistical parameters (generally the mean value and the stan-
dard deviation).

In the present thesis, the random variables are in general denoted by an underlined low-
er-case letter. Let X =[X,,...,X,,]" be a real-valued vector of m random variables (random
parameters) of the structural model. A realization of the vector of the random variables
would be denoted as vector X =[Xx,,..,X,,]" without underlining. The safety is defined as

the state where the structure is able to fulfill all the operating requirements, mechanical
and serviceability, for which it is designed, during its lifetime. To evaluate the failure
probability with respect to a given failure scenario, the performance function g=g(x)

(known also as the limit state function or the safety margin) is defined by the condition
of good operation of the structure. The limit between the state of failure g(x)<o and

the state of safety g(x) > o is known as the limit state surface g(x)=o. The “safety” do-

main in R™ can be defined as:

D,={xeR"|g(x)>0} (2.1)

And the “failure” domain in R™ can be defined as:

Di={xeR" | g(x)<0} (2.2)

Given the performance function g= g(x), it is possible to evaluate the probability of fail-

ure by integrating the joint PDF of all the random variables over the failure domain

pe(x) = [ f(x)dx (2.3)
Dy

where f(x):R™ — R is the joint PDF of all the random variables that satisfies the con-

ditions

f0)>0, [ flx)de=1 (2.4)

R™
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In many cases, the performance function g = g(x) can be written as the margin between

two other random variables, namely the structural resistance r =r(x) (or structural ca-
pacity) and the load effect s = s(x) (or structural demand) as follows:

E=r—s (2.5)

2.3.3 Structural resistance and demand as independent normal variables

Consider the special case where r and s are two independent random variables that both
follow normal distributions with mean values y, and y;, standard deviations o, and o, and
PDFs fi(x) and fi(x), respectively. The PDF ¢(x) for the standard normal distribution with
a zero mean (u=0) and a variance (standard deviation squared) of one (¢0”°=1) is given by
the formula

1 x?
P(x) = Noraai iy (2.6)

while the Cumulative Distribution Function (CDF) @(x) for the standard normal distribu-
tion of one variable is given by

X X
1 x?
D(x)= | p(x)dx =—— | exp| —— |dx (2.7)
'L x/27z-[o P72
0.5 | | p— ‘ 1 ‘ ‘ E— ‘
0.45 09} -a---q-m e ]
0.4 0.8F---d---tooo
0.35 07 o)
= | | | | |
(@] = | | | | |
2 0.25 ® 05F---4----f---fmmq-m -
2 2 Y/
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Figure 2.1 Standard normal distribution: (a) PDF and (b) CDF.
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Figure 2.1 shows the PDF and the CDF for the standard normal distribution of one varia-
ble, plotted for a distance 3 times the standard deviation from the mean value, which
accounts for about 99.7% of the set of random values.

The PDF 0,00 (X) and CDF D, 5+ (x) for the general normal distribution with mean value

p and standard deviation o are given by the formulas

(G-
us )= s e"p( 257 j (28)
T 1 (x—p)?°
dj,u,O'z (X) = _J;O ¢,u,o‘2 (x)dx = ovon __[O CXP[—TJCIX (2.9)

In the case where both r and s are independent random variables following normal dis-
tributions, the corresponding performance function g=r —s follows also a normal dis-

tribution with the following mean and standard deviation:

Hg = My — H (2.10)

[ 2 2
O, =0, +0y (2.112)

As a result, the PDF and the CDF for the performance function of Eq. (2.5) can be calcu-

lated analytically by
e =0, 52(x) (2.12)
Fy(x) = j S (x)dx (2.13)

The value of the CDF F,(x) is the area of the PDF f;(x) for the region (-oo, x], equal to the
probability of g= g(x) being less than x. Thus, the probability of failure g(x) <o can be

calculated as
0
pr(x) = Fy(0) = [ f,(x)dx (2.14)

By transforming the PDF and CDF of the normal distribution of g= g(x) into the corres-

ponding ones of the standard normal distribution of Egs. (2.6) and (2.7) we obtain

Hg

fe(0) = p(——= (2.15)
Og
Pr(x) = Fo(0) = D(=25) = (- p) (219

g
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Hg
h =— 2.17
where p - (2.17)

The parameter S is called reliability index and measures the distance between the mean
value of the performance function and the limit state surface, in standard deviation

units. Figure 2.2 shows a graphical interpretation of the reliability index.

fg A
<« Oy >« 045> Vg
Pr=®(-f) l&—Bog—»
Hg

Figure 2.2 Graphical interpretation of the reliability index.

In general, the higher the reliability index the lower the probability of failure which
means that the structural reliability and safety are improved. Figure 2.3 depicts the rela-
tionship between the probability of failure and the reliability index.

Probability of Failure (p)

Reliability Index (B)
Figure 2.3 Probability of failure p as a function of the reliability index 8.

Figure 2.4 shows a numerical example of the above case, where y,=10, 0,=4 and p;=2,
0s=3. The PDFs for capacity and demand are drawn, as well as the PDF for the corres-
ponding performance function that can be calculated from Egs. (2.10) and (2.11), resulting
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in py=8 and o,=5. The grayed region of the PDF of the performance function corres-
ponds to the failure domain where g<o, while its area is equal to the probability of fail-
ure, with a value of pr=0.0548 for this specific example. The reliability index, which can
be calculated by Eq. (2.17), is f=1.6.

0.14 ‘
’,'—\\ ........... r (Capacity)
0.12+ / X ppa—— s (Demand) H
g (Perf. function)

o
-

0.08

0.06

Probability Density

0.04

0.02

Random variable value

Figure 2.4 PDFs for capacity, demand and the corresponding performance function for the
numerical example.

The joint PDF for the specific case of the two normal random variables r and s can also
be calculated analytically. The general formula for the joint PDF of the multivariate nor-

mal distribution @.(x):R™ — R of a random vector X =[X,,...,X,|", is given by

P (x) = —%(x—ﬂ)TZ‘l(x—ﬂ)) (2.18)

1
- __¢x
Qx)"'? | Z|l/2 p(

with ?.(x) >0, j 0. (x)dx =1 (2.19)
Rlﬂ

where x = [xl,...,xm]T and the vector p=[ux,..., ,um]T contains the mean values (or ex-

pected values) of each random variable. The expected value of a random variable is de-
noted with the operator E(-). Thus,

4 = E(x;) (2.20)

while ¥ is a non-singular covariance matrix, a matrix of covariances between the ele-
ments of the random vector x. The covariance matrix is the natural generalization to
higher dimensions of the concept of the variance of a scalar-valued random variable.
Each entry of the covariance matrix is the covariance

% = cov(x,x;) = E( (% — u)(x; — 7)) (2.21)
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cov(x,x) cov(x,Xx) - cov(x,x,)
cov(xy, X cov(xy, x cov(xy, X,

Thus 5= (__z X) (__z X) (_‘2 Xp) (2.22)
COV(Xy, %)  COV(X,,X0) o COV(Xy,X,,)

In the case of two random variables x and y, the joint PDF for the bivariate normal dis-

tribution is given by

(x,y) = ex (—;] (2.23)
T i P 20— p7)
with F(x,y) >0, j F(x,y)dxdy =1 (2.24)
RZ
where - ;;x)z _2pG—p)— ) (- /';y)z (2.25)
Oy 0,0, o

and p is the correlation between x and y. In this case, the 2x2 covariance matrix is given

by

2
poco, O,

2
o .0
2={ * pxy} (2.26)
In the multivariate case, if the m random variables are independent, there is no correla-
tion between them and the covariance matrix is diagonal. For independent standard
normal random variables, the covariance matrix is the identity matrix I.

0.15
> 0.8
.‘Z
g o1 Z 06
z 2
= S 04
5 0.
3 0.05 &
g 0.2
o
0 0

(a) (b)
Figure 2.5 Standard bivariate normal distribution with no correlation (p=0):
(a) PDF and (b) CDF.
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Figure 2.5 shows the PDF and the CDF for the bivariate standard normal distribution
with no correlation between the two random variables (p=0), plotted for a distance 2.5
times the standard deviation from the mean value for each random variable.

In our case, with also no correlation between capacity and demand (p=o0), the bivariate
joint PDF f{r,s) is given by

(r_,ur)2 +(S_,us)2
2 2
f(r,s)= _r exp| ——2- Os (2.27)
270,0 2

The bivariate joint PDF of the two random variables r and s is plotted in Figure 2.6 as a
surface in 3D, the vertical axis denoting the probability density. The limit state surface,
defined by the plane r=s is also plotted, which cuts the joint PDF surface dividing it into
two regions, the lower left being the failure region (where r<s) and the upper right being
the safety region (where r>s). The volume of the whole joint PDF is unity, as shown in
Eq. (2.24), while the volume of the failure region is equal to the probability of failure
(0.0548).

D.D12~=-"l;.:
. 147 i IS 20
- g, Wl
o,
vy s 7 10
6 4 %%.Wfﬁﬂ r (Capacity)
s (Demand) 4 i

Figure 2.6 Joint PDF for capacity and demand cut by the limit state surface (plane r=s).

Figure 2.7 depicts the same diagram in a contour plot, where the limit state surface is
plotted as the line r=s.
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Figure 2.7 Contour plot of the joint PDF for capacity and demand
cut by the limit state surface (line r=s).

In the above example, the PDF of the performance function and the probability of failure
can be calculated analytically using well known formulas for the normal distribution.
However, analytical methods tend to be applicable only to special kinds of uncertainty
distributions and rather simple problems only. In practice, the performance function
cannot be written in a simple linear form of normal random variables and it is thus ne-
cessary to evaluate the failure probability by calculating the general integral of Eq. (2.3).
Direct integration is practically impossible even for small structures, due to the compu-
tational cost of the integration in the multi-dimensional space. Numerical methods have
to be applied to give an approximation of the failure probability. Three types of numeri-
cal methods are commonly used for this purpose:

i.  First- and Second-Order Reliability Method (FORM/SORM);
ii. Response Surface Method (RSM);
ili. Monte Carlo Simulation (MCS) method.

2.4 First- and Second-Order Reliability Methods (FORM/SORM)

The First-Order Reliability Method (Hasofer and Lind 1974; Rackwitz and Fiessler 1978)
and the Second-Order Reliability Method (Breitung 1984; Der Kiureghian et al. 1987;
Fiessler et al. 1979; Kéyliioglu and Nielsen 1994) are based on the approximation of the
performance function in the standard Gaussian space by using polynomial series. The
purpose is to get an approximation of the failure probability. The failure surface in the
space of the standard normal variables is approximated at the point on the failure surface
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where the probability density of the normalized variables is the highest. The reason for
choosing that particular point is that the failure surface should be best approximated in
the area which contributes most to the integral defining the probability of failure. Be-
cause of the symmetry of the distribution of the variables in the standard normal space,
this design point, called also the Most Probable Failure Point or simpler Most Probable
Point (MPP) or B-point, is the nearest failure point to the origin having the highest prob-
ability density among all points in the failure domain, in the standard normal space. First
and second order approximate reliability methods entail prior knowledge of the mean
and the variance of each random variable, while a differentiable failure function is also
required.

The basic steps in order to implement FORM/SORM are the following (Rodriguez and
Montero 2003):

1. Transformation of the basic variables into standard and uncorrelated normal va-
riables (in the so-called standard normal space). As a result, the real joint probabil-
ity density function is transformed into an "equivalent" multivariate normal densi-

ty (with zero mean values and identity covariance matrix).
2. Determination of the MPP (the design point) in the standard normal space.

3. Approximation of the limit state surface in the standard normal space at the design
point with the FORM or SORM principle.

4. Computation of the probability of failure in accordance with the approximation
surface selected in step 3.

In order to search for the design point, an optimization algorithm should be applied to
the following optimization problem:

u =min{|u| |G(u)=0)} (2.28)

where U =[u,..,u,]" is the design point and G(u) is the limit state function in the

transformed standard normal space, where G(u)<o denotes failure.

The presence of various local optima for the optimization problem of Eq. (2.28) can
cause significant problems to FORM and SORM (Der Kiureghian and Dakessian 1998).
Firstly, if the optimization algorithm converges to a local sub-optimum rather than the
global design point, the FORM and SORM solutions will miss the region of dominant
contribution to the failure probability integral and hence the corresponding approxima-
tion will be in gross error. Secondly, even if the optimization algorithm converges to the
global design point, there could be significant contributions to the failure probability
integral from the neighborhoods of the local design points and as a result approximating
the limit-state surface only at the global design point will not account for these contribu-
tions.
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2.4.1 FORM principle

FORM (Hasofer and Lind 1974; Rackwitz and Fiessler 1978) has been used extensively by
engineers for nearly two decades. In FORM, the failure surface in the space of the stan-
dard normal variables is linearized (as a hyperplane) at the point on the failure surface
where the probability density of the normalized variables is highest.

The first-order approximation of G at the design point is given by the first-order Taylor

series expansion as

Gu) =G )+V,Gu") (u—u") (2.29)
where V,G(u') is the gradient of G at the design point u*. Figure 2.8 shows a graphical

interpretation of the FORM principle in the standard normal space for a two dimension-

al case.

U, 4

N Failure domain
N 9.<0

Failure surface
gu=

Figure 2.8 Graphical interpretation of the FORM principle.

The corresponding reliability index and the probability of failure for FORM are given by

B = sign(g,(0)|«’ (2.30)

Prorm = P (=15) (2.31)
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2.4.2 SORM principle

In SORM (Breitung 1984; Der Kiureghian et al. 1987; Fiessler et al. 1979; Koyliioglu and
Nielsen 1994), the failure surface in the space of the standard normal variables is approx-
imated by a quadratic function (parabolic surface) at the point on the failure surface
where the probability density of the normalized variables is highest. The second-order
approximation of G at the design point is given by the second-order Taylor series expan-

sion as

Gu)=Gu')+V,Gu’)" ( u—u' ) + %( u—u )T V,%G(u*)( u—u ) (2.32)

where V,G(u’) is the gradient of G and V2G(u') is the Hessian matrix of G at the design

point u*. Figure 2.9 shows a graphical interpretation of the SORM principle in the stan-
dard normal space for a two dimensional case. It can be clearly seen that the second-
order approximation by SORM incorporates better the influence of the curvature of the
limit state surface at the design point, as compared to the FORM case of Figure 2.8.

Failure domain
9u<0

. Failure surface
9.=0

Figure 2.9 Graphical interpretation of the SORM principle.

Second-order integration involves applying a curvature correction for the calculation of
the probability of failure. Two simple approximations, one given by Breitung (1984) and
the other one given by Hohenbichler and Rackwitz (1988) can be used to obtain the
second-order reliability estimates. Breitung’s approximation is given by
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(2.33)

m—1 1
=@ (- B —
Psormi ( ﬂ)g \/m

where A;=-k;/2; and k; are the main curvatures, taken positive for a concave limit state
function. Hohenbichler and Rackwitz’s approximation is given by

m-—1 1
psowiz = AN 577 (234

where n(B)=¢(B)/P(-f). Both formulas perform well for moderate to large values of
and approach the FORM results as 8 tends to zero (Hong 1999). The corresponding re-
liability index for SORM is be given by

Bsorm = —P " (Psorm) (2.35)

where psorm can be either psorm; OF psormz, depending on the method used.

2.5 Response Surface Method

RSM tries to approximate the mechanical response of the structure by using the so-called

metamodel. Suppose x =[x,,..., )_cm]T is a vector of m random variables and g= g(x) is

the corresponding performance function. Although the performance function and the
actual response in general are functions of the random variables, these functions are
generally unavailable in closed form for structural reliability problems. In RSM, “experi-
ments” are conducted with the random variables for a sufficient number of times in or-
der to define the response surface to the level of accuracy desired. Each experiment can
be represented as a “point” in the m-dimensional space of the random variables. For each
point, a structural analysis is performed and a value of the performance function g is cal-
culated. The basic response surface procedure aims at approximating the performance
function with a polynomial §(x): R™ — R. The unknown coefficients of the polynomial
are determined, such that the error of the approximation is minimum in the region of
interest.

The selection of the order of the approximating polynomial and of the points in R™ for
experimentation is of great importance, requiring careful consideration. The degree of
g(x) should be less than or equal to the degree of g(x) to get a well-conditioned system

of linear equations for the unknown coefficients (Rajashekhar and Ellingwood 1993). Of
course, the function g(x) itself is not known a priori. If §(x) is of much higher degree
than g(x), one obtains an ill-conditioned system of equations. Moreover, higher order
polynomials can exhibit erratic behavior in the sub-domains not covered by the experi-
ments. Up to a certain degree, a higher order polynomial improves the accuracy of the
approximation at the expense of additional computational time. The rate of increase in
accuracy reduces with the degree of the polynomial but the computational cost increases
exponentially, as a higher order polynomial involves greater number of unknown coeffi-
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cients and requires correspondingly more structural analyses. For reliability estimates,
one needs to have a good approximation of the performance function around the design
point, or the region of the failure domain where the joint probability density is relatively
large and thus contributes most to the overall failure probability. Since the actual limit
state function and the actual design point are not known, the accuracy of the reliability
estimate depends on the accuracy of the polynomial approximation in the region of the
design point. Quadratic polynomials have shown to be suitable for localized approxima-
tion of structural systems in general.

2.5.1 Advantages and disadvantages of RSM for reliability analysis

The main advantages of RSM (Chateauneuf 2008) are (i) the reduction of the computa-
tional cost for moderate number of random variables; and (ii) (for reliability-based de-
sign optimization), the possibility of coupling reliability and optimization algorithms to
achieve high efficiency. The most common drawback lies in the large number of Finite
Element analyses of a probably complex model, for moderate and high number of ran-
dom variables. It should be noted that the large part of the computational cost lies in the
evaluation of the polynomial coefficients. After the polynomial has been defined, the
failure probability can be simply evaluated by using the response surface which is an easy
to calculate analytical expression.

2.6 Monte Carlo Simulation

MCS methods are a class of computational algorithms that rely on repeated random
sampling to compute their results and are often used for simulating physical and ma-
thematical systems. They are mainly used for obtaining numerical solutions when it is
infeasible or impossible to compute an exact result analytically. Because of their reliance
on repeated computation and random numbers, they are most suited to calculation by a
computer. The term Monte Carlo method was coined in the 1940s by physicists working
on nuclear weapon projects in the Los Alamos National Laboratory, in reference to
games of chance, a popular attraction in the casino of Monte Carlo in Monaco (Metropo-
lis 1987; Metropolis and Ulam 1949).

These methods are especially useful in studying systems with a large number of coupled
degrees of freedom, phenomena with significant uncertainty in inputs, or for the evalua-
tion of definite multidimensional integrals with complicated boundary conditions. They
are used to solve various problems by generating suitable random numbers and observ-
ing that fraction of the numbers obeying some property or properties.

MCS can be used for analyzing uncertainty propagation, where the goal is to determine
how random variation, lack of knowledge, or error affects the sensitivity, performance, or
reliability of the system that is being modeled. It is categorized as a sampling method
because the inputs are randomly generated from probability distributions to simulate the
process of sampling from an actual population. The choice of distribution for the inputs
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should most closely match the available data, or best represent the current state of
knowledge. MCS technique has the important property that the successive points in the
sample are independent.

The MCS method is often applied in three fields of application (Nowak and Collins
2000):

i. To solve complex problems for which closed-form solutions are either impossible
or extremely difficult.

ii. To solve complex problems that can be solved (at least approximately) in a closed
form provided that some simplifying assumptions are made to the original prob-
lem. By using MCS the original problem can be studied without any assumptions
and thus more realistic results can be obtained.

iii. To check the results of other solution techniques.

2.6.1 Advantages and disadvantages of MCS for reliability analysis

The main advantages of MCS method (Chateauneuf 2008) are: (i) the capability of han-
dling practically any mechanical or physical model regardless of its complexity; and (ii)
its simple implementation without any modification of the mechanical model which can
be considered as a “black box” receiving simple analysis calls. The main disadvantages
are: (i) the excessive computational effort due to the enormous sample size required, es-
pecially for realistic structures with low probability of failure; and (ii) the numerical
noise due to random sampling, leading to non-monotonic estimates during simulations,
and as a result, it becomes impossible to get accurate and stable evaluation of the re-
sponse gradient. Although the former shortcoming can be alleviated by using variance
reduction techniques, as will be discussed in detail in Section 2.7, the latter still remains
a serious difficulty for practical applications where there is a need for gradient informa-

tion.

2.6.2 Calculation of basic statistical quantities for one random variable with MCS

Suppose X is a real-valued random variable with PDF f{x):
f(x)>0, jﬂ@@:l (2.36)

Let g(x) be an arbitrary real function of the random variable x and g = g(x) the corres-

ponding random variable. The expected value (mean value or first central moment) and
the variance (second central moment) of g with respect to the PDF f{x) are given by the
analytical formulas:

0

p=6(g)= [ g(x)f(x)dx (2.37)

—00
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o’ = var(g) = ]E((g—,u)z): I (g(x)—,u)2 f(x)dx (2.38)

Making n random drawings of x (x,,...,x,), called simulation runs, the corresponding val-
ues g(x,),...,g(x,) for the sample can be calculated and their mean value is given by:

1 n
Ha(g) =—2 &(%) (2.39)
i=1

For a given number of simulation runs n, the quantity £4,(g) represents the simulated
value or the Monte Carlo estimator of u. The unbiased sample variance can also be calcu-
lated as follows

1 n
n—14

1=

2
o,’(g) = (g(x;) = 1,(g)) (2.40)
The quantity o,%( g) represents the Monte Carlo estimator of ¢”. It can be proved that as

the number of simulation runs n increases, the calculated mean of the sample converges
to the real expected value of g, while the calculated sample variance converges to the real
variance of g:

lim z,(g) = u (2.41)
n—»0

2

lim 5,%(g) = o (2.42)
n—»0 -

2.6.3 Calculation of the probability of failure with MCS

One random variable case

In the previous example, let the arbitrary real function g= g(x) be the limit state func-
tion, i.e. g(x) <o denotes failure state of the model. The probability of failure is given

analytically by the integral expression

pe(x) = [ f(x)dx (2.43)
Dy

Where Dk is the “failure” domain in R, defined as

Di;={xeR|g(x)<0} (2.44)

Making n random drawings of x (x,,...,x,), the corresponding values g(x,),...,g(x;,) for the
sample can be obtained. A sequence is defined as follows:

B {o if g(x)>0

] , fori=1,...n (2.45)
1 if g(x)<0
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The sum of the elements of the sequence counts the samples for which failure has oc-
curred, out of n samples in total. The corresponding rate of occurrence can be calculated

by

Pa(X) = %Z a; (2.46)
i=1

For a given number of n simulation runs, the quantity p,(x) represents the Monte Carlo
estimator of p(x). It can be proved that as the number of simulation runs n increases, the
Monte Carlo estimator of the probability of violation converges to the real value of p(x).

lim p,(x) = p(x) (2.47)
n—»0

Multiple random variables case

Suppose X =[x,,..., )_cm]T is a real-valued vector of m random variables (structural para-

meters) with joint PDF f(x):R™ >R

f(0)>0, [ flx)de=1 (2.48)

R m

It should be noted that in the general case the individual random variables x,,...,x,, can

be either correlated with each other or not correlated at all (independent). In any case,
the joint PDF f(x) contains all the information regarding the random variables’ distribu-
tions. Let g =¢g(x) be a real function of the random vector x that expresses the limit

state function, i.e. g(x) <o denotes failure of the model. The probability of failure is giv-

en analytically by the integral expression

pr(x) = [ f(x)dx (2.49)
Dy

Where Dk is the “failure” domain in R™, defined as

Dy ={x eR" | g(x) <0} (2.50)

Making n random drawings of x (x/,...,x"), the corresponding values g(x'),...,g(x") for the
sample can be calculated. It should be noted that each random drawing of x (sample) is
in fact a vector x' = [xi,...,xi,l]T containing the values of the of m random variables. A

sequence is defined as follows:

a.:{o if g(x')>0

, , fori=1,...,n (2.51)
1 if g(x')<0

The sum of the sequence counts the samples for which the limit state has been exceeded,
out of n samples in total. The corresponding rate of occurrence can be calculated by
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Pn(x) = %Z a; (2.52)
i=1

For a given number of n simulation runs, the quantity p,(x) represents the Monte Carlo

estimator of p(x). It can be proved that as the number of simulation runs n increases, the
Monte Carlo estimator of the probability of violation converges to the real value of p(x).

lim p,(x) = p(x) (2.53)
n—»o0

Numerical example

Suppose that the probability of failure for the two-variable problem of Figure 2.7 is to be
calculated with MCS. The analytical “exact” solution, as was shown in Section 2.3.3, is
pr=0.0548. Figure 2.10 depicts the joint PDF of the two random variables in a contour
plot, together with the representation of the MCS samples. Each sample is depicted as an
“x” in the two-dimensional space of the figure. The picture on the left depicts 100 MCS
samples, while the picture on the right depicts 500 MCS samples. The corresponding
probabilities of failures obtained for the two cases are p,,,=0.03 and ps,,=0.056. By using
a number of 5000 MCS samples, we can obtain pf=0.0552, a very good approximation of

the “true” probability of failure.

Of course, as random numbers are used for the generation of samples, different results
will be obtained for other MCS runs, even if the same number of samples is used, as will
be shown in detail in Section 2.6.4. In any case, in order to estimate p(x) with accuracy,
an adequate number of n independent random samples should be produced.
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(@ (b)
Figure 2.10 MCS for the calculation of probability of failure (“exact” value ps=0.0548)
(@) P10o=0.03 for 100 samples, (b) pc,,=0.056 for 500 samples.
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2.6.4 Accuracy of probability estimates with MCS

The MCS method can provide probability estimates for structural reliability problems. In
general, the estimate improves as the number of simulation runs increases. If a MCS for
obtaining the probability of failure is repeated for a number of times, different results
will be obtained. The calculated value will vary from sample to sample. This means that
the probability estimate of the MCS is a random variable itself, with its own mean, stan-
dard deviation and coefficient of variation.

Let puue be the theoretically correct probability that is tried to be estimated by MCS. It
can be shown (Soong and Grigoriou 1993) that the expected value, variance and coeffi-
cient of variation of the estimated probability p are given by the formulas:

]E(E) = Ptrue (2.54)

, 1
Op = ;( Dirue(1 = ptrue)) (2.55)
O-P _ 1- Ptrue (2.56)

S =
g 15(1_9) N Ptrue

It is clear from Eq. (2.55) that the uncertainty in the estimate of the probability decreases
as the total number of simulation runs, n, increases, as expected. The above formulas
provide a way to determine how many simulations are required to estimate a probability
and limit the uncertainty in the estimate. The number of simulations needed to obtain a
given probability of failure, while keeping the coefficient of variation at a certain value,
can be obtained by Eq. (2.56) as follows:

1-—
n=—Puue (2.57)

2
Vp * Ptrue

As an example, if one intends to estimate a probability as low as 6x10 and keep the coef-
ficient of variation at or below 20%, a sample size n=4142 is needed.
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Figure 2.11 Required simulation runs n as a function of the
probability of failure p and the coefficient of variation v.

In Figure 2.11 the required number of simulation runs is plotted as a function of the
probability of failure and the coefficient of variation. The dot in the figure represents the
above mentioned numerical example that corresponds to point (6x107, 0.20, 4142) in the
3D space of the figure. It can be seen that as the probability and the coefficient of varia-

tion decreases, the required number of simulation runs increases excessively.

2.7 Improved sampling techniques

In order to improve the accuracy of the MCS estimate or, in other words, reduce the es-
timate's variance, a common, obvious solution is to increase n, as the estimate's variance
is inversely proportional to n as shown in Eq. (2.56). This method has the disadvantage of
requiring more calculations as the sample size increases. As a result, for typical structural
reliability problems the computational effort involved in the basic MSC can become ex-
cessive due to the enormous sample size required.

An alternative means to reduce the computational effort of MCS is by using variance re-
duction techniques that use statistical approaches which obtain more information from
the computer runs conducted, or control and direct the pseudo-random streams to op-
timize the information to be produced by a run (James 1985). Various variance reduction
techniques have been proposed. Some examples are:

1. Importance Sampling (IS) (Anderson 1999; Melchers 1989; Song 1997; Srinivasan
2002);

2. Latin Hypercube Sampling (LHS) (Florian 1992; McKay et al. 1979);
3. Descriptive Sampling (DS) (Saliby 1990; Saliby 1997);
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4. Control Variates (L'Ecuyer and Buist 2008; Szechtman 2003);
5. Antithetic Variates (Fishman and Huang 1983; Ross 2006);

6. Adaptive Sampling (Bucher 1988; Mori and Ellingwood 1993; Thompson and Seber
1996);

7. Hammersley Sequence Sampling (HSS) (Kalagnanam and Diwekar 1997; Wang et al.
2004);

8. Line Sampling (Koutsourelakis et al. 2004);
9. Subset Simulation (Au and Beck 2001);

10. Directional Simulation (Gray and Melchers 2006; Nie and Ellingwood 2004; Nie
and Ellingwood 2005).

Recent results (Koutsourelakis et al. 2004) reveal that variance reduction techniques still
require significant number of the system response evaluations to estimate failure proba-
bilities of the order less than 107. In this thesis, three sampling methodologies are mainly
used: (i) The Crude MCS; (ii) Importance Sampling; and (iii) MCS with Latin Hypercube
Sampling. IS and MCS with LHS methodologies will be described in detail in Sections 2.8
and 2.9, respectively, while a brief description of other methods is also given in Section
2.10.

2.8 Latin Hypercube Sampling (LHS)

One of the advantages of MCS is the fact that its results can be treated using classical
statistical methods, thus results can be presented in the form of histograms and methods
of statistical estimation and inference can be applicable (Diwekar 2008). Nevertheless, in
most applications, the actual relationship between successive points in a sample has no
physical significance; hence the randomness/independence for approximating a distribu-
tion is not crucial. Moreover, the error of approximating a distribution by a finite sample
depends on the equidistribution properties of the sample rather than its randomness.
Once it is apparent that the uniformity properties are central to the design of sampling
techniques, constrained or stratified sampling techniques became appealing.

The idea of the Latin Hypercube Sampling (LHS) technique was proposed by MacKay et al.
(1979) in an effort to reduce the required computational cost of random sampling metho-
dologies. LHS is one form of stratified sampling that can yield more precise estimates of
the distribution function. In the context of statistical sampling, a square grid containing
sample positions is a Latin square if (and only if) there is only one sample in each row
and each column. Figure 2.12 depicts a Latin square, an example of eight samples in a
two-dimensional space. Note that every black square, that represents a sample, is unique
in its row and column. The generalization of this concept to an arbitrary number of m
dimensions constitutes a Latin hypercube of dimension m, where each sample is the only
one in each axis-aligned hyperplane containing it.
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Figure 2.12 Possible random pairing for LHS sampling with two variables (8 samples).

Based on this concept, Latin hypercube samples are generated by dividing the range of
each of the m uncertain variables into N non-overlapping segments of equal probability.
Thus, the m-dimensional parameter space is partitioned into N™ cells. For each random
variable, a single value is selected from each interval at random with respect to the prob-
ability distribution in the interval, producing a set of N values. In Median Latin Hyper-
cube Sampling (MLHS) this value is chosen as the mid-point of the interval. In the case of
a random variable x with PDF f(x), points x,,...,xy, divide its range (-o0,+o0) into seg-
ments of equal probability 1/N as follows

Xit1

X +00

[ feode= [ fde= [ flx)de= % (i=1..,N-2) (2.58)

—® Xi XN-1
The same is done for every one of the m random variables. The values of each random va-
riable are randomly matched with each other to create N samples, each one containing m
random values (m-tuplets). The number of intervals N needs to be the same for each va-
riable. The LHS method is independent of the random variables number as it does not

require more samples for more random variables, which is one of its main advantages.

A schematic representation of the stratification scheme (intervals of equal probability) of
LHS for a normal random variable is given in Figure 2.13 in comparison to the crude MCS
scheme of Figure 2.14. In Figure 2.13, the total area of the distribution has been divided
into N=8 regions, each one having an area of 1/8=0.125. Eight samples have been gener-
ated for illustration, each one belonging to each region. It is clear that using the LHS, the
distribution of samples is better and more representative of the PDF, than the one using
crude MCS.
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Figure 2.13 Latin Hypercube sampling for the normal distribution with 8 samples.
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Figure 2.14 MC sampling for the normal distribution with 8 samples.

The advantage of the LHS approach is that the random samples are generated from all
ranges of possible values. LHS is generally recognized as one of the most efficient size
reduction techniques for the calculation of statistical quantities and relatively large viola-
tion probabilities (Owen 1997).

Latin Hypercube sampling can improve the efficiency of MCS by picking the input sam-
ples in a more effective way. Whereas MCS method typically pick points at random within
the domain, Latin Hypercube samples the entire domain more systematically. It is a strat-
egy for generating random sample points ensuring that all portions of the random space
are properly represented. Thus, by means of LHS method, the whole parameter space can
be sampled more reliably with fewer samples, improving convergence rates and speeding
up the execution time.
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It should be noted that in crude MCS, in order to increase the sample size, new random
numbers can be generated and they can be added to the existing sample, so existing
samples can be taken into account when the sample size is to be increased. On the con-
trary, in LHS, due to the stratified nature of the method, all samples have to be generat-
ed from the beginning. In order to use a larger sample in LHS, one should generate the
whole larger sample from the beginning.

2.8.1 Comparison of Crude MCS with MCS-LHS

The performance of the MCS-LHS method compared to the Crude MCS will be examined
in two mathematical examples, a simple one-variable problem and a two-variable prob-
lem. Both methods are used for the calculation of some statistical quantities and the re-

sults are compared.

One-variable problem

Suppose x is a random variable that follows the standard normal distribution. The mean
value of x is p,=o0, while the standard deviation is o,=1. Sample sizes starting from 100
samples and ending in 10000 samples with an increment of 100 are used. For a given
sample size, random numbers are generated either purely randomly (Crude MCS) or by
MCS with LHS (MCS-LHS). Every time, the mean value and the standard deviation are
calculated. The figures below depict the calculated values versus the sample size for the

mean and the standard deviation.
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Figure 2.15 MCS-LHS compared to Crude MCS for the calculation of the mean value for the
one-variable example.
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Figure 2.16 MCS-LHS compared to Crude MCS for the calculation of the standard deviation
for the one-variable example.

The superiority of MCS-LHS over Crude MCS is clearly demonstrated, as Crude MCS
needs too many iterations to converge to the exact values of the mean and sigma, while
LHS needs only a few.

Two-variable problem

Suppose x and y are two real-valued random variables that both follow normal distribu-
tions with mean values p,, i, and standard deviations o,, g, respectively. The PDF of the
bivariate normal distribution of x and y is given by Eq. (2.23) for the general case, with
possible correlation between the random variables.

In order to examine the performance of the MCS-LHS method compared to the Crude
MCS, a numerical test is examined. For the numerical test’s purposes, we suppose that
the two random variables are independent (p=0) and that the mean values and standard
deviations are the ones given in the table below.

Table 2.1 Statistical parameters of the two independent random variables.

Random Mean Standard deviation
variable

X Hx=1 0,=1
Y Hy=2 0y=3

For the case with no correlation, the PDF of the bivariate distribution of the two inde-
pendent normal variables is given by
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1 d
=3 exp(——j (2.59)
o0, 2
with F(x,y) >0, j F(x,y)dxdy =1 (2.60)
R2
2 _ 2
where d = (x- !;X) + % 'L;y) (2.61)
o, o,

Figure 2.17 depicts the PDF of the bivariate distribution of the two independent normal
variables in the p+20 region for both variables.
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Figure 2.17 PDF of the bivariate distribution of the two independent normal variables.

Let z be a linear combination of x and y, i.e. z =ax + by +c, where q, b and ¢ are real

numbers. Then, according to statistics and probability theory, z follows also a normal
distribution with the following properties:

i =ap, +bu, +c (2.62)

o. = \/(ac,)* + (bo,)’ (2.63)

For the numerical example’s purposes, let z=5x+4y+2, thus according to Egs. (2.62) and
(2.63), u,=15 and o,=13. Figure 2.18 depicts the probability density functions for the two
independent variables x, y and the dependent variable z.
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Figure 2.18 Probability density functions for the three variables x, y, z.

Assuming that the analytical relationships for the calculation of the mean value and the
standard deviation of z (Egs. (2.62) and (2.63)) are not known, we will try to calculate the
statistical quantities of z numerically with crude MCS (MCS) and MCS with LHS (MCS-
LHS) and the results will be compared to the exact analytical values.

Sample sizes starting from 100 samples and ending in 10000 samples with an increment
of 100 are used. For a given sample size, z-random numbers are generated either purely
randomly (Crude MCS) or by LHS (MCS-LHS). Every time, the mean value and the stan-
dard deviation are calculated. The figures below depict the calculated values versus the
sample size for the mean and the standard deviation.
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Figure 2.19 MC sampling for the normal distribution: Mean value vs Sample size.
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Figure 2.20 MC sampling for the normal distribution: Sigma vs Sample size.

The superiority of MCS-LHS over Crude MCS is clearly demonstrated also in the two-
variable numerical test. For the calculation of the mean value, MCS needs too many ite-
rations to converge to the exact value, while LHS needs only a few, as shown in Figure
2.19. For the calculation of the standard deviation, the performance of the MCS-LHS is
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clearly better, as it is constantly closer to the correct value of 13 over all the range of
sample sizes, as shown in Figure 2.20.

Note that the MCS line in Figure 2.20 is smoother than the MCS-LHS. This is due to the
fact that in MCS, in order to increase the sample size, new random numbers can be gen-
erated and they can be added to the existing sample, so existing samples are always tak-
en into account when the sample size is to be increased, as was discussed in detail in
Section 2.8. The existing samples are taken into account for the calculation of the statis-
tical values of larger samples and as a result a smoother line is obtained. On the contrary,
in MCS-LHS, all samples have to be generated from the beginning and as a result the
corresponding line is not smooth. Figure 2.21 shows the distribution of 1000 (x,y) sam-
ples in the x-y plane for the MCS and MCS-LHS cases.

@) (b)
Figure 2.21 Distribution of 1000 samples in the x-y plane for (a) Crude MCS, (b) MCS-LHS.

2.9 Importance Sampling (IS)

The accurate estimation of probabilities of rare events through MCS is a very difficult
task, as rare events are almost always defined on the tails of probability density func-
tions. They have small probabilities and occur infrequently in real applications or during
a simulation. This makes it difficult to generate them in sufficiently large numbers so
that statistically significant conclusions can be drawn.

However, these events can be made to occur more often by deliberately introducing
changes in the probability distributions that govern their behavior. Results obtained
from such simulations are then altered to compensate for or undo the effects of these
changes. Thus, in Importance Sampling (IS) (Anderson 1999; Srinivasan 2002), the main
goal is to replace a sample distribution using another distribution that places more
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weight in the areas of importance. Such a distribution function is problem-dependent
and in most cases is difficult to find.

Importance Sampling is a general technique for estimating the properties of a particular
distribution, while only having samples generated from a different distribution rather
than the distribution of interest. The main idea behind the method is that certain values
of the input random variables in a simulation have more impact on the parameter being
estimated than others. If these "important” values are emphasized by sampling more fre-
quently, then the estimator variance can be reduced. The basic methodology is to choose
a distribution which "encourages" the important values. This leads to the use of a "bi-
ased" distribution which results in a biased estimator if it is applied directly in the simu-
lation. However, the simulation outputs are weighted to correct for the use of the biased
distribution, and this ensures that the new estimator is unbiased. The weight is given by
the likelihood ratio (the ratio of the maximum probability of a result under two different
hypotheses), that is, the Radon-Nikodym derivative (Shilov and Gurevich 1978) of the
true underlying distribution with respect to the biased simulation distribution.

The fundamental issue in implementing importance sampling is the appropriate choice
of the biased distribution which will encourage the important regions of the input va-
riables. A good distribution can reduce significantly the computational time, in particu-
lar when estimating rare event probabilities (Rubinstein and Kroese 2008). On the other
hand, a bad distribution can cause longer run times than the crude Monte Carlo Simula-
tion technique without importance sampling. Let

(=E;(H(x))= j H(x)- f(x)dx (2.64)

where H is the sample performance (e.g. the performance function) and fis the probabil-
ity density function of the random variable x. For clarification reasons, a subscript fis
added to the expectation E (expected value) to indicate that it is taken with respect to
the density function f. Let g be another probability density function such that the func-
tion H-fis dominated by function g, that is,

gx)=0 = h(x)-f(x)=0 (2.65)

Using the density function g we can now represent / as

W (H@ @)
e (269

where the subscript g now means that the expectation is taken with respect to function
g. Such a density is called the importance sampling density. Consequently, if x, ...,x, is a
random sample from g, then

H(x) - L) (xl’: ) (2.67)
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is an unbiased estimator of /. This estimator is called the importance sampling estimator.

The ratio of densities,

w(x) = L) (2.68)
g(x)

is called the likelihood ratio. For this reason the importance sampling estimator is also
called the likelihood ratio estimator. In the particular case where there is no change of
measure, that is g=f, we have W=1, and the likelihood ratio estimator reduces to the
usual MCS estimator.

[t is important to realize that although Eq. (2.67) is an unbiased estimator for any PDF g
dominating H-f, not all such PDFs are appropriate. One of the main rules for choosing a
good importance sampling PDF is that the estimator of Eq. (2.67) should have finite va-
riance. This is equivalent to the requirement that

2 2
JEg(Hz(g)-%j:JEf[Hz(g)-%j«n (2.69)

which suggests that g should not have a “lighter tail” than fand that, preferably, the like-
lihood ratio f/g should be bounded (Rubinstein and Kroese 2008).

The main drawback of the IS method is that it requires prior knowledge of the structural
behavior in order to determine the most effective sampling region, which for many prac-
tical problems is not clearly identifiable.

2.10 Other sampling methodologies

2.10.1 Descriptive Sampling

In a Monte Carlo application, sampled distributions are assumed to be known. Using
simple random sampling, sample histograms or, equivalently, sample moments will vary
randomly, thus producing an imprecise description of the known input distribution, and
consequently increasing the variance of simulation estimates. Descriptive Sampling (DS)
(Saliby 1990; Saliby 1997) is a Monte Carlo Sampling technique based on a deterministic
and purposive selection of the sample values and their random permutation in order to
conform as closely as possible to the sampled distribution. Abandoning the 'principle’
that sample values must be necessarily randomly generated in order to describe random
behavior, DS is a rather polemical idea, based on a fully deterministic selection of the
input sample values and their random permutation. DS avoids set variability of the input
values and leads to more precise simulation estimates. However, since DS is based on a
non-random selection of input sample values, it also represents a fundamental concep-
tual change on how to sample in any Monte Carlo application. The DS proposal ques-
tions the paradigm that a random selection of sample values would be more appropriate.
It is justified by the fact that in any Monte Carlo application, the sampled distribution
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must be assumed known a priori. As such, the sampling context is not inferential, where
one seeks to acquire information about a population, but descriptive, where the purpose
is just to describe the already known assumed PDF.

An interesting issue related to DS is its similarities to LHS, as DS can be seen as a limit-
ing case of LHS. Like LHS, DS is based on a highly controlled selection of the input val-
ues and their random permutation. The difference between the two methods is that LHS
still preserves a minimum random variability on the sample values selection, which is

completely eliminated in DS.

2.10.2 Control Variates

In a Monte Carlo Simulation method, one or more control variates may be employed to
achieve variance reduction by exploiting the correlation between statistics. This ap-
proach is called the Control Variates method (L'Ecuyer and Buist 2008; Szechtman 2003).
Suppose m is a random variable with a mean value E(m)=u that is unknown, to be calcu-
lated with MCS. If one is able to find another statistic t such that the mean value E(f)=t

is known, an unbiased estimator for p is given by

1 =E(m") (2.70)
where m =m+c(t - 7) (2.712)

and c is a constant. It can be shown that in order to minimize the variance of m’, the fol-
lowing value of the constant has to be used

C:_cov(fﬂoi):_g_mp (2.72)
var(s) -~ o P '

where p,, is the correlation between m and t and o,,%, 0,” are the variances of m and ¢,
respectively. In this case, the variance of m is given by

Var(m*):(l—p,il)-var(m) (2.73)

As shown in Eq. (2.73), the greater the value of the correlation |p,,|, the greater the va-
riance reduction achieved. In the case that o,,, o, and p,, are not known, they can be ei-
ther somehow “guessed” or estimated with Monte Carlo Simulation.

2.10.3 Antithetic Variates

An alternative to using control variates is to consider the method of antithetic variates
(Fishman and Huang 1983; Ross 2006). Suppose m is a random variable with a mean
value E(m)=p that is unknown, to be calculated with MCS. Suppose u and v are two ran-
dom variables with the same expected values E(u)=p and E(v)=p. Then an unbiased es-

timator for y is given by
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—E(£+2j (2.74)
p=E = :
with Var(gzzj = %(Var(g) + var(v) + 2cov(u,v)) (2.75)

Thus, in order to calculate u by sampling with the two random variables u and v, it would
be advantageous if u and v were negatively correlated, instead of being independent, as
that would reduce the variance of the simulation, as shown in Eq. (2.75). Suppose that u
can be written as a function of k random numbers uniformly distributed in the interval

(0,1).
u=h(w,...,w) (2.76)

If w,...,w, follow the uniform distribution in the interval (o,1), then so are 1-w,,...,1-wx.
Hence, the random variable

y= h(l_n}b"-’l_Wk) (277)

has the same distribution as u. The random variables 1-w;,,...,1-wy are clearly negatively
correlated with w,,...,w;. It can be proved that, in the special case where h is a monotone
(either increasing or decreasing) function of each of its coordinates, also u is negatively
correlated with v. Thus, in this special case, after w;,,...,wy are generated as to compute u,
rather than generating a new independent set of random variables, one can do better by
just using the set 1-w,, ...,1-w; to compute v. This is the main concept of the antithetic va-
riates technique.

By using this technique, the benefit is double, as: (i) the resulting estimator has reduced
variance, provided that h is a monotone function; and (ii) there is no need to generate a
second set of random numbers, which also saves computational time.

2.10.4 Adaptive Sampling

Adaptive Sampling (Thompson and Seber 1996), is a sampling scheme in which sampling
regions are selected based on values of the variables of interest observed during a sam-
pling survey. In a conventional sampling scheme, the selection for a sampling point does
not depend on previous observations made during an initial survey; the entire sampling
set is selected, before any physical sampling in the field ever takes place. Therefore, con-
ventional sampling guarantees that the calculated statistics will be unbiased.

On the other hand, adaptive procedures allow adjustments as the sampling is being car-
ried out. This way, Adaptive Sampling can make more efficient use of resources without
diminishing the statistical power of the procedure. If additional units are added to the
sampling design wherever high positive identifications are observed, the sample mean
will over-estimate the population mean. This way, Adaptive Sampling introduces biases

into conventional estimators, so new unbiased estimators are needed (Thompson 2002).
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A method of obtaining unbiased estimators is to make use of new observations in addi-
tion to the observations initially selected.

2.10.5 Hammersley Sequence Sampling (HSS)

Latin hypercubes are designed for uniformity along a single dimension where subse-
quent columns are randomly paired for placement on an m-dimensional cube. Therefore,
the likelihood of such schemes providing good uniformity properties on high-
dimensional cubes is small. Hammersley Sequence Sampling (HSS), based on Hammers-
ley points, provides a low-discrepancy experimental design for placing N points in an m-
dimensional hypercube (Kalagnanam and Diwekar 1997; Wang et al. 2004), ensuring that
the sample set is more representative of the population and providing better uniformity
properties over the m-dimensional space, unlike other sampling techniques. A low dis-
crepancy implies a uniform distribution of points in space.

One of the main advantages of MCS is that the number of samples required to obtain a
given accuracy of estimates does not scale exponentially with the number of uncertain
variables, a characteristic that is preserved also in HSS. For correlated samples, the ap-
proach described by Kalagnanam and Diwekar (1997) for HSS uses rank correlations to
preserve the stratified design along each dimension. By imposing the correlation struc-
tures, the uniformity property of the scheme is preserved, but the optimal location of the
Hammersley points is perturbed. HSS is generated based on prime numbers as bases.
Although the original HSS technique designs start at the same initial point, they can be
randomized by choosing the first prime number randomly. It has been found that the
uniformity property of HSS for higher dimensions (more than 30 uncertain variables)
gets distorted. In order to break this distortion, leaps in prime numbers can be intro-
duced for higher dimensions. The leaped HSS circumvents the distortion at higher di-
mensions. According to Kalagnanam and Diwekar (1997) the HSS technique is consi-
dered more efficient than crude MCS and LHS for uncertainty analysis.
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3 Single-objective Optimization

3.1 The concept of optimum structural design

Generally, a structure has to serve a specific purpose, under some constraints. Engineer-
ing structures such as bridges, aircrafts or buildings have to be built in an optimum way,
in order to be safe and also economic. The optimum design is the main goal of an engi-
neer who aims at designing a machine part or a structure. Until a few decades ago, the
fulfillment of this purpose was very difficult since no automated algorithms or computer
methods were available. Traditionally, the design of a structure was done via some kind
of trial and error. Since then, many methods have been proposed in the literature to
solve structural optimization problems. Each method exhibits some advantages and
some disadvantages.

The rapid development of computer technology nowadays has led to an increase in the
demands from our structures. A structure that merely fulfils the safety or other require-
ments is not adequate. The aim is to construct the system optimally, in order to fulfill
the safety requirements on one hand and on the other hand to minimize some criterion
such as the cost or the weight of the structure. The design of complicated structural sys-
tems requires a number of time consuming calculations. The development and imple-
mentation of appropriate algorithms has made possible the optimum design of large-
scale structural systems. By utilizing the available technology, now the engineer can de-
sign better structures, with reduced construction and operation cost of in an affordable
computing time.

Two steps are required in order to solve an optimization problem. The first is the ma-
thematical formulation of the optimization problem and the second is the computer ap-
plication of an optimization algorithm. The first step has to do with the definition of the
design variables, the definition of an objective function and the corresponding constraint
functions. The optimization finishes with the selection of an appropriate optimization
algorithm for the specific problem, in combination with a finite element model for the
structure.
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The application of an advanced optimization algorithm on a specific engineering prob-
lem is not enough by itself. The experience of the engineer plays important role in order
to use the algorithms efficiently. The role of the engineer is to formulate the problem in
an appropriate way, in order for the automated optimization process to give valuable re-
sults.

3.2 Types of structural optimization problems

There are mainly three classes of structural optimization problems: (i) sizing; (ii) shape;
and (iii) topology optimization. Figure 3.1 gives a graphical representation of the three
classes of problems.

3.2.1  Sizing Optimization

In sizing optimization problems the aim is mainly to minimize the weight of the struc-
ture under certain behavioral constraints on stresses and displacements. The design va-
riables are most frequently chosen to be dimensions of the cross-sectional areas of the
members of the structure. Due to engineering practice demands the members are di-
vided into groups having the same design variables. This grouping of elements results in
a trade-off between the use of more material and the need of symmetry and uniformity
of structures due to practical considerations. Furthermore, it has to be taken into ac-
count that due to fabrication limitations the design variables may not be continuous but
discrete since cross-sections belong to a certain predefined set, provided by the manufac-

turers.
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Figure 3.1 Classes of structural optimization problems:
(a) Sizing, (b) Shape and (c) Topology optimization.
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3.2.2 Shape Optimization

In structural shape optimization problems the aim is to improve the performance of the
structure by modifying its boundaries and therefore its shape. This can be numerically
achieved by minimizing an objective function subjected to certain constraints (Hinton
and Sienz 1994; Ramm et al. 1994). The design variables are either some of the coordi-
nates of the key points in the boundary of the structure or some other parameters that
influence the shape of the structure. When shape optimization is considered, the struc-
tural domain is not fixed but has a predefined topology.

3.2.3 Topology Optimization

Structural topology optimization assists the designer to define the type of structure,
which is best suited to satisfy the operating conditions for the problem at hand. It can be
seen as a procedure of optimizing the rational arrangement of the available material in
the design space and eliminating the material that is not needed. Topology optimization
is usually employed in order to achieve an acceptable initial layout of the structure,
which is then refined with a shape optimization tool. Various methods have been pro-
posed for topology optimization problems, employing the following main approaches
(Hinton and Sienz 1993): (i) Ground structure approach (Pedersen 1993; Schwefel 1981);
(ii) homogenization method (Bendsoe and Kikuchi 1988; Hinton and Hassani 1995; Su-
zuki and Kikuchi 1993); (iii) bubble method (Eschenauer et al. 1993); and (iv) fully
stressed design technique (Van Keulen and Hinton 1996; Xie and Steven 1993). The first
three approaches behave as normal optimization techniques. On the other hand, the
fully stressed design technique is not an optimization algorithm in the conventional
sense, as it proceeds by removing inefficient material, and therefore optimizes the use of

the remaining material in the structure, in an evolutionary process.

3.3 Formulation of a single-objective optimization problem

The formulation of the generic Single-objective Optimization Problem (SOP) can be writ-
ten as follows:

min f(x), x=[x,....x,]', feR

xeR”

Subject to
g(x)<0, geR”? (3.1)
h(x)=0, heRfY

X; EXi fOI‘i=1,...,l’l

where:

o x=[x,..,x,]" is a vector of length n containing the design variables.
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e X is the set of x;, which may be continuous, discrete or integer. The whole design
space for the n design variables can be denoted as .X.

e fix): R" > R is the objective function, which returns a scalar value to be mini-

mized.
e g(x)" =[g.(x), ...gp(x)] is the vector function of p inequality constraints.

e h(x)" =[h(x), ..,hq(x)] is the vector function of q equality constraints.

In structural design optimization, inequality constraints are mainly used, since equality
constraints are not applicable for real-world problems. If the objective function is the
weight of the structure, then it is given by

fx)=p-3 4L, @)

where p is the material density, N, is the number of elements of the model and A, L; are

the cross sectional area and the length of each element, respectively.

3.3.1 Discrete and continuous formulations

In structural design optimization, due to manufacturing limitations, the design variables
are not described by continuous functions but are discrete variables (Makris et al. 2006)
since cross-sections have to belong to a certain predefined set provided by the manufac-
turers. There are also cases where for the same problem the design variables are mixed,
continuous and discrete, e.g. in a topology-sizing optimization problem where the design
variables include nodal coordinates (continuous) as well as beam cross-sectional sizes
(discrete).

With the general formulation of Eq. (3.1), the design variables may have continuous, dis-
crete or integer values, or a combination of them, with the restriction

x, eX; fori=1..,n (3.3)
where X; is the set of x;, which may be continuous or discrete. When discrete design vari-

ables are only used, then the available set of values is clearly defined. When continuous
design variables are considered, then the above restriction is usually written as

xb<x<xV (3.4)
where x" and x" are two vectors of length n containing the lower and upper bounds of
the design variables, respectively.

Various methods have been proposed for dealing with mixed problems, with continuous
and discrete design variables (Bremicker et al. 1990). Usually discrete variables are han-
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dled as equivalent continuous variables, and at the end of the optimization process the
design variables are given the appropriate discrete values, as close as possible to the op-
timal continuous values (Hager and Balling 1988). In case of a discrete problem where
the design space can be univocally arranged for all the characteristics of the cross sec-
tions, the above method can give a good approximation of the discrete optimum solu-
tion. Nevertheless, in realistic engineering problems this may not be the case. Most of
the methods that have been proposed convert the mixed problem to a series of conti-
nuous problems that are solved consecutively (Cai and Thierauf 1993a; Cai and Thierauf
1993b; Fu et al. 1991).

3.4 Definitions

Convex set: Let C be a set in a real or complex vector space. C is said to be a convex set
if, for all x and y in C and all ¢ in the interval [o,1], the point

-t)-x+t-y (3.5)

is also in £ In other words, every point on the line segment connecting x and y is in .

Convex function: A real-valued function f defined on an interval is called convex (or
concave upwards, concave up or convex cup), if for any two points x and y in its domain

and any t in the interval [o,1],

f-x+(1=0)-y)<t- f()+1A=0)- f(y) (3.6)

In other words, a function is convex if and only if its epigraph (the set of points lying on
or above the graph) is a convex set.

Strictly convex function: A real-valued function f defined on an interval is called
strictly convex, if for any two points x and y in its domain with x#y and any ¢ in the in-
terval (o,1),

f-x+(1=0)-p)<t- f(x)+1A=0)- f(y) (3.7)

Pictorially, a function is called convex if the function lies below the straight line segment
connecting two points, for any two points in the interval. A convex function of one vari-
able is depicted in Figure 3.2(a), namely the function f{x)=(x-5)*+5 in the interval
xe(o,10]. It is clear that the function lies below the straight line segment connecting
points A and B, for any two points in the interval.

A non-convex function of one variable is depicted in Figure 3.2(b), namely the function
fIx)=(x-1)-(x-4)-(x-5)-(x-7) in the interval xe[o0,8]. It is clear that there are points in the
interval for which the function does not lie below the straight line segment connecting
these points, e.g. points A and B. At first, the function lies above the segment, while after
a specific point the function lies below the segment.
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Figure 3.2 (a) A convex one-variable function with a global minimum,
(b) A non-convex one-variable function with a global and a local minimum.

Concave function: A real-valued function f defined on an interval is called concave (or
concave downwards, concave down or convex cap) if -fis convex.

Feasible set: The feasible set JFis defined as the set of design vectors x that satisfy the
constraints of the optimization problem of Eq. (3.1). It is obvious that Fis a subset of X.

F={xeX|g(x)<0|h(x)=0} (3.8)
FcX (3.9)

The image of /; i.e. the feasible region in the objective space, is called the criterion space,
denoted as V=f(F). All equality constraints (regardless of the value of x used) are consi-
dered active at all points of the feasible set F.

Feasible design: A design vector x is feasible if and only if it belongs to the feasible set
F.

Global minimizer: A design vector x € F issaid to be a global minimizer of the mini-
mization problem of Eq. (3.) if and only if f(x')< f(x) V x e F. The corresponding

value of the objective function f(x*) is called a global minimum.

Local minimizer: A design vector X" € F is said to be a local minimizer of the optimi-

zation problem of Eq. (3.1) if there exists a neighborhood N of x" such that
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f(x") < f(x) V x €N. The corresponding value of the objective function fx") is called a

local minimum.

From the above definitions it is clear that a global minimizer is necessarily also a local
minimizer, while the converse does not hold in general. The converse is true only in the
special case where all the functions involved are convex functions resulting in a unique

local minimum that is also the global minimum.

The convex function of one variable fx)=(x-5)*+5 shown in Figure 3.2(a) has a local mi-
nimizer with fy,=5 at point x=0, which is also a global minimizer. On the contrary, the
non-convex function of one variable f(x)=(x-1)-(x-4)-(x-5)-(x-7) shown in Figure 3.2(b)
has two local minimizers at points x,#1.9765 and x,~6.2873, and a global minimizer at
point x,#1.9765, which is also a local minimizer.

A convex function of two variables is depicted in Figure 3.3, namely the function
flx,y)=x>+y” in the region xe[-4, 4], y€[-4,4], with a global minimizer at point x=0, y=0,
resulting in fi,i,=0.

Figure 3.3 A convex function of two variables with a single optimum.
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Figure 3.4 A non-convex function of two variables with multiple local optima.

A non-convex function of two variables is depicted in Figure 3.4, namely the function
flx,y) =x-y-exp(-x*-y®) in the region xe[-2,2], ye[-2,2]. As shown in the figure, this func-

tion has multiple local minimizers.

3.5 Methods for solving SOPs

Several numerical methods have been developed during the last three decades to meet
the demands of structural design optimization. These methods can be widely classified
into two general categories:

i. Deterministic (or mathematical) optimization methods;
ii. Probabilistic optimization methods.

Detailed descriptions of the two families of methods will be given in the following sec-
tions. According to the No Free Lunch (NFL) theorems for optimization (Wolpert and
Macready 1997), for any algorithm, any elevated performance over one class of problems
is offset by performance over another class. These theorems result in a geometric inter-
pretation of what it means for an algorithm to be well suited to an optimization problem.
In other words, there is no optimization algorithm capable of handling efficiently every
optimization problem.

In the present thesis, probabilistic optimization algorithms are mainly used and in par-
ticular Evolution Strategies and Particle Swarm Optimization (PSO), while a hybrid algo-
rithm combining PSO and SQP is also proposed for structural optimization, combining
the advantages of probabilistic and mathematical methods.
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3.6 Mathematical Programming

The first family of optimization algorithms used in structural engineering were taken
from other scientific fields such as economics, mathematics and operational research
and belong to the Mathematical Programming (MP) methods. MP methods, and in par-
ticular the gradient-based optimizers that have been basically applied for solving struc-
tural optimization problems in the past, belong to the deterministic optimization me-
thods (Lamberti and Pappalettere 2004; Thanedar et al. 1986).

Mathematical programming (gradient-based) optimization methods are generally consi-
dered as local methods. Algorithms belonging to this category, such as the Sequential
Quadratic Programming (SQP) method (Belegundu and Arora 198sa; Belegundu and
Arora 1985b; Papadrakakis et al. 1996b; Thanedar et al. 1986), the Generalized Reduced
Gradient (GRG) method (Lasdon et al. 1978), the Method of Moving Asymptotes (MMA)
(Svanberg 1987) and the Method of Feasible Directions (MFD) (Svanberg 1987) have been
used in the past for structural optimization problems. They make use of local curvature
information and require both objective function and gradient evaluations.

The main advantage of deterministic methods is that, by using gradient information in
order to monitor and guide the search, the convergence rate is faster towards the opti-
mum. In the case of the SQP method, the convergence rate is exponential, due to the
second order information that is inherent in the gradient information. Sometimes how-
ever, even small violations of the non-linear constraint functions can delay the conver-
gence, while there is no guarantee that the method will converge to the global optimum
without being trapped in a local optima. Although many mathematical optimization ap-
plications have no constraints, optimization problems in the engineering field usually
have some kind of constraints, as the result of the space within which the design va-
riables have to stay, or other constraint functions, having to do with stresses, displace-

ments, etc.

Mathematical programming algorithms are still being developed and improved. Lately, a
new class of algorithms, namely the Trust-Region Method (TRM) (Conn et al. 2000) has
been developed for dealing with unconstrained or constrained optimization problems. A
trust region method approximates only a certain region (the so-called trust region) of the
objective function with a quadratic function, as opposed to the entire function as with
the Newton-Raphson optimization algorithm. The size of the region is modified during
the search, based on how well the model agrees with actual function evaluations. When
an adequate model of the objective function is found within the trust region, then the
region is expanded. Conversely, if the approximation is poor then the region is con-
tracted. The evaluation method is to observe the ratio of expected improvement from the
quadratic approximation with the actual improvement observed in the objective func-
tion. Trust region methods can be considered as dual to line search methods, as they first
choose a step size (the size of the trust region) and then a step direction while line
search methods do the inverse.
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The main advantage of MP optimizers is that they capture very fast the right path to the
nearest optimum by exploiting gradient information, but they cannot guarantee the es-
timation of the global optimum, as they can be easily trapped in local optima. These me-
thods most of the times require user-defined initial estimates of the solution in order to
give results of good quality.

Usually, a real-world structural optimization problem, whether it is topology, shape, siz-
ing or an integrated structural optimization problem, is a computationally intensive task,
where most of the computations are spent for the solution of the finite element equilib-
rium equations required for the analysis steps within the optimization procedure. Usual-
ly real-world structural optimization applications do not favor the use of MP algorithms,
because gradient-based optimizers typically encounter great difficulties in dealing with
multiple local optima, large and non-convex search spaces and several (possibly conflict-
ing) constraints to be satisfied (Nocedal and Wright 1999).

3.6.1 Sequential Quadratic Programming (SQP)

The mathematical optimizer adopted in this thesis is a SQP method. SQP methods are
regarded as the standard general purpose mathematical programming algorithms for
solving Non-Linear Programming (NLP) optimization problems (Gill et al. 1981). They are
also considered to be the most suitable methods for solving structural optimization
problems with the mathematical programming approach (Arora 1990; Provatidis and
Venetsanos 2006; Schittkowski et al. 1994; Thanedar et al. 1986). Such methods make use
of local curvature information derived from linearization of the original functions, by
using their derivatives with respect to the design variables at points obtained in the
process of optimization.

Given the problem description of Eq. (3.1) and considering a continuous problem with
the restrictions of Eq. (3.4), SQP method proceeds with the conversion of the NLP prob-
lem into a sequence of Quadratic Programming (QP) subproblems based on a quadratic
approximation of the Lagrangian function.

L(x,A) = f(x)+ Y 4gi(x) (3.10)
k=1

where A; are the Lagrange multipliers under the non-negativity restriction for the in-
equality constraints. The QP subproblem can be obtained by linearizing the non-linear
constraints. Each QP subproblem has the following form:

min {5 p"Hip+V/ ()" p
Subject to (3.11)

Vg (x) ' p+gi(x,)<0 k=L....m
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where p is the search direction and H, a positive definite approximation of the Hessian

matrix of the Lagrangian function of Eq. (3.10). The formulation of Eq. (3.11) considers
only the inequality constraints, as equality constraints are not usually encountered in
structural optimization problems. In order to construct the Jacobian and the Hessian
matrices of the QP subproblem, the derivatives of the objective and constraint functions
are required. These derivatives can be calculated during the sensitivity analysis phase
either analytically, using a closed form if available, semi-analytically or numerically with
a global finite difference method. In the present thesis, the latter option is implemented.

An estimate of the Hessian of the Lagrangian function is updated at each iteration using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Broyden 1970; Fletcher 1970; Goldfarb
1970; Shanno 1970) quasi-Newton formula and a line search is performed using a merit
function in order to determine the step length parameter. The QP subproblem is solved
using an active set strategy. Constrained quasi-Newton methods guarantee superlinear
convergence by accumulating second-order information regarding the Karush-Kuhn-
Tucker (KKT) equations using a quasi-Newton updating procedure. The KKT equations
are necessary conditions for optimality for a constrained optimization problem.

There are two ways to solve the QP subproblem, either with a primal (Gill et al. 1986), or
a dual (Fleury 1993) formulation. The primal algorithm adopted in this study is divided
into three phases:

i.  Solution of the QP subproblem to obtain the search direction;
ii. Line search along the search direction;
iii. Update of the Hessian matrix.
Once the direction vector p is found a line search is performed in order to produce a suf-

ficient decrease to the merit function @, discussed in the next paragraphs.

Line search and Merit function

At each step of the SQP algorithm, the solution of the QP subproblem of Eq. (3.11) pro-
duces the search direction p,. Then, the line-search method searches along the line con-

taining the current point, x,, parallel to the search direction and the new design point is

calculated as

Xy =Xpta; - py (3.12)

The step length parameter a, is determined by the line search procedure so that suffi-

cient decrease in a merit function is obtained. A merit function of the form

D(x) = f(x)+ Y r -max{0, g, (x)} (3.13)
k=1

is used, where ry are the penalty parameters
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ne = (P i ngx{ﬂkaW}, k=1...,m (3.14)

The penalty parameter ry is initially set to

i)

= 3.15
PREs) 313

Update of the Hessian Matrix

At each major iteration a positive definite quasi-Newton approximation of the Hessian
matrix of the Lagrangian function H is calculated using the BFGS method (Gill et al.
1981). Attention is given to keep the Hessian matrix positive definite. The Hessian matrix
is updated using the following formula

H}'SZT'SE'HZ

T
H.,=H, +qu 1 _

(3.16)
T
qr - Sy s; Hy-s,
where /¢ denotes the current SQP iteration and
S =Xp — Xy (3.17)

k=1 k=1

90 = (Vf(xul) + Z Ay 'ng(x/Hl)J -(Vf(x() + z A ‘ng(xz)j (3.18)

The Hessian is maintained provided ¢/ - s, is positive at each update and that H is ini-
tialized as positive definite. If the quadratic function is convex then the Hessian is posi-
tive definite, or positive semi-definite and the solution obtained will be a global opti-
mum. Else, if the quadratic function is non-convex then the Hessian is indefinite and if a
solution exists it is only a local optimum.

3.6.2 Sensitivity Analysis

The most time-consuming part of an optimization algorithm based on mathematical
programming methods is devoted to the sensitivity analysis phase (Papadrakakis et al.
1996b), which is an important part of all mathematical programming optimization me-
thods. Although sensitivity analysis is mostly mentioned in the context of structural op-
timization, it has evolved into a research topic of its own. The calculation of the sensitivi-
ty coefficients follows the application of a relatively small perturbation to each primary
design variable. Several techniques have been developed which can be mainly distin-
guished by their numerical efficiency and their implementation aspects (Bletzinger et al.
1991). They can be divided into two main categories: (i) discrete; and (ii) variational.

According to the discrete methods, the sensitivities, i.e. the gradients of the characteris-
tic functions (displacements, stresses, etc) with regard to the design variables are calcu-
lated based on the equilibrium equations that derive from the discretization of the mod-
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el with finite elements. A classification of the discrete methods for sensitivity analysis is
the following:

i.  Global Finite Difference (GFD) method: The method is simple in its formulation
and can be programmed easily, yet it is the most time-consuming, as a full finite
element analysis has to be performed for each design variable. The accuracy of the
method depends strongly on the value of the perturbation of the design variables.
The method exhibits the advantage that it can be easily applied to any kind of
problem, even for finite element models with various types of elements. Also, it
can be used with commercial finite element programs, as there is no need for mod-
ifications within the source code of the program.

ii. Semi-Analytical (SA) method: The stiffness matrix of the initial finite element
solution is retained during the computation of the sensitivities. This provides an
improved efficiency over the GFD method by a relatively small increase in the algo-
rithmic complexity. The accuracy problem involved with the numerical differentia-
tion can be overcome by using the “exact” semi-analytical method which needs
more programming effort than the simple method but it is computationally more
efficient.

iii. Analytical method: The finite element equations, the objective and constraint
functions are differentiated analytically.

The finite difference and the semi-analytical approaches are the two most widely used
types of sensitivity analysis techniques for structural optimization. From the algorithmic
point of view, the semi-analytical technique results in a typical linear solution problem
with multiple right-hand sides in which the stiffness matrix remains unchanged, while
the finite difference technique results in a typical reanalysis problem in which the stiff-
ness matrix is modified due to the perturbations of the design variables.

In structural optimization problems 60% to 90% of the computations are spent for the
solution of equilibrium equations required for the finite element analysis and sensitivity
analysis (Papadrakakis and Tsompanakis 1999; Papadrakakis et al. 1996b). Therefore, it is
important to use efficient algorithms for both the solution of the equilibrium equations
and the sensitivity analysis.

The Semi-Analytical Method

The semi-analytical method is based on the chain rule differentiation (Vanderplaats
1984) of the finite element equations

Ku=f = (3.19)
ou oK  of

K—+—u=— 3.20
5xk * 8xk “ 8xk ( )

which when rearranged results in
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o _ g

= fi (3.21)

ka B

where fk* represents a pseudo-load vector

fi :%—%u (3.22)
The derivative of the stiffness matrix 0K/dx; and the derivative of the load vector
of |ox; are computed approximately for each design variable by recalculating the new
values of K(x; +Ax;) and f(x; + Axy) for a small perturbation Ax, of the design vari-
able xi. The derivatives of df /0x; are computed using a forward finite difference scheme.
With respect to the differentiation of K, the semi-analytical approach can be imple-
mented in two versions: the Conventional Semi-Analytical (CSA) and the Exact Semi-
Analytical (ESA) method.

In the Conventional Semi-Analytical method, the values of the derivatives in Eq. (3.22)
are calculated by applying the forward difference approximation scheme

8_K~ AK _K(Xk +Axk)—K(xk)
ka NAxk B A)Ck

(3.23)

In the Exact Semi-Analytical (ESA) method (Olhoff et al. 1992) the derivatives 0K/ox;

are computed by aggregating the contributions of every element, on the element level as
follows

o ok Oy -
Oy o 0a; Ox

where ny is the number of elemental nodal coordinates affected by the perturbation of
the design variable x; and g; are the nodal coordinates of the element. The ESA method is
more accurate than CSA and leads the mathematical optimizer to a faster convergence
(Hinton and Sienz 1994).

Stress gradients can be calculated by differentiating the stress relationship as follows:

O = D . B L/ p— (3.25)
oc oD OB ou
—=——B-u+D—u+D-B— 3.26
ox,  Oxy " Oxy, “ Ox 13:26)

where D and B are the elasticity and the deformation matrices, respectively. In case that
the elasticity matrix D is not a function of the design variables then Eq. (3.26) reduces to

%o _pB i ppln (3.27)
8xk axk X
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In Eq. (3.27), ou/dx; and 0B/dx;, may be computed using a forward finite difference
scheme. Using the values of do/0x; the sensitivities of different types of stresses (e.g. the
principal stresses or the equivalent stresses) can be readily calculated by analytically dif-
ferentiating their expressions with respect to the design variables.

The numerical problem encountered in the sensitivity analysis phase when the global
finite difference approach is implemented can be seen as an algebraic problem of the
type (K+AK')-u'=f (i=1,...,q).

The Global Finite Difference method

In this method the design sensitivities for the displacements ou/0x;, and the stresses
da/dx; , which are needed for the gradients of the constraints, are computed using a

forward difference scheme

0_u~ Au _ u(xk +Axk)—u(xk)
8xk - A)Ck B A)Ck

(3.28)

0o Ao _o(x +Ax) —a(x;)
8xk - Axk B A.Xk

(3.29)

The perturbed displacement vector u(x;+Ax;) of the finite element equations is evaluated
by

K(xk + Axk) . u(xk + Axk) = f(xk + A.Xk) (330)

and the perturbed stresses o(x; + Ax;) are computed from

O'()Ck + Axk) = DB(Xk + Axk) . U(Xk + Axk) (3.31)

The GFD scheme is usually sensitive to the accuracy of the computed perturbed dis-
placement vectors which is dependent on the magnitude of the perturbation of the de-
sign variables. Very small values of the perturbation will provide very small changes in
the response of the structure and as a result the whole process can be affected by
round-off errors of the computer. On the other hand, large values of the perturbation
will result in decreased accuracy and truncation errors (Gill et al. 1981; Haftka and Giirdal
2007; Kibsgaard 1992), a typical behaviour of methods based on Taylor expansion with
truncation. The magnitude of the perturbation is usually taken between 10” and 107
times the value of the design variable.

The numerical problem encountered in the sensitivity analysis phase when the Exact
Semi-Analytical approach is used can be seen as an algebraic problem with multiple
right-hand sides of the type K-u'=f (i=1,...,q).
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3.7 Evolutionary Algorithms (EAs)

Computer algorithms based on the process of natural evolution have been found capable
to produce very powerful and robust search mechanisms although the similarity between
these algorithms and the natural evolution is based on crude imitation of biological real-
ity. The resulting Evolutionary Algorithms (EAs) are based on a population of individuals,
each of which represents a search point in the space of potential solutions of a given
problem. EAs constitute the most widely used class of methods of the probabilistic opti-
mization category (Biack and Schwefel 1993; Lagaros et al. 2002). These algorithms adopt
a selection process based on the fitness of the individuals and some recombination op-
erators. The best known EAs in this class include Evolutionary Programming (EP) (Fogel
et al. 1966), Genetic Algorithms (GAs) (Goldberg 1989; Holland 1975) and Evolution
Strategies (ES) (Rechenberg 1973; Schwefel 1981). The first attempt to use evolutionary
algorithms took place in the sixties by a team of biologists (Barricelli 1962) and was fo-
cused in building a computer program that would simulate the process of evolution in
nature. EAs have been found capable of producing very powerful and robust search me-
chanisms although the similarity between these algorithms and the natural evolution is
based on crude imitation of biological reality. An EA for handling discrete optimization
problems is an evolution-based procedure maintaining a population of potential solu-
tions, which are subjected to processes of recombination/crossover, mutation and selec-
tion (Back and Schwefel 1993; Lagaros et al. 2002).

In structural optimization problems, where the objective function and the constraints
are particularly highly non-linear functions of the design variables, the computational
effort spent in gradient calculations required by the mathematical programming algo-
rithms is usually large. Due to their random search, EAs proceed toward the optimal so-
lution with slower rate than gradient-based optimizers and usually need a greater num-
ber of analyses. However, these analyses are less time consuming than the corresponding
computations in MP algorithms, since EAs do not require expensive gradient calcula-
tions, and exhibit satisfactory convergence characteristics. In two studies by Papadra-
kakis et al. (1998b; 1999) it was found that probabilistic search algorithms are computa-
tionally efficient even if greater number of analyses is needed to reach the optimum,
compared to MP methods.

Furthermore, EAs were found, due to their random search, to be less vulnerable to local
optima, whereas mathematical programming algorithms may be easily trapped in local
optima. EAs are therefore more robust and reliable in obtaining (or at least approaching)
the global optimum for non-convex constrained optimization problems. Probabilistic
optimization techniques are more robust and present a better global behavior than MP
methods when confronted with complex optimization problems (Lagaros et al. 2002; Pa-
padrakakis et al. 1999).

Both GAs and ES imitate biological evolution in nature and have three characteristics
that make them differ from other conventional optimization algorithms:
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i. In place of the usual deterministic operators, they use randomized operators: mu-
tation, selection and recombination.

ii. Instead of a single design point, they work simultaneously with a population of de-
sign points in the space of design variables. This characteristic allows for a natural
implementation on parallel computing environments (Adeli and Cheng 1994; Pa-
padrakakis et al. 1998a; Thierauf and Cai 1995) which can significantly reduce the
computational cost of the methodology.

iii. They can handle, with minor modifications continuous, discrete or mixed optimi-

zation problems.

GAs and ES are evolutionary methods that have been employed in a wide variety of
structural engineering applications with very satisfactory results (Papadrakakis et al.
1998a; Papadrakakis et al. 1999). Evolutionary methods usually exhibit a fast rate of con-
vergence towards the area of the global optimum. But after a while, convergence be-
comes slower, requiring comparatively many steps in order to converge. In any case, the
computational cost of every step is rather small, as there is no need to compute gra-
dients. In an attempt to improve performance, hybrid algorithms have been proposed
that combine evolutionary type of algorithms with mathematical methods.

Some differences between GAs and ES stem from the numerical representation of the
design variables used by these two algorithms. The basic GA operate on fixed-sized bit
strings which are mapped to the values of the design variables, ES work on real-valued
vectors. Another difference can be found in the use of the genetic operators. Although,
both GA and ES use the mutation and recombination (crossover) operators, the role of
these genetic operators is different. In GA mutation only serves to recover lost alleles,
while in ES mutation implements some kind of hill-climbing search procedure with self-
adapting step sizes.

In both algorithms recombination serves to enlarge the diversity of the population, and
thus the covered search space. GAs’ basic assumption is that the optimal solution can be
found by assembling building blocks, i.e. partial pieces of solutions, while ES simply en-
sure the emergence of the best solutions. The most important consequence of this differ-
ent approach is related to the recombination operator, viewed as essential for GAs and as
potentially useful for ES. There is also a difference in treating constrained optimization
problems where in the case of ES the death penalty method is always used, while in the
case of GA only the augmented Lagrangian method can guarantee the convergence to a
feasible solution.

The modern tendency seems to follow combinations of the two approaches, since GAs
users have turned to real number representations when dealing with real numbers fol-
lowing experimental results or heuristic demonstrations, whereas ES users have included
recombination as a standard operator and have designed special operators for non
real-valued problems (Schoenauer 1995). ES appear to be more robust and are likely to
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achieve a higher rate of convergence than GAs, due to their self-adaptation search me-
chanism, in solving real-world problems (Hoffmeister and Back 1991).

3.8 Genetic Algorithms (GAs)

The most widely used type of EAs is the Genetic Algorithm method which represents a
model of machine learning that uses a genetic metaphor (Goldberg 1989). Implementa-
tions of this model typically use fixed-length character strings (binary or real valued) to
represent their genetic information, together with a population of individuals which un-
dergo mutation and crossover in order to guide the search process towards the optimum
in the search space. A string, which represents a member of the genetic population, is
sometimes referred to as a genotype or, alternatively, as a chromosome.

The basic GA algorithm for structural optimization applications is shown in Figure 3.5.

1. Initialization step: Random generation of an initial population of vectors of the
design variables X’ (j=1,...,n,0p,) Which are encoded in binary strings.

2. Analysis step: Solve the structural analysis problem K(x')-u/=f, (j=1,...,npp).

3. Fitness evaluation step: Each member of the population is evaluated by computing
the representative penalized objective and the corresponding fitness functions,
using an appropriate penalty function.

4. Selection step: Selection operator is applied to the current population to create an
intermediate one.

5. Generation step: In order to create the next generation, crossover and mutation
operators are applied to the intermediate population to create the next popula-
tion ¢ (j=1, ..., Mpop)-

6. Analysis-Fitness evaluation step: Solve K(¥)-w/=f, (j=1,...,Mpop)-

7. Convergence check: If satisfied stop, else go to step 4.

Figure 3.5 Basic GA algorithm for structural optimization.

The size of the population that is suggested in the literature (Goldberg 1989) can be de-
termined using the following equation:

Npop =25 (& 1 k) (3.32)

where ( is the length of the binary string and k is the average size of the schema. Let us
consider an optimization problem with three design variables. The first two design va-
riables are decoded using 4 binary digits while the third one using 5. The length of the
binary string is {=4+4+5=13, the average length of the schema is k=13/3~4.33 and the
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population size according to Eq. (3.32) should be equal to 60. Sometimes Eq. (3.32) gives
a large population size which makes the optimization step computationally too expen-

sive.

3.8.1 Encoding

To apply the GA method in its basic form, a suitable encoding of the real valued vectors
X’ (j=1,...,np0p) as a binary string is required. The real valued form of a design vector is
called phenotype while the binary one is called genotype. This is achieved by subdividing
the binary string into n (number of design variables) segments, decoding each segment
to yield the corresponding real value using the binary representation. For example, if
there are n design variables in an optimization problem and each design variable is en-
coded as an L-digit binary sequence, then the length of the string is of {=n-L binary digits.
In the case of discrete design variables each discrete value is assigned to a binary string,
while in the case of continuous design variables the design space is divided into a num-
ber of intervals (a power of 2).

3.8.2 Fitness function

The fitness function value is assigned to each member of the population and is used as a
measure of the suitability of each member compared to the others. Evaluation of a string
refers to the evaluation of the objective function value of that string and it is independ-
ent of the evaluation of any other string of the population. The fitness of that string,
however, is always defined with respect to other members of the current population. The
fitness is used to determine the selection probability of this chromosome to become the
parent chromosome for the generation of the new chromosomes. In the basic genetic
algorithm, fitness is defined by: F,-'/F " where F/ is the penalized objective function asso-

ciated with the i-th string, while F’ is the average penalized objective function value of
all the strings in the population. The evaluation of the penalized objective function is
described in detail in Section o (Constraint handling techniques). Fitness can also be as-
signed based on a string’s rank in the population or by sampling methods, such as tour-
nament selection.

3.8.3 Selection

A number of ways have been proposed to perform the selection, among which the most
widely used are the Tournament selection, Roulette Wheel selection and the Ranking se-
lection schemes. According to the Tournament selection scheme, each member of the
intermediate population is selected to be the best member from a randomly selected
group of members belonging to the current population. According to the Roulette Wheel
selection scheme, the population is laid out in random order as in a pie graph, where for
each individual a space on the pie graph is assigned in proportion to its fitness. Next an
outer roulette wheel is placed around the pie with n,,, equally spaced pointers. A single
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spin of the roulette wheel will now simultaneously pick all n,,, members of the interme-
diate population. According to the Ranking selection scheme, the members of the popu-
lation are classified based on the fitness function value, they are assigned with a classifi-
cation rank and their selection is based on this rank. The tournament selection scheme
has been found to be more efficient (Goldberg and Deb 1991). Elitism is a technique that
is used in conjunction with the selection operator. According to this technique the best
chromosome is directly copied to the new population avoiding the genetic operators.
Elitism often increases the performance of the algorithm, by preventing loss of the best-
found solution.

3.8.4 Genetic Operators

Crossover and mutation are the basic genetic operators. Crossover is a reproduction op-
erator, which forms a new chromosome by combining parts of two “parent” chromo-
somes. Many types of crossover schemes have been proposed, such as: (i) one point; (ii)
two-point; (iii) multi-point and (iv) uniform crossover. Single and multi-point crossover
schemes define cross points as places between loci where a chromosome can be split.
Uniform crossover generalizes this scheme by randomly creating a crossover mask, hav-
ing the same length as the parent chromosomes. This mask defines which parent will
contribute its corresponding bit to the offspring chromosome. When a population be-
comes quite homogeneous, another factor becomes important: whether the offspring
produced by crossover will be different than their parents. The uniform crossover opera-
tor has been proved to be able to produce such diversity (Spears and De Jong 1990).

Mutation is a reproduction operator, which forms a new chromosome by making (usu-
ally small) alterations to the values of genes in a copy of a single parent chromosome and
serves only to recover lost alleles, where allele is the value of a gene. For binary encoding
each gene may have an allele of o or 1. The main purpose of the mutation operator is to
maintain diversity within the population and inhibit premature convergence.

3.9 Evolution Strategies (ES)

Evolution Strategies (ES) were proposed for parameter optimization problems in the se-
venties by Rechenberg (1973) and Schwefel (1981). Similar to GAs, Evolution Strategies
imitate biological evolution in nature. ES were initially applied to continuous optimiza-
tion problems, but after a while they were also implemented in discrete and mixed opti-
mization problems (Thierauf and Cai 1995; Thierauf and Cai 1996). ES have been also ap-
plied for structural optimization problems under dynamic loading and especially under
earthquake loading within a certain seismic code (Cai 1995; Lagaros et al. 2005b; Papa-
drakakis et al. 2000a; Papadrakakis et al. 2000b; Papadrakakis et al. 2001a; Papadrakakis
et al. 2002a; Papadrakakis et al. 2002b; Plevris et al. 2007).
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3.9.1 ES for continuous optimization problems

The ES methods can be divided into: (i) the simple two-membered Evolution Strategy (2-
ES); and (ii) the multi-membered Evolution Strategy (M-ES).

The two-membered ES

The earliest ES were based on a population consisting of one individual only which pro-
duced only one offspring. This two-membered scheme is the minimal concept for an imi-
tation of organic evolution. The two principles of mutation and selection, which Darwin
(1859) recognized to be most important, are taken as rules for variation of the parameters
and for recursion of the iteration sequence respectively.

The two-membered ES for the solution of the optimization problem works in two steps:

Step 1 (Mutation): The parent xP9 of the generation g produces an offspring x°,
whose genotype is slightly different from that of the parent

x°&) = xP(8) 4 (8 (3.33)

where

T
7(® z[zl(g),...,z,gg)} (3.34)

is a random vector.

Step 2 (Selection): The selection chooses the best individual between the parent and the
offspring to survive

xP(eD) = {xo(g) if design x°(® is feasible and f(x°(&)) < f(xP(8))

. (3.35)
xP(®) otherwise

The question on how to choose the random vector 7@ in Step 1 is very important. This
choice has the role of mutation. Mutation can be understood as random, purposeless
events, which occur very rarely, therefore it is a logical choice to use a probability distri-
bution according to which small changes occur frequently, but large ones only rarely.
Two requirements arise by analogy with natural evolution:

i. the expected mean value & for a component z§9 ) to be zero;

ii. the variance o7, the average squared standard deviation from mean value, to be
small.

The probability density function for normally distributed random events is given by

1 (g) _ £)2
p(Z;g)):meXp(—%] (336)
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When &=0 the so-called (o, 0;) normal distribution is obtained. By analogy with other
deterministic search strategies, o; can be seen as the step length, in the sense that it
represents average values of the length of the random steps. If the step length is too
small the search takes an unnecessarily large number of iterations. On the other hand, if
the step length is too large, the optimum can only be crudely approached and the opti-
mization search can even get stuck far away from the global optimum. Thus, as in all op-
timization strategies, the step length control is one of the most important parts of the
algorithm after the recursion formula, and it is further more closely linked to the con-
vergence behavior.

Multi-mmembered ES

The multi-membered Evolution Strategy differs from the two-membered strategy in the
size of the population. In M-ES a population of p parents will produce A offspring. Thus
the two steps of the procedure are defined as follows:

Step 1 (recombination and mutation): The population of u parents at g-th generation pro-
duces A offspring. The genotype of any descendant differs only slightly from that of its
parents.

Step 2 (selection): There are two different types of selection for the multi-membered ES:

(u+A)-ES: The best p individuals are selected from a temporary population of (u+A) indi-
viduals to form the parents of the next generation.

(i, 1)-ES: The p individuals produce A offspring (u< A) and the selection process defines a
new population of y individuals from the set of A offspring only. The parents are not
taken into account in the selection process for the new generation and as a result an in-

dividual cannot “live” for more than one generation.

In the second type, the existence of each individual is limited to one generation. This al-
lows the (u,4)-ES selection to perform better on problems with an optimum moving over
time, or on problems where the objective function is noisy.

In Step 1, for every offspring vector a temporary parent vector X = [X,,...,X,]" is first built
by means of recombination. For continuous problems the following recombination cases
can be used

x{ orx’ randomly  (A)

l/2(xl-“+x,-b) (B)
X = xfand (C) (3.37)
rand

xi or x;*"® randomly (D)
/2(xf +x)  (B)

where X; is the i-th component of the temporary parent vector ¥, x*; and x’; are the i-th

components of the vectors x* and x” which are two parent vectors randomly chosen from
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and

the population. In case C of Eq. (3.37), X; =xi*"" means that the i-th component of % is

chosen randomly from the i-th components of all u parent vectors. From the temporary
parent X an offspring can be created in the same way as in the case of two-membered ES

with Eq. (3.33).

Termination criteria

For continuous optimization problems with the Multi-membered ES formulation, the
procedure terminates when one of the following termination criteria is satisfied:

i.  The absolute or relative difference between the best and the worst objective func-
tion values is less than a given threshold value ¢,;

ii. The mean value of the objective values from all parent vectors in the last 2:n gener-
ations has not been improved by less than a given threshold value ¢,.

3.9.2 ES for discrete optimization problems

In engineering practice the design variables are usually not continuous because the
structural parts are constructed with certain variation of their dimensions. Thus design
variables can only take values from a predefined discrete set. For the solution of discrete
optimization problems Thierauf and Cai (1996) have proposed a modified ES algorithm.
The basic differences between discrete and continuous ES are focused on the mutation
and the recombination operators. The multi membered ES (M-ES) adopted in the
present thesis uses three operators: (i) recombination; (ii) mutation; and (iii) selection
operators that can be included in the algorithm as follows:

Step 1 (recombination and mutation)

The population of y parents at g-th generation produces A offspring. The genotype of any
descendant differs only slightly from that of its parents. For every offspring vector a tem-

porary parent vector X =[X,,...,X,]" is first built by means of recombination. For discrete

problems the following recombination cases can be used

x? or x? randomly (A)
xP or x randomly  (B)
X = xfand (©) (3.38)
rand

xi' or x;*"® randomly (D)

xPet or x4 randomly (E)

X is the i-th component of the temporary parent vector x, x% and x”; are the i-th com-

ponents of the vectors x* and x°, which are two parent vectors randomly chosen from the

best

population. The vector x** is not randomly chosen but is the best of the y parent vectors

in the current generation. In case C of Eq. (3.38), X; :x{and means that the i-th compo-
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nent of x is chosen randomly from the i-th components of all u parent vectors. From the
temporary parent ¥ an offspring can be created following the mutation operator.

Let as consider the temporary parent xP9 of the generation g that produces an
offspring x°\9) through the mutation operator as follows

x0@) = xP(@) 4 (&) (3.39)

where

T
7® :[zl(g),...,zf,g)] (3.40)

is a random vector. Mutation can be understood as random, purposeless events, which
occur very rarely. If one interprets them as a set of many individual events, the “natural”
choice would be to use a probability distribution according to which small changes occur
frequently, but large ones only rarely. As a result of this assumption two requirements
arise together by analogy with natural evolution:

(9)

i. the expected mean value & for a component z;”’ to be zero;

ii. the variance o, the average squared standard deviation from mean value, to be

small.

The mutation operator in the continuous version of ES produces a normally distributed
random change vector z9. Each component of this vector has small standard deviation
value o; and zero mean value. As a result of this, there is a possibility that all components
of a parent vector will be changed, but usually the changes are small. In the discrete ver-

sion of ES the random vector z'

9 is properly generated in order to force the offspring vec-
tor to move to another set of discrete values. The fact that the difference between any
two adjacent values can be relatively large is against the requirement that the variance o;
be small. For this reason it is suggested (Thierauf and Cai 1996) that not all the compo-

nents of a parent vector, but only a few of them (e.g. /), should be randomly changed in

(9

every generation. This means that n-/ components of the randomly changed vector 2

(

will have zero value. In other words, the terms of vector z9 are derived from

x +1)-0x; for ¢/ randomly chosen components
2 {( ) y P (3.41)

0 for n-¢ other components

where Jx; is the difference between two adjacent values in the discrete set and « is a ran-
dom integer number, which follows the Poisson distribution

. (3.42)

p(x) =

where y is the standard deviation as well as the mean value of the random number «. For
a very small y (e.g. 0.001) the probability that x will be zero is p(0)=99.9%. For greater
values of y the probability that k be zero increases (e.g. for y=0.01, p(0)=99%, for y=0.1,
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p(0)=90.5%). Figure 3.6 shows the discrete Poisson distribution for three values of the
parameter y.
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Figure 3.6 Discrete Poisson distributions for various values of the parameter y.

The choice of ¢ depends on the size of the problem. It is usually taken as the 1/5 of the
total number of design variables. The ¢/ components are selected using uniform random

distribution in every generation according to Eq. (3.41).

Step 2 (selection)

In the discrete version of ES, there are again two different selection schemes: (i) (u+A)-
ES; and (ii) (u,A)-ES, as was described in detail in Section 3.9.1 for the Multi-membered
ES case.

Termination criteria

For discrete optimization the procedure terminates when one of the following termina-
tion criteria is satisfied:

1. When the best value of the objective function in the last 4n-u/A generations re-
mains unchanged.

2. When the mean value of the objective values from all parent vectors in the last
2n-u/A generations has not been improved by less than a threshold value &, e.g.

£,=0.000L1.

3. When the relative difference between the best objective function value and the
mean value of the objective function values from all parent vectors in the current
generation is less than a threshold value ¢, e.g. e.=0.0001.
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4. When the ratio p/u has reached a given value g4, e.g. £4=0.5 to 0.8, where p;, is the
number of the parent vectors in the current generation with the best objective
function value.

3.9.3 ESin structural optimization problems

The ES optimization procedure starts with a set of parent vectors. If any of these parent
vectors gives an infeasible design then this parent vector is modified until it becomes
feasible. Subsequently, the offspring are generated and checked if they are in the feasible
region. According to (u+A) selection scheme in every generation the values of the objec-
tive function of the parent and the offspring vectors are compared and the worst vectors
are rejected, while the remaining ones are considered to be the parent vectors of the new
generation. On the other hand, according to (u,A) selection scheme only the offspring
vectors of each generation are used to produce the new generation. This procedure is
repeated until the chosen termination criterion is satisfied.

The computational efficiency of the multi-membered ES is affected by the number of
parents and offsprings involved. It has been observed that values of y and A should be
close to the number of the design variables produce best results (Papadrakakis et al.
1999). The ES algorithm for structural optimization applications is shown in Figure 3.7.

1. Selection step: Selection of u parent vectors of the design variables.

2. Analysis step: Solution of the FE problems corresponding to the parent vectors,
K(x')-u'=f, (i=1, ..., u), where K is the stiffness matrix of the structure and fis the
loading vector.

3. Constraints check: Handling of the constraints for the parent vectors. If the death
penalty method is used, all parent vectors become feasible.

4. Offspring generation: Generation of the A offspring vectors of the design variables

using recombination/crossover and mutation operators.

5. Analysis step: Solution of the FE problems corresponding to the generated
offspring vectors, K(x')-w/=f, (j=1,...,A).

6. Constraints check: Handling of the constraints for the offspring vectors. If the
death penalty method is used, then if constraints are satisfied continue, else
change the offspring and go to step 4.

7. Parents’ selection step: Selection of the next generation parents according to (u+A)
or (u,A) selection schemes.

8. Convergence check: If satisfied stop, else go to step 3.

Figure 3.7 ES algorithm for structural optimization.
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The robustness of the above EA procedure in locating optimum structural designs has
been studied in terms of various parameters of the optimizer (u and A-values, initial de-
sign, convergence criterion, initial seed of the random number generator, etc.) in a num-

ber of studies (Lagaros et al. 2005a; Lagaros et al. 2004; Papadrakakis et al. 2003).

Constraint handling techniques

Various methods have been proposed for handling non-linear constraints by Evolutio-
nary Algorithms in general. Koziel and Michalewicz (1999) grouped them into four cate-
gories:

1. Methods based on preserving feasibility of the solutions;
2. Methods based on penalty functions;

3. Methods that search for feasibility;

4. Other hybrid methods.

The constrained handling techniques for ES used in the present thesis are: (i) the death
penalty approach, belonging to the first category of the methods described above; and
(ii) the penalty function approach, belonging to the second category. Details on con-
straint handling techniques can be found in Section 3.11.4.

3.10 Cascade Evolutionary Algorithm (CEA)

It is generally accepted that there is no unique optimization algorithm capable of han-
dling effectively all existing optimization problems (Wolpert and Macready 1997). This
has been also demonstrated by Patnaik et al. (1996), who have considered a number of
optimizers to solve several problems included in a test-bed. They concluded that any in-
dividual optimizer succeeded in solving a number of the test-bed problems, but not all of
them, although every one of these problems could be successfully solved by at least one
of the optimizers.

According to the Cascade Optimization strategy, a remedy to this situation can be a mul-
ti-stage procedure in which various optimizers are implemented in a successive manner
(Papadrakakis et al. 1999; Patnaik et al. 1997). In the first stage of the cascade procedure
the initial optimizer starts from a user specified design known as ‘cold-start’. The inter-
mediate optimal solution reached in the first cascade stage, which may be perturbed us-
ing a pseudo-random technique, is called a ‘hot-start’ and is used to initiate the second
optimization stage. Accordingly, each optimization stage of the cascade procedure starts
from the (possibly perturbed) optimum design achieved in the previous stage. Thus,
each cascade stage after the first stage initiates from a hot-start and produces a new hot-
start for the next stage coupling this way the autonomous computations of successive
optimization stages.

In general, the optimization algorithms implemented in each stage of a cascade process
may vary. Cascade optimization has been implemented using different deterministic op-
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timizers in the cascade stages (Patnaik et al. 1997), using both deterministic and proba-
bilistic optimizers one after the other (Papadrakakis et al. 1999) as well as using probabil-
istic optimizers (Charmpis et al. 2005). The main argument in combining different opti-
mizers in a successive manner has to do with maximizing the exploitation of the advan-
tages offered by various optimization algorithms and diminishing the influence of the
corresponding disadvantages on the optimum design achieved. The selection of the op-
timizers to be included in a cascade procedure, their exact sequence and the number of
cascade stages performed can be determined via a trial-and-error process.

In case of discrete optimization problems, the cascade process can also offer another ad-
vantage, as differentiated search paths can also be obtained by utilizing a different data-
base containing the cross-section sizes of the structural members, in each cascade stage.
According to this approach, during the first stage of the cascade process, a coarse data-
base can be used, while for the next stages the database is enriched until a full database
is used for the final stage. The great difficulties that can be encountered when attempt-
ing to handle large databases necessitate the use of relatively small databases instead
(e.g. (Greiner et al. 2004; Sarma and Adeli 2002)). This restriction in the size of the data-
base aims in constructing a design space that is better manageable and therefore more
effectively searchable by standard optimization schemes, which are most likely to be-
come confused and ineffective when confronted with a large database.

In the present thesis, the idea of cascading is implemented in an Evolutionary Algorithm
context. The resulting Cascade Evolutionary Algorithm (CEA) is designated by CEA(u+A7)
and consists of a number of optimization stages, each of which employs the same EA op-
timizer. In order to differentiate the search paths followed by the same optimization al-
gorithm during the cascade stages, the initial conditions of individual optimization runs
are suitably controlled by using in each stage: (i) a different initial design (each stage in-
itiates from the solution of the previous stage); and (ii) a different seed for the random
number generator of the EA process. The cascade procedure is terminated when no more
improvement on the optimum solution vector can be attained over a small number of

optimization stages.
3.1 Particle Swarm Optimization (PSO)

3.11.1  Introduction

Many probabilistic-based search algorithms have been inspired by natural phenomena,
such as Evolutionary Programming, Genetic Algorithms, Evolution Strategies, among
others. Recently, a family of optimization methods has been developed based on the si-
mulation of social interactions among members of a specific species looking for food or
resources in general. One of these methods is the Particle Swarm Optimization (PSO)
method that is based on the behavior reflected in flocks of birds, bees and fish that ad-
just their physical movements to avoid predators and seek for food. The method has
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been given considerable attention in recent years among the optimization research

community.

A swarm of birds or insects or a school of fish searches for food, resources or protection
in a very typical manner. If a member of the swarm discovers a desirable path to go, the
rest of the swarm will follow quickly. Every member searches for the best in its locality,
learns from its own experience as well as from the others typically from the best perfor-
mer among them. Even human beings show a tendency to behave in this way as they
learn from their own experience, their immediate neighbors and the ideal performers in
the society. The PSO method mimics the behavior described above. The algorithm was
first proposed by Kennedy and Eberhart (1995). It is a population-based optimization
method built on the premise that social sharing of information among the individuals
can provide an evolutionary advantage.

PSO has been found to be highly competitive for solving a wide variety of optimization
problems (Bochenek and Fory$ 2006; He and Wang 2007; Liang and Suganthan 2006;
Mezura-Montes and Lopez-Ramirez 2007; Munoz-Zavala et al. 2006; Perez and Behdinan
2007b; Ye et al. 2007). A number of advantages over other algorithms make PSO a pros-
pective candidate to be used also in structural optimization problems. It can handle
non-linear, non-convex design spaces with discontinuities. Compared to other non-
deterministic optimization methods it is considered efficient in terms of number of func-
tion evaluations as well as robust since it usually leads to better or the same quality of
results. Its easiness of implementation makes it more attractive as it does not require
specific domain knowledge information, while being a population-based algorithm, it
can be straight forward implemented in parallel computing environments leading to a
significant reduction of the total computational cost. Compared to GA, PSO is easier to
implement and there are only a few parameters to adjust. PSO has been successfully ap-
plied to many fields, such as mathematical function optimization, artificial neural net-

work training and fuzzy system control.

In spite of the popularity of PSO as an efficient optimizer, it has been until relatively re-
cently that its use has focused more on engineering optimization problems, mainly be-
cause of the lack of constraint-handling techniques explicitly designed to be coupled
with a PSO algorithm. Promising results have been presented in the areas of structural
shape optimization (Fourie and Groenwold 2002; Venter and Sobieszczanski-Sobieski
2004) as well as topology optimization (Fourie and Groenwold 2001). Perez and Behdi-
nan (2007a; 2007b) implemented the PSO algorithm for constrained structural optimiza-
tion of plane and space truss structures while Li et al. (2007) tried a heuristic PSO
scheme for the optimization of truss structures.

3.11.2 Relationship of PSO with Evolutionary Algorithms

PSO shares many similarities with evolutionary computation techniques, such as Genetic
Algorithms, but the conceptual difference lies in its definition which is given in a social
rather than a biological context. The common features of the two optimization ap-
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proaches include the population concept of the design vectors, initialization with a
population of random solutions, a fitness value to evaluate performance, searching for
optima by updating iterations (generations) based on a stochastic process, no require-
ment for gradient information or user-defined initial estimates and no guaranteed final
success. However, unlike GA, PSO has no genetic operators such as crossover and muta-
tion. In PSO, the potential solutions, called particles, fly through the problem space by
following a velocity update rule. The information sharing mechanism in PSO is signifi-
cantly different compared to GA. In GA chromosomes share information with each oth-
er, so the whole population moves like one group towards an optimal area. In PSO, only
Gbest (the global best particle) communicates the information to the others, forming a
one-way information sharing mechanism. Compared to Genetic Algorithms, according to
the study of Hassan et al. (2005), PSO and GA can both obtain high quality solutions, yet
the computational effort required by PSO to arrive to such high quality solutions is less
than the corresponding effort required by GA.

According to Angeline (1998), two main distinctions can be made between PSO and an
evolutionary algorithm:

i. EAs rely on three mechanisms in their processing: parent representation, selection
of individuals and the fine tuning of their parameters. In contrast, PSO only relies
on two mechanisms, since PSO does not adopt an explicit selection function. The
absence of a selection mechanism in PSO is compensated by the use of leaders to
guide the search. However, there is no notion of offspring generation in PSO as
with EAs.

ii. The manipulation of the individuals is different in EAs and PSO. PSO uses an op-
erator that sets the velocity of a particle to a particular direction. This can be seen
as a directional mutation operator in which the direction is defined by both the
particle’s personal best and the global best (of the swarm). If the direction of the
personal best is similar to the direction of the global best, the angle of potential di-
rections will be small, whereas a larger angle will provide a larger range of explora-
tion. In contrast, EAs use a mutation operator that can set an individual in any di-
rection (although the relative probabilities for each direction may be different). In
fact, the limitations exhibited by the directional mutation of PSO has led to the use
of mutation operators similar to those adopted in EAs.

3.11.3 The PSO algorithm for unconstrained optimization

In a PSO formulation, multiple candidate solutions coexist and collaborate simulta-
neously. Each solution is called a “particle” that has a position and a velocity in the mul-
tidimensional design space. A particle “flies” in the problem search space looking for the
optimal position. As “time” passes through its quest, a particle adjusts its velocity and
position according to its own “experience” as well as the experience of other (neighbor-
ing) particles. Particle's experience is built by tracking and memorizing the best position
encountered. As every particle remembers the best position it has visited during its
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“flight”, the PSO possesses a memory. A PSO system combines local search method
(through self experience) with global search method (through neighboring experience),
attempting to balance exploration and exploitation.

Mathematical formulation of PSO

Each particle maintains two basic characteristics, velocity and position in the multi-
dimensional search space, which are updated in a stochastic way as follows:

v+ =w/ () +an o ( xPo/ — x/ (t)) + cop © ( x° — x/ (t)) (3.43)
xI(t+1) = x7(t) +vi(t+1) (3.44)

where V/(t) denotes the velocity vector of particle j at time t, X(t) represents the position
vector of particle j at time t, vector x*™ is the memory of particle j at current iteration
(the personal best ever position of the particle, corresponding to the objective function
value Pbest;), and vector x°" is the global best location found by the entire swarm up to
the current iteration (corresponding to the objective function value Gbest, the same for
all particles). The acceleration coefficients ¢, and c, represent “trust” settings which indi-
cate the degree of confidence in the best solution found by the individual particle (c, -
cognitive parameter) and by the whole swarm (c, - social parameter), respectively, while
r, and r, are two vectors containing random numbers with uniform distribution in the

interval [o, 1].

The symbol “- 7 of Eq. (3.43) denotes the Hadamard product (entry-wise vector or matrix
multiplication). This notation is used together with vectors r, and r,, as different random
numbers have to be applied for every dimension of a particle at every iteration. If scalar
values r, and r, were used for the random numbers multiplication of Eq. (3.43), then the
same random value would multiply every dimension of a particle, which is not desirable
in PSO.

Figure 3.8 shows a visualization of a particle’s movement, in a two-dimensional design
space, according to Egs. (3.43) and (3.44). The particle’s current position X/(t) at time ¢ is
represented by the dotted circle at the lower left of the drawing, while the new position
x/(t+1) at time t+1 is represented by the dotted bold circle at the upper right of the draw-
ing. It can be seen how the particle’s movement is affected by:

i. The previous velocity V/(t);
ii. The personal best ever position of the particle, x**, at the right of the figure;

iii. The global best location found by the entire swarm, x°°, at the upper left of the
figure.
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Figure 3.8 Visualization of the particle’s movement in a two-dimensional design space.

The neighborhood of a particle includes a number of other particles with which a par-
ticle shares information. In the original PSO, two different kinds of neighborhoods were
defined (Kennedy and Mendes 2002):

i. The Gbest swarm, shown in Figure 3.9(a), where all the particles are neighbors of
each other; thus, the position of the best overall particle in the swarm is used in
the social term of the velocity update equation. It is assumed that Gbest swarms
converge fast, as all the particles are attracted simultaneously to the best part of
the search space. However, if the global optimum is not close to the best particle, it
may be impossible to the swarm to explore other areas also; this means that the
swarm can be trapped in local optima.

ii. The Lbest swarm, shown in Figure 3.9(b), where only a specific number of particles
(neighbor count) can affect the velocity of a given particle. The swarm will con-
verge slower but may have larger possibility to locate the global optimum. Instead
of the global best location found by the entire swarm, a local best location of each
particle’s neighborhood is used. Thus, information is shared only among members
of the same neighborhood.
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(a) (b)
Figure 3.9 Graphical representations of the two topologies:
(a) Gbest, (b) Lbest with two neighbors for each particle.

It has been shown that the flow of information through social networks is affected by
several aspects of the networks (Watts 1999; Watts and Strogatz 1998). The first measure
is the degree of connectivity among nodes in the net. Each individual in a particle swarm
identifies the best point found by its k neighbors; k, then, is the variable that distinguish-
es Lbest from Gbest topologies, and is likely to affect performance.

The traditional particle swarm topology, Gbest, instantiates the most immediate com-
munication possible as all particles are directly connected to the best solution in the
population. On the other hand, the ring lattice topology Lbest is the slowest, most indi-
rect communication pattern. Where a particle j is opposite a particle z on the lattice, a
good solution found by j has to pass through j’s immediate neighbor, that particle’s im-
mediate neighbor, and so on, until it reaches particle z. Thus a solution found by j moves
very slowly around the ring. Both Gbest and Lbest can be seen as "social" neighborhoods,
as the relations among particles do not depend on their positions in the search space,
but on "external” relationships that are not dependent on the problem that is being
solved.

In the present thesis, the formulation of Eq. (3.43), the global best location found by the
entire swarm up to the current iteration (x“?) is used. This is called a fully connected to-
pology (fully informed PSO) (Mendes et al. 2004), as all particles share information with
each other about the best performer of the swarm and parameter k equals the size of the

whole swarm.

The term w of Eq. (3.43) is the inertia weight, a scaling factor employed to control the
exploration abilities of the swarm, which scales the current velocity value affecting the
updated velocity vector. The inertia weight was not part of the original PSO algorithm
(Kennedy and Eberhart 1995), as it was introduced later by Shi and Eberhart (1998) in a
successful attempt to improve convergence. Large inertia weights will force larger veloci-
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ty updates allowing the algorithm to explore the design space globally. Similarly, small
inertia values will force the velocity updates to concentrate in the nearby regions of the
design space. The inertia weight can also be updated during iterations, as will be de-
scribed in detail in Section 3.11.5.

Particles' velocities in each dimension i (i=1, ...,n) are restricted to a maximum velocity
v, The vector v of dimension n holds the maximum absolute velocities for each di-
mension. It is more appropriate to use a vector rather than a scalar, as in the general case
different velocity restrictions can be applied for different dimensions of the particle. If
for a given particle j the sum of accelerations of Eq. (3.43) causes the absolute velocity for
dimension i to exceed v, then the velocity on that dimension is limited to + v, The
vector parameter v is employed to protect the cohesion of the system, in the process

of amplification of the positive feedback.

Design variables bounds handling

Constraints also apply in the available space for every design variable x;, as in vector
terms x"<x<x". If, after the velocity update rule of Eq. (3.43), the position update of Eq.
(3.44) forces a particle to move outside the bounds for a dimension i (x;<x"; or x;=x";),
then the design variable x; is reset to the closest bound (x;=x" or x;=x")). In order to
avoid considering any points outside the specified design space, the corresponding coef-
ficient v; of the velocity vector v is reset to zero, to be used for the next iteration.

Main PSO parameters

The basic PSO has only a few parameters to adjust. Table 3.1 contains a list of the main
parameters, their typical values and other details.
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Table 3.1 Main PSO parameters.

Symbol  Description Details

NP Number of particles Atypical range is 10 — 40. For most problems 10
particles is sufficient enough to get acceptable results.
For some difficult or special problems the number can
be increased to 50-100.

n Dimension of particles It is determined by the problem to be optimized.

w Inertia weight Usually is set to a value less than 1.0, i.e. 0.95. It can

also be updated during iterations.

x5, x" Vectors containing the lower They are determined by the problem to be optimized.
and upper bounds of the n Different ranges for different dimensions of particles
design variables, respectively can be applied in general.

v Vector containing the Usually is set half the length of the allowable interval
maximum allowable velocity for the given dimension: v™;= (x”; - x")/2. Different
for each dimension duringone  values for different dimensions of particles can be
iteration applied in general.

Cy Gy Cognitive and social Usually ¢,=c,=2. Other values can also be used,

parameters

provided that o < ¢,+c, < 4 (Perez and Behdinan

2007a).

Convergence criteria

Due to the repeated process of the PSO search, convergence criteria have to be applied
for the termination of the optimization procedure. Two widely adopted convergence cri-
teria are the maximum number of iterations of the PSO algorithm and the minimum er-
ror requirement on the calculation of the optimum value of the objective function. The
selection of the maximum number of iterations depends generally on the complexity of
the optimization problem at hand. The second criterion presumes prior knowledge of
the global optimum value, which is feasible for testing or fine-tuning the algorithm in
mathematical problems when the optimum is known a priori, but this is certainly not
the case in practical structural optimization problems where the optimum is not known

a priori.

In the present thesis, together with the maximum number of iterations, we have imple-
mented the convergence criterion connected to the rate of improvement of the value of
the objective function for a given number of iterations. If the relative improvement of
the objective function over the last k; iterations (including the current iteration) is less or
equal to a threshold value f;,, convergence is supposed to have been achieved. In ma-
thematical terms, denoting as Gbest, the best value of the objective function found by
the PSO at iteration ¢, the relative improvement of the objective function can be written
for the current iteration t as follows:

Gbest,_,. .1 — Gbest
t—kp+1 t < - (3.45)
Gbest; . 41
Table 3.2 contains a list of the convergence parameters of the PSO used in this study,
with description and details.
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Table 3.2 PSO convergence parameters.

Symbol  Description Details
tnax Maximum number of iterations  Determined by the complexity of the problem to be
for the termination criterion. optimized, in conjunction with other PSO parameters
(n, NP).
ke Number of iterations for which

the relative improvement of the
objective function satisfies the
convergence check.

If the relative improvement of the objective function
over the last ks iterations (including the current
iteration) is less or equal to f,,,, convergence has been

fm Minimum relative improvement achieved.

of the value of the objective
function.

Pseudo code of the main PSO algorithm for unconstrained optimization

A description of the pseudo code of the main unconstrained PSO procedure is given in

Figure 3.10.

— For each particle j
Initialize particle position by distributing particles randomly in the design space
~ End

Do
[ ~ For each particle j
Calculate fitness value for current position

If the current fitness value is better than the best fitness value (Pbest) in the
particle’s history then set current fitness value as the new Pbest and current
position as the new x*>/

- End

Set Gbest as the best fitness value of all the particles’ Pbest and corresponding po-
sition as the new x“°

~~ For each particle j
Calculate particle velocity from Eq. (3.43)
Update particle position from Eq. (3.44)

If, for any dimension i, x; < x"; or x; = xY,, then set x; = x"; or x; = xY; respectively
and set corresponding v; = o

\- End

\While maximum iterations is not attained and the relative improvement of the ob-
jective function is greater than f;, over the last k¢iterations

Report results

Figure 3.10 Pseudo-code for the main PSO for unconstrained optimization.
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3.11.4 Constraint handling techniques

Although the PSO has been applied for the solution of a number of problems recently, its
applications are mainly focused on unconstrained optimization. Very few studies have
extended the application of PSO to constrained optimization problems (Hu and Eberhart
2002; Parsopoulos and Vrahatis 2002). A simple approach for PSO would be to recalcu-
late the velocity vector for an infeasible particle using new random numbers r, and r,,
until the new position of the particle becomes feasible. This simplistic approach guaran-
tees the feasibility of the final optimum design, yet it has a strong disadvantage as it
needs too many calculations of the constraint functions and subsequently of finite ele-
ment analyses, especially in cases where the feasible region is small compared to the en-
tire design space, making it impractical for structural engineering applications.

Another approach is to avoid taking into account the infeasible designs in the calculation
of Pbest or Gbest for a particle, given that the swarm is initialized in the feasible region
(Hu et al. 2003). This “death penalty” approach that guarantees the feasibility of the final
optimum has the disadvantage that is does not take into account the degree of the viola-
tion of the constraints. Moreover, a search over the feasible region only is usually less
efficient than a search over the entire region, as the latter makes it possible to approach
the optimum from any direction (Michalewicz 1995).

Venter and Sobieszczanski-Sobieski (2004) proposed a constraint handling mechanism
for PSO that redirects the violated designs back to the feasible region. After a particle j
has moved to an infeasible position at iteration t, the method modifies the velocity vec-
tor V(t), by re-setting it to zero. Then, the velocity vector V/(t+1) for next iteration t+1 is
obtained from Eq. (3.43) omitting the inertia coefficient w/(t) that equals zero. The new
velocity of particle j at iteration t+1 is thus only influenced by the best point found so far
by the particle (x"/) and the current best point found by the entire swarm (x°). Given
that both these best points are feasible, the new velocity vector will point back to a feasi-
ble region of the design space, ensuring in most cases that the particle is directed back to
the feasible space, or at least closer to the feasibility boundary. This method is also sim-
ple, but has the disadvantage that it does not guarantee feasibility of the particles and as
a result, there is no guarantee that at the computed optimum solution all constraints will
be satisfied.

Some researchers attempted to solve the constrained problem indirectly by transforming
it to an unconstrained problem using the traditional penalty function strategy (Parso-
poulos and Vrahatis 2002; Perez and Behdinan 2007). The penalty function is an effective
auxiliary tool to deal with constrained problems in general and has been a popular ap-
proach because of its simplicity and ease of implementation. Yeniay (2005) examined
various penalty function methods for GAs, highlighting the strengths and weaknesses of
each method.

In the present thesis, we propose a simple yet effective multiple linear segment penalty
function to deal with constraints. Consider a structural optimization problem where dis-
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placement and stress constraints are imposed. For a given design x, the corresponding
objective function value is computed and a finite element analysis is performed for the
constraints check where each structural element is checked for stress violation, and each
model node is checked for displacement violation. If no violation is detected, then no
penalty is imposed on the objective function f(x). If any of the constraints are violated, a
penalty is applied to the objective function and the value of the penalty is related to the
degree of violation of the constraints.

For the typical constraint k in structural optimization of the form

2 (x) =]k (x)|— Gattows <O (3.46)

where ¢i(x) is a response measure (usually stress or displacement) for design vector x
and 0w« its maximum allowable absolute value, the penalty function @(x) for this con-
straint is defined as:

1 if |qk(x)|§1

@k (x) _ allow k (3.47)
Qallow,k qallow,k

It should be noted that gi(x) is taken as the maximum (worst) value of the corresponding
response measure among all nodes or elements of the model. For example, if the k-th
constraint is a stress constraint of the type |o| <o that applies for all N. model ele-
ments, then for this constraint a single response measure is calculated as:

NC
qx(x) = max{|; |} (3.48)

Figure 3.11 gives a graphical representation of the above formula.

i) |

~Qaliow.k Qallow k qk(x)

Figure 3.11 A multiple linear segment penalty function.
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Having obtained the penalty function factors for all violated constraints, the penalized
fitness value of a design x is obtained by multiplying the objective function (structural
weight or structural material volume) to be minimized by the maximum penalty factor

among all m constraints:

fo(x) = f(x) - max{®;(x)}, k=1...,m (3.49)

where f, is the new fitness (penalized objective function). The resulting penalized objec-
tive function quantitatively represents the extent of the violation of constraints and pro-
vides a relatively meaningful measurement of the performance of each solution.

Using the above formulation, there is a case where the penalized objective function f;(x)
can obtain a better value compared to the global optimum Gbest; found by the entire
swarm until iteration t. This will result in resetting Gbest, to an infeasible design. Indeed,
this can happen for an infeasible design if max{®(x)}<Gbest,/f(x). In order to avoid this
undesirable case, Gbest, is used instead of f{x) in Eq. (3.49), when flx) <Gbest, and
max{®,(x)}>1 (infeasible design). In this sense, Gbest, is penalized instead of f{(x), for in-
feasible designs with objective functions f{x) better than Gbest,. This ensures that the
best design found by the swarm will always stay in the feasible region, as will be shown

in the numerical applications section.

3.11.5 PSO for constrained structural optimization

Two important features which require special attention when dealing with practical en-
gineering optimization problems are the improvement of the convergence rate and the
handling of the problem constraints. As described below, different modifications can be
made to the original algorithm to address these features making it much capable of deal-
ing with more demanding constrained optimization problems such as those encountered
frequently in optimum design of engineering structures.

Inertia weight update

The PSO global convergence is affected by the degree of local/global exploration pro-
vided by the ¢, and ¢, parameters, while the relative rate of convergence is affected by the
inertia weight parameter. Studies have shown that for a fixed inertia value there is a sig-
nificant reduction in the algorithm convergence rate as iterations progress. This is the
consequence of excessive momentum in the particles, which results in large step sizes
that overshoot the best design areas. During the initial optimization stages, a large iner-
tia weight is needed in order for the design space to be searched thoroughly. Once the
most promising areas of the design space have been discovered and the convergence rate
starts to slow down, the inertia weight should be reduced, in order for the particles’ mo-
mentum to decrease allowing them to concentrate in the best design areas. In order to
accomplish the above strategy, Shi and Eberhart (1998) proposed a time-dependent value
of the inertia weight. A commonly used inertia update rule is the linearly-decreasing,
calculated by the formula:
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Wmax
Witl = Wmax —

tmax

~ Whin

-t

(3.50)

where ¢ is the iteration number (starting from iteration 0), Wpax and wy,;, are the maxi-

mum and minimum values, respectively, of the inertia weight. In general, the linearly

decreasing inertia weight has shown better performance than the fixed one.

In the present thesis, a new non-linear weight update strategy is adopted: the total al-

lowed iterations t,,., are divided into three stages. At the end of each stage, the change

(reduction) of w compared to the one at the end of the previous stage has to be a,, times

its value. Given that, we can define the value of w at t,,/3 and 2-t;,.x/3 iterations. A cubic

polynomial is then calculated that interpolates the four points (starting point (0, Wimax),

ending point (fmax, Wmin) and two intermediate points, (1/3-tmax, Wmax-@w -b) and

(2/3tmax, Wmint+b)), where b is the reduction of w for the third stage, as shown in Figure

3.12.
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Figure 3.12 The proposed non-linear weight update rule
drawn for tax=90, Winin=0.5, Wmax=1and a, = 2.

The quantity b is not a new parameter as it is dependent on wy,.x, Wmin and a, and can be

easily calculated as

27
b+a,-b+a, -b=w_ —
Wmax_wmin

w

min

=

(3.51)

(3.52)
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Figure 3.13 The proposed non-linear weight update rule for different a,, (1.0, 1.5, 2.0).

Compared to the linear update rule, the proposed non-linear 3™ order formulation has
the advantage of a fast reduction of the inertia weight in the first stage of the optimiza-
tion, while in the vicinity of the optimum, the reduction becomes slower, as shown in
Figure 3.13. This type of behavior is in most cases favorable in PSO optimization, as will
be shown in the numerical applications section. The linear update rule can be obtained
as a special case by setting a,,=1. Typical values for a,, are in the interval [1.0,2.0]. Values
smaller than 1 should not be considered as they would lead to the opposite undesirable
result: a small reduction of the inertia weight in the first stages and a fast reduction near
the optimum.

Pseudo code of the proposed PSO algorithm for constrained structural optimization

The proposed PSO pseudo code for constrained structural optimization is described in
Figure 3.14.
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For each particle j
Initialize particle position by distributing particles randomly in the design space

End

[ Do
-~ For each particle j

Calculate all response measures gx(x) by performing a finite element analysis
and computing the corresponding @,(x) from Eq. (3.47) for every constraint k

Calculate fitness value f, from Eq. (3.49)

If the current fitness value fj, is better than the best fitness value (Pbest) in the
particle’s history then set current fitness value f;, as the new Pbest and current
position as the new x*/

S End

Set Gbest as the best penalized fitness value of all the particles’ Pbest and corres-
ponding position as the new x“°

~~ For each particle j

Calculate particle velocity from Eq. (3.43) using the non-linear cubic weight
update rule

Update particle position from Eq. (3.44)

If, for any dimension i, x; < x%; or x; = xY,, then set x; = x%; or x; = xY,; respectively
and set corresponding v; = 0

\K End

While maximum iterations is not attained and the relative improvement of the ob-
jective function is greater than f;, over the last k¢ iterations

Report results

Figure 3.14 The proposed PSO pseudo-code for constrained structural optimization.

3.11.6 PSO related to mathematical methods
By substituting x'(t) from Eq. (3.44) to Eq. (3.43) we obtain:

X/ (t+1) = X (O) + wv! (1) + a0 (X = X7 (1)) + ey o (X —x/(1))  (3.53)

The above equation can be rewritten as:

o o xP +eory 0 x

X/ (t+1)=x/ )+ wv/ (t) + (e + o1y © (
ch + (&)1 b)

Gb .
—x/ (z)j (3.54)

The above equation has the same structure as the gradient line-search used in convex
unconstrained optimization:

X (t+)=x/(t)+ao p, (3.55)
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where
X (1) = x7 (1) + wv/ (¢) (3.56)
a=qn + b (3.57)
Pb,j Gb
arpoXx ) +cpy 0 x ,
Pe=— S x/ (1) (3.58)

(&1 + o

So the process can be viewed as a traditional line-search procedure dependent on a sto-
chastic step size « and a stochastic search direction py (Perez and Behdinan 2007a),
where:

i. The stochastic step size « is limited only by the selection of the social and cogni-
tive parameters ¢, and ¢, and knowing that r,, r, € [0,1] it will belong to the interval

[0, c,+c,] with a mean value of (c,+c,)/2.

ii. The  stochastic search  direction px Dbelongs to the interval

Pb,j Gb
: X + X
-x/ (t)v
(&1 + (&)

- x/ (t)}, which is dependent not only on the social and

cognitive parameters ¢, and c,, but also in the best design space location the par-

ticle has seen (x**/) and the best design space location all the swarm has seen (x“°).

3.12 Hybrid optimization algorithms

Various hybrid optimization algorithms that combine evolutionary computation tech-
niques with deterministic procedures for numerical optimization problems have been
proposed in the past. Papadrakakis et al. (1999) proposed a hybrid ES-SQP scheme for
structural shape optimization with very satisfactory results. Waagen et al. (1992) pro-
posed a combination of evolutionary programming and the direction set method of
Hooke and Jeeves (1961) applied to unconstrained mathematical test functions. Myung et
al. (1995) considered a similar to Waagen et al. (1992) approach, but they experimented
with constrained mathematical test functions. They combined a floating-point evolutio-
nary programming technique, with a method-developed by Maa and Shanblatt (1992)
applied to the best solution found by the evolutionary programming technique. Papa-
drakakis and Lagaros (2000) implemented a hybrid GA-MP scheme for structural sizing

optimization.

Hybrid PSO methods have been also proposed recently. Kaveh and Talatahari (2008) im-
plemented a hybrid PSO and ant colony optimization for the design of truss structures.
Dimopoulos (2007) proposed a hybrid GA-PSO scheme for optimizing mathematical
functions and optimally designing a welded beam and a pressure vessel for minimum
cost, while Zhang et al. (2007) proposed a hybrid PSO - back-propagation algorithm for
feed-forward neural network training. The PSO has been also combined with mathemat-
ical methods in various ways. Izui et al. (2005; 2007) combined a PSO scheme with gra-
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dients, where the members of the swarm were divided into Sequential Linear Program-
ming (SLP) and PSO individuals. Chen et al. (2007) combined the PSO algorithm with a
conjugate gradient based local search method for the identification of nonlinear systems.
Coelho and Mariani (2007) combined the PSO with a Quasi-Newton local search method
for solving an economic dispatch problem. Das et al. (2006) proposed adding a local
search component to PSO to improve its convergence speed for estimating the parame-
ters of a gene network model. Victoire and Jeyakumar (2004) combined the PSO with
SQP for solving the economic dispatch problem, where SQP was used to fine tune the
solution obtained by the PSO.

3.12.1 Hybrid PSO-SQP methodology

The numerical tests performed with the PSO algorithm have shown rapid convergence of
the method during the initial stages of the global search, but at the neighborhood of the
global optimum, the search process becomes rather slow, a typical behavior of all evolu-
tionary type optimization algorithms. On the contrary, studies have shown that gradient
based methods can achieve faster convergence speed around global optimum and, at the
same time, the convergence accuracy can be higher.

An important feature of the SQP optimizer is that it captures relatively fast the right
path to the nearest optimum. Yet, unless a good model initialization is provided, the al-
gorithm can converge to a local suboptimum. Therefore, global algorithms - less vulner-
able to local optima attractors and therefore more reliable in obtaining the global opti-
mum for non-convex optimization problems, are frequently proposed, but have often
exhibited inacceptable slow convergence rates due to their random search, especially
near the area of the global optimum.

In an effort to increase the robustness and the computational efficiency of the optimiza-
tion procedure, hybrid algorithms can benefit from the advantages of both methodolo-
gies and alleviate their particular drawbacks, as was described in detail in Section 3.12. In
the present thesis, a novel hybrid algorithm combining the PSO algorithm with a gra-
dient-based quasi-Newton Sequential Quadratic Programming algorithm, is proposed for
the optimization of engineering structures. The hybrid optimization algorithm can make
use of not only the strong global searching ability of the PSO, but also the strong local
searching ability of the SQP algorithm. It is divided into two separate phases:

i.  During the first phase, the PSO explores the design space thoroughly and detects
the neighborhood of the global optimum;

ii. When the PSO process terminates, the second phase starts by applying the SQP al-
gorithm starting from the best estimate of the PSO and using gradient information
to accelerate convergence towards the global optimum.

In the first phase, a relaxed termination criterion should be used for PSO, as there is no
need for PSO to find the exact global optimum, but rather to find its neighborhood in
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the design space. The exact value of the global optimum will be found in the second
phase, by the SQP optimizer. The combined algorithm is referred to as PSO-SQP.

Enhancements are also proposed for the PSO algorithm for constrained structural opti-
mization itself, with the implementation of the non-linear cubic weight update rule, de-
scribed in Section 3.11.4, and the simple yet effective linear segment penalty function
constraint handling technique, described in Section 3.11.5. The numerical results show
that the proposed hybrid PSO-SQP algorithm performs better than the standard PSO
algorithm as well as other established EA algorithms in terms of convergence speed and
quality of final results achieved. The method is applied to structural engineering optimi-
zation problems where the aim is to find the optimum design of a structure under specif-
ic loads. The structures considered are plane or space trusses, the objective function is
the weight of the structure, while the constraints refer to restrictions in the maximum
values of stresses and displacements. The constraints are checked by a finite element
analysis for every candidate optimum design.
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4 Multi-objective Optimization

Although many optimization studies deal with only one objective function, this ap-
proach is often not realistic for practical engineering applications. Many real-world prob-
lems involve several incommensurable and often competing objectives to be handled
simultaneously. In this chapter, the principles of multi-objective (or vector) optimization
are outlined, the basic concepts are defined and the methodologies for handling Multi-
objective Optimization Problems (MOPs) are demonstrated.

4.1 The concept of multi-objective optimization

Consider an optimization problem with multiple objective functions to be minimized. If
a solution can be found that minimizes all the objective functions simultaneously, then
actually a Single-objective Optimization Problem (SOP) is at hand, as the optimal solution
for any objective is also the optimum for any other objective. In SOPs, the optimal solu-
tion is usually clearly defined, while this does not hold in MOPs, where in the usual case
individual optima corresponding to the various objective functions are sufficiently differ-
ent to each other. In that case, the objective functions are conflicting with each other
and cannot be optimized simultaneously. Instead, a satisfactory trade-off has to be
found, leading to a set of optimal solutions rather than a single solution for the optimiza-
tion problem. The optimality of these solutions can be understood in a wider sense, in
that in the whole search space there are no other solutions superior to them when all the
objectives are considered simultaneously.

4.2 Formulation of a multi-objective optimization problem

The formulation of a general multi-objective optimization problem of m objectives can
be written as follows:
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min f(x), x=[x,....x,]", feR"

xeR”

Subject to
g(x)<0, geR? (4.1)
h(x)=0, heR?

x;eX;, fori=1,..,n

where:
e x=[x,..,x.]" is the vector of the n design variables.

e X is the set of x;, which may be continuous, discrete or integer. The whole design
space for the n design variables can be denoted as .X.

o flx)" =[fi(X),...,fm(x)] is the vector function of m objectives to be minimized.
e g(x)" =[g.(x), ...gp(x)] is the vector function of p inequality constraints.

e h(x)"=[h(x), ...hq(x)] is the vector function of q equality constraints.

4.3 Definitions for MOPs

Feasible set: The feasible set JFis defined as the set of design vectors x that satisfy the
constraints of the optimization problem of Eq. (4.1). It is obvious that Fis a subset of X.

F={xeX|g(x)<0|h(x)=0} (42)
FeX (4.3)

The image of /; i.e. the feasible region in the objective space, is called the criterion space,
denoted as V=f(F). All equality constraints, if they exist (regardless of the value of x
used), are considered active at all points of the feasible set J.

Feasible design: A design vector x is feasible if and only if it belongs to the feasible set
F.

In single-objective optimization, the feasible set f'is completely ordered according to the
single value of the objective function f. For two solutions x°, x° € F, either fix*)<fx") or
fix")<fix*) (or both) and the goal is to find the solution that gives the minimum value of
the objective function f. However, when several objectives are considered, the feasible set
JFis in the general case not completely, but partially ordered (Pareto 1896), and two solu-
tions cannot be classified in a univocal manner. This is illustrated in Figure 4.1 depicting
the objective space for an unconstrained MOP with two objective functions f; and f..
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Figure 4.1 Dominated, dominating and incomparable regions with respect to point A in the
objective space.

The solution x* represented by point A (reference point) in the objective space is clearly
better than the solution x” represented by point E as it gives better values for both objec-
tive functions f; and f;, as in mathematical terms, f,(x")<f(x*) and f,(x*)<f.(xF). On the
other hand, the solution x” represented by point D is superior to the one represented by
A, as fi(x")<fi(x") and £i(x")<fi(x"), while the solutions represented by B and C are in-
comparable to A as each one is better than A for one of the objective functions, f; and f,

respectively, fi(x”) <fi(x") and f,(x*) <£.(x") while f;(x*) <£,(x“) and £,(x°) <f:(x").

In order to express this situation mathematically, the equality and inequality notions for
a SOP are extended to objective vectors using the following definitions:

Weak Pareto dominance: An objective vector u is said to weakly dominate objective
vector v (u » v )" if and only if

w<v Vi=l..,n (4.4)

Pareto dominance: An objective vector u is said to dominate objective vector v (u>v)
if and only if it weakly dominates objective vector v (Eq.(4.4)) and u;<v; for at least one

i=1,..,n.

Strict Pareto dominance: An objective vector u is said to strictly dominate objective
vectorv (u>>v)ifandonlyif uy; <v; V i=1,..,n.

' Note that these definitions for the notation >, > and >> are given for a minimization

problem.
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Incomparability: Two objsective vectors u and v are said to be incomparable to each
other (u<>Vv) if neither u = vnor v = u. Some authors also use the term indifferent to

describe the same notion.

In Figure 4.1 the upper right rectangle, where point E belongs to, encapsulates the region
in the objective space that is dominated by the objective vector represented by reference
point A. The lower left rectangle, where point D belongs to, contains the objective vec-
tors that dominate the solution associated with A. The other two rectangles, the upper
left and the lower right, where points B and C belong to, respectively, contain solutions
that are incomparable to A. Based on the concept of Pareto dominance, the definitions of
both local Pareto optimality (Wan 1975) and global Pareto optimality for MOPs can be
introduced as follows:

Local Pareto optimality: A design vector x" e Fis said to be a Local Pareto optimal de-
sign vector if and only if there exists a neighborhood N of x" in which there exists no
otherx € X such that f(x) > f(x%).

(Global) Pareto optimality: A design vector x € F is a Pareto optimal design vector if
and only if there exists no other x e Fsuch that f(x) > f(x")

In other words, a design vector x € Fis a Pareto optimal design vector if and only if there
exists no other x € f'such that

fi(x)< fi(x)V i=1,..,n (4.5)

with fi(x) < fi(x") for at least one objective i.

Extending the above definition, the image of a Pareto optimal design vector in the objec-
tive space can be called a Pareto optimal objective vector. From the above definitions it is
clear that a global Pareto optimal design vector is necessarily also a local Pareto optimal
design vector, while the converse does not hold in general. The converse is true only in
the special case where all the functions involved are convex functions.

Pareto set: Pareto set P* is the set of all the Pareto optimal design vectors x € F.

In other words, Pareto set 7P* is the set of all the design vectors that correspond to
non-dominated objective vectors (solutions):

P* = {x" € F | There is no x € F such that f(x) > f(x")} (4.6)

Pareto front: Pareto front (PF) is the image of the Pareto set 7* in the objective function
space. In other words, Pareto front is the set of all Pareto optimal objective vectors.

Figure 4.2 depicts the feasible region in the objective space for a minimization problem
with two objective functions f; and f,. The lower left bold line of the feasible region
boundary is the Pareto front. White points represent objective vectors that correspond to
feasible design vectors, but are dominated by at least one other objective vector. On the
other hand, the black points along the front represent some of the Pareto optimal objec-
tive vectors, which are not dominated by any other objective vector in the feasible re-
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gion. All black points correspond to objective vectors that are incomparable to each oth-
er. Thus, a black point is optimal in the sense that it cannot be improved in one objective
without causing deterioration in the other objective.

Infeasible region

v

fi

Figure 4.2 Feasible region and corresponding Pareto Front in the objective space
for a two-objective minimization problem.

It is clear that in the multi-objective case there is no single optimal solution for the op-
timization problem, but rather a set of optimal trade-offs that are represented by the Pa-
reto Front. None of these points can be identified as better than another point of the
front. They are all candidates for selection depending on the decision maker’s prefe-
rence. It should be noted that each point along the Pareto Front in the objective space
has a corresponding point (or maybe more than just one point) in the design space, yet
the graphical interpretation of non-dominance applies only in the objective space.

4.4 Conflict and criteria

The engineer looking for the optimum design of a structure is faced with the question of
selecting the most suitable criteria for measuring the economy, strength, serviceability or
any other factor that affects the performance of the structure. Any quantity that has an
influence on the structural performance can be considered as a criterion. One important
basic property in the multi-criterion formulation is the conflict that should exist among
the various criteria to be taken into consideration. Only those quantities that are con-
flicting with each other should be treated as independent criteria whereas the others can
be combined into a single criterion representing the whole group. Below there are some
definitions on criteria conflict.



94 Chapter 4

Local collinearity: Two objective functions f; and f; are called locally collinear with no
conflict at point x if there is ¢>o0 such that

Vfi(x) =c-Vf;(x) (4.7)

Otherwise, the functions are called locally conflicting at point x. According to this defini-
tion any two criteria are locally conflicting at a point of the design space if their maxi-

mum improvement is achieved in different directions.

Global conflict: Two objective functions f; and f; are called globally conflicting in the
feasible region F of the design space if the two single-objective optimization problems

min f;(x) x=[x,...,x,]" (4.8)

T

min f;(x) x=[x,...,X,] (4.9)

xeR”

have different optimal solutions in the feasible region f of the design space.

4.5 Search and decision making

Two conceptually distinct types of problems can be identified in solving a MOP; (i)
search; and (ii) decision making (Horn 1997). Search refers to the optimization process in
which the optimizer searches the feasible set for Pareto optimal solutions. Decision mak-
ing addresses the problem of selecting the suitable compromise solution among the Pa-
reto set. This requires a human Decision Maker (DM) to make the trade-off by selecting a
single solution among the optimal set.

Depending on how search and decision process are combined, multi-objective optimiza-
tion methods can be classified into three categories (Horn 1997; Hwang and Masud

1979):

i. Decision making before search: The objectives of the MOP are aggregated and
the multi-objective problem is transformed into a single-objective one. This impli-
citly includes preference information given by the DM.

ii. Decision making after search: No preference information is given. After the
search phase has been concluded and the Pareto set has been defined, the DM
makes the trade-off and the final choice among the different optimal solutions.

iii. Decision making during search: Preferences can be articulated by the DM dur-
ing the optimization process. After each optimization step, a number of alternative
trade-offs is presented and the DM specifies further preference information, guid-
ing the search process.

The standard approach of aggregating the various objectives into a single criterion has
the advantage that various well-established single-objective optimization strategies can
be applied without any modification. However, it requires a profound domain knowledge
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which is usually not available. Performing the search before decision making overcomes
this drawback, but excludes preference articulation by the DM which might reduce the
search space complexity. Finally, the integration of search and decision making is a
promising way to combine the other two approaches, exploiting the advantages of both.

4.6 Methods for solving MOPs

In real-world structural optimization problems, two difficulties are usually encountered;
(i) multiple conflicting objectives may exist; and (ii) the search space can be complicated
and non-convex. In order to overcome these difficulties, efficient optimization strategies
are required. There is a large variety of analytical techniques for solving multi-objective
optimization problems, starting from a few decades ago. Cohon (1978) reviewed many of
the available methods of that time. Hwang and Masud (1979) illustrated a large number
of methods by solving numerical examples in detail. Zeleny (1982) provided a compre-
hensive treatment of the entire multicriteria endeavor. Stadler (1988) offered broad cov-
erage of the field with many examples from engineering and science. Chankong and
Haimes (1983) included a rigorous development of most multicriteria techniques of that
time. Steuer (1986) provided an especially useful review of multicriteria linear program-
ming theories and algorithms.

Miettinen (1999) gave a thorough review of non-linear multi-objective optimization
theories and methods, while Zitzler (1999) examined various evolutionary algorithms for
multi-objective optimization. Various methods have been also proposed lately for treat-
ing structural multi-objective optimization problems (Coelho et al. 2003; Coello Coello
2000; Deb et al. 2002; Greiner et al. 2004; Luh and Chueh 2004; Marler and Arora 2004;
Zitzler et al. 2000). The large number of multi-objective optimization methods can be
classified in many ways according to different criteria. Hwang and Masud (1979), fol-
lowed by Buchanan (1986), Lieberman (1991), and Miettinen (1999), classified the me-
thods according to the participation of the decision-maker in the solution process: (i) no
preference methods; (ii) a priori methods; (iii) interactive methods; and (iv) a posteriori
methods. Rosenthal (1985) suggested three classes of solution methods: (i) partial gener-
ation of the Pareto set; (ii) explicit value function maximization; and (iii) interactive im-
plicit value function maximization. In Carmichael (1981), methods were classified accord-
ing to whether (i) a composite single objective function; (ii) a single objective function
with constraints; or (iii) many single objective functions were the basis for the approach.

According to Marler and Arora (2004) MOP methods can be classified into the following
categories:

i. Methods with a priori articulation of preferences;
ii. Methods with a posteriori articulation of preferences;

iii. Methods with no articulation of preferences.
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In the case of the methods with a priori articulation of preferences, which are the most
popular methods, a scalarizing function with weight parameters is usually used and a
series of optimization runs have to be executed, as the multi-objective optimization
problem is modified into many single objective optimization sub-problems. In general,
when using scalarizing functions local Pareto optimal solutions are obtained. Global Pa-
reto optimality can be guaranteed only when the objective functions and the feasible re-
gion are both convex or quasi-convex and convex, respectively. For non-convex cases,
such as the majority of structural multi-objective optimization problems, a global single
objective optimizer is required.

The quality of the Pareto front curve obtained from any optimization method can be as-
sessed according to the following criteria in general:

i. Distance from the exact Global Pareto front curve;
ii. Number of Pareto optimum solutions;

iii. Distribution of the Pareto optimum solutions along the front curve.

4.7 Standard methods

Standard methods for generating the Pareto-optimal set combine the various objectives
into a single, parameterized objective function by analogy to decision making before
search. However, the parameters of this function are not set by the decision maker but
systematically varied by the optimizer. Several optimization runs with different parame-
ter settings are performed in order to achieve a set of solutions which approximates the
Pareto optimal set. Basically, this procedure is independent of the incorporated optimi-
zation algorithm, as any single-objective optimization algorithm can be used for the so-
lution of the sub-problems.

Some representatives of this class of methods are the Linear Weighting Method (LWM)
(Cohon 1978), the Distance Function Method (DFM) (Zeleny 1982), the Constraint Me-
thod (CM) (Haimes and Hall 1974), the Goal Programming (GP) method (Steuer 1986)
and the minmax approach (Koski 1984).

Standard methods are attractive and popular because of the fact that they transform the
original MOP into a series of SOPs, and as a result well-studied algorithms for SOPs can
be implemented. However, there are limitations and difficulties in their use (Zitzler

1999), as:

i. Some techniques may be sensitive to the shape of the Pareto Front (mainly weight-
ing methods);

ii. Problem knowledge may be required which may not be available;

iii. They require several optimization runs to obtain an approximation of the Pareto-
optimal set. As these runs are performed independently from each other, synergies
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can usually not be exploited which, in turn, may cause high computational over-
head (Deb 1999).

4.7.1 Linear Weighting Method (LWM)

The Linear Weighting Method (Cohon 1978), combines all the objectives into a single
scalar parameterized objective function by using weighting coefficients. Let w; be the
weighting coefficient for the i-th objective function (i=1,...,m). Then the optimization
problem of Eq. (4.1) can be written as

mingwiﬁ(x) (4.10)
=l

With no loss of generality the following normalization of the weighting coefficients is
employed

>w =1 (4.11)

i=l1

If for some given values of the weights w; (i=1,...,m) the condition of Eq. (4.11) is not satis-

fied, then the weights can be normalized using the following formula:

W, = (4.12)
2

Jj=1

Each weighting coefficient corresponds to the weight of each criterion and is adjusted
according to the importance of the criterion. Every combination of the weighting coeffi-
cients corresponds theoretically to a single Pareto optimal solution, thus, performing a
series of optimization processes using different weighting coefficients it is possible to
generate the full set of Pareto optimal solutions. A basic disadvantage of the method is
that the generation of the full Pareto set can be guaranteed only for convex problems.

For realistic applications, the values of the various objective functions can be measured
in different units and thus be of different order of magnitude, which can cause problems
to the optimization process. Thus it is necessary to normalize every objective function
according to the following formula

~ Ji(%) = fimin

fi(x) = (4.13)
ﬁ,max - ﬁ,min

where f; min and f; max are the minimum and maximum values that the i-th objective func-

tion can take in the design space, respectively. The normalized objective functions

fi(x) €[0,1] use the same design space as the non-normalized ones.
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Optimal solutions generated by LWM

On condition that an exact optimization algorithm is used and all weights are positive,
the LWM will only generate Pareto-optimal solutions, a statement that can be easily
proved: assume that a feasible design vector a minimizes the weighted sum of Eq. (4.10)
for a given weight combination and is not Pareto optimal. Then, there is a solution b
which dominates a, i.e. without loss of generality fi(b)<f,(a) and fi(b)<fi(a) for i=2,...,m.
Therefore by multiplying the m equations with the corresponding positive weights and
adding the inequality equations we obtain:

WhAB) +wy f2(B) + ...+ Wy fru(B) <Wifi(@) + wafor(@) +...+ W, fru(@) & (4.14)
Zm:Wifz‘(b) < Zm:Wifz‘(a) (4.15)

which is in contradiction with the assumption that the design vector a minimizes the
weighted sum of Eq. (4.10).

Drawbacks of the LWM

In general, there are several major disadvantages of using the weighting method (Diwe-
kar 2008):

i. Its inefficiency arising from the linear combination of objectives.

ii.  Its difficulty to control the region of the non-dominated surface on which the deci-
sion-maker is heavily favored. For example, a small change in the weighting coeffi-
cients may cause big changes in the objective vectors, and dramatically differing
weighting coefficients may produce nearly similar objective vectors.

iii. An evenly distributed set of weighting vectors does not necessarily produce an
evenly distributed representation of the Pareto set, even if the problem is convex
(Das and Dennis 1998). This shows a lack of robustness. Furthermore, all of the Pa-
reto optimal points cannot be found if the problem is non-convex (Miettinen

1999).

4.7.2 Distance Function Method (DFM)

The distance methods (Zeleny 1982) are based on the minimization of the distance be-
tween the set of the objective function values and some chosen reference points belong-
ing to the criterion space V=f(F). This technique has been implemented in structural
optimization in the work of Koski (1994). The resulting scalar equivalent of the optimiza-
tion problem of Eq. (4.1) can be written as

{}2}1 d,(x) (4.16)

where d,(x) is the distance function which can be written as:
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m I/p
d,(x)= {Zwi(fi(x) -z)’ } (4.17)
i=l1

and p is an integer number. The reference point z'/=(z,, ...,z,,]" of the objective space,
also called ideal or utopian point is selected by the designer. A reference point that is fre-
quently used is the following:

S fn] (4.18)

where f; (i=1,...,m) is the optimum solution of the single-objective optimization problem
where the i-th objective function is treated as the unique objective. The normalization
described in Egs. (4.11) and (4.12) for the weighting factors w; is also used. In the special
case of p=x, Eq. (4.16) is transformed into the minimax problem:

m

g max [ w; f3(x)] (4.19)

In the special case of p=1the DFM is equivalent to the LWM when the reference point
used is the zero z=o0, while in the special case of p=2 the method is called Weighted
Quadratic Method (WQM).

4.7.3 Constraint Method (CM)

According to the CM, the original multi-objective problem is replaced by a scalar prob-
lem where one of the m objectives, called the main objective (f;), is chosen as the single
objective function and all the m-1 others (additional objectives) are removed into the
constraints (Haimes and Hall 1974).

By introducing parameters ¢; (i=1,...,m with i#k), these m-1 constraints can be written as:

fix)<¢g,i=1...,m with i #k (4.20)

Then the resulting single-objective optimization problem can be written as follows:
minfk(x)7 xz[xl’---axn]Ta kaR
xeR”
Subject to
g(x)<0, geR? (4.21)
h(x)=0, heRY
filx)<g,i=1...,m with i #k

x;eX; fori=1..n

The solution to the above SOP corresponds to a single point of the Pareto Front of the
original MOP. By using various values of these parameters ¢;, the constraint method gives
the opportunity to obtain the full set of the Pareto optimum solutions. This technique is
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not biased towards convex portions of the Pareto Front, as it is able to obtain solutions
associated with non-convex parts of the trade-off curve also.

4.8 Evolutionary Algorithms for solving multi-objective optimization
problems

The standard methods for solving multi-objective optimization problems, discussed in
Section 4.7, have been used in the past with mathematical programming optimization
algorithms where at each optimization step one design point was examined as an opti-
mum design candidate. In order to locate the set of Pareto optimum solutions, a number
of optimization runs have to be executed. Recently, Evolutionary Algorithms (EAs) have
established as an alternative to standard methods for handling MOPs, through which
large search spaces can be handled, multiple alternative trade-offs can be generated in a
single optimization run and the difficulties encountered by the standard methods can be
avoided.

EA optimizers work simultaneously with a population of design points, instead of a sin-
gle design point, which constitute a population of optimum design candidates that
search simultaneously in the space of design variables. Due to this characteristic, me-
thods based on EAs have a great potential in finding the full Pareto front in a single op-
timization run. Since the early 1990s a number of researchers have suggested the use of
EAs in multi-objective optimization problems (Coello Coello 2000; Fonseca and Fleming
1993; Fonseca and Fleming 1995; Horn et al. 1994; Marler and Arora 2004; Schaffer 1984;
Zitzler 1999).

In the absence of preference information, none of the corresponding trade-offs can be
said to be better than the others. On the other hand, the search space can be too large
and too complex, which is the usual case for real-world problems, hence the implemen-
tation of gradient based optimizers for this type of problems becomes even more cum-
bersome. Thus, efficient optimization strategies are required able to deal with the pres-
ence of multiple objectives and the complexity of the search space. EAs have several cha-
racteristics that are desirable for this kind of problems and most frequently outperform
the deterministic optimizers such as gradient based optimization algorithms.

4.9 Evolution Strategies combined with the Linear Weighting Method

In the implementation where the weighting method is used in order to generate a set of
Pareto optimal solutions, the optimization procedure initiates with a set of parent design
vectors needed by the ES optimizer and a set of weighting coefficients for the combina-
tion of all objectives into a single scalar parameterized objective function. These weight-
ing coefficients are not set by the designer but are being systematically varied by the op-
timizer after a Pareto optimal solution has been achieved.

There is an outer loop which systematically varies the parameters of the parameterized
objective function, that is called decision making loop. The inner loop is the classical ES
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procedure, starting with an initial set of parent vectors. If any of these parent vectors
gives an infeasible design then it is modified until it becomes feasible. Subsequently, the
offspring are generated and checked whether they are in the feasible region. According
to the (u+A) selection scheme, in every generation the values of the objective function of
the parent and the offspring vectors are compared and the worst vectors are rejected,
while the remaining ones are considered to be the parent vectors of the new generation.
On the other hand, according to the (i, A) selection scheme only the offspring vectors of
each generation are used to produce the new generation. This procedure is repeated un-
til the chosen termination criterion is satisfied. The number of parents and offspring in-
volved affects the computational efficiency of the multi-membered ES scheme discussed
in this work. The ES algorithm combined with the LWM is shown in Figure 4.3.

Outer loop - Decision making loop
Set the parameters w; of the parameterized objective function
Inner loop - ES loop
1. Selection step: selection of X' (i=1,...,1) parent vectors of the design variables
2. Analysis step
Evaluation of parameterized objective function

Constraints check: all parent vectors become feasible

voeow

Offspring generation: generate X' (j=1,...,A) offspring vectors of the design vari-
ables

Analysis step
Evaluation of the parameterized objective function

Constraints check: if satisfied continue, else change x' and go to step 5

R =

Selection step: selection of the next generation parents according to (u+A) or
(u,7) selection schemes

10. Convergence check: if satisfied stop, else go to step 5
End of Inner loop

End of Outer loop

Figure 4.3 The ES algorithm combined with the Linear Weighting Method.

4.10 Proposed algorithms for evolutionary multi-objective optimiza-
tion

Two evolutionary algorithms for multi-objective optimization are proposed in the
present thesis:
i. The non-dominant Cascade Evolutionary Algorithm (CEA);

ii. The Evolution Strategies for Multi-objective Optimization (ESMO) algorithm.
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4.10.1 The non-dominant Cascade Evolutionary Algorithm

In the present thesis the idea of cascading is implemented within the Evolution Algo-
rithm (EA) context for solving multi-objective structural optimization problems. In par-
ticular, the CEA method is employed for the solution of the sequence of parameterized
single objective optimization problems. The proposed method is based on the idea of
decomposing the multi-objective optimization problem into a series of nruns single ob-
jective sub-problems which are solved concurrently with the CEA method since the sub-
problems are independent between each other. CEA consists of csteps optimization stag-
es, each of which employs the same optimizer. In order to differentiate the search paths
followed by the same optimization algorithm during the cascade stages, the initial condi-
tions of individual optimization runs are suitably controlled by using at each stage:

i. A different initial design (each stage initiates from the solution of the previous
stage);

ii. A different seed for the random number generator of the EA process.

The cascade procedure is terminated when no more improvement on the optimum solu-

tion vector can be attained over a small number of optimization stages.

In this work the non-dominant Cascade Evolutionary Algorithm is further enhanced
with the augmented Tchebycheff metric for solving the multi-objective optimization
problem (Lagaros et al. 2005¢). This methodology is abbreviated as CEATmM((+A) nruns csteps»
where p, A are the number of the parent and offspring vectors used in the ES optimiza-
tion strategy, nruns is the number of independent CEA runs and csteps is the number of
cascade stages employed.

The proposed optimization scheme can easily be applied in two parallel computing lev-
els, an external and an internal one. As it was mentioned earlier the multi-objective op-
timization problem is converted into a series of single objective optimization problems.
The solution of each subproblem can be performed concurrently constituting the exter-
nal parallel computing level. On the other hand, the utilization of the natural paralleliza-
tion capabilities of the CEA methodology within each independent run defines the inter-
nal parallel computing level.

The augmented weighted Tchebycheff method belongs to the methods with a priori ar-
ticulation of the preferences for treating the multi-objective optimization problem and,
unlike the linear weighting sum method, can be applied effectively to convex as well as
to non-convex problems (Miettinen 1999). The weighted Tchebycheff metric can gener-
ate any optimal solution, to any type of optimization problem (Steuer 1986). In order to
overcome weakly Pareto optimal solutions, the Tchebycheff method formulates the dis-
tance minimization problem as a weighted Tchebycheff problem:

S ORI i\fi(x)—Zf\
</ DAY 0 PET

(4.22)
i=1
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where p is a sufficiently small positive scalar (in this work p=0.1), fi(x) is the i-th objec-
tive function to be minimized, z; is the utopian value of the i-th objective function cor-

responding to the optimum value obtained when the problem is dealt with as a single
objective optimization problem for the i-th objective function and w; are the weight pa-
rameters for the i-th objective function, which are random numbers uniformly distrib-
uted in the interval [o0,1]. These weight parameters are updated according to Eq. (4.12) in
order to fulfil the requirement of Eq. (4.11).

In order to ensure that the Pareto fronts will be composed by feasible designs all the in-
feasible ones are rejected. The weight coefficients w; of Eq. (4.22) are implemented in or-
der to achieve convergence of the CEA runs to different directions of the design space.
The Pareto front is computed by taking advantage of the search procedure performed for
the independent CEA runs in these directions. The idea is to define the Pareto optimal
solution reached so far in certain periods of the optimization procedure. These periods
are called global generations. A global generation, shown in Figure 4.4, is completed
when a population of u+A feasible designs is obtained for each sub-problem. Therefore,
the temporary Pareto front is updated by performing non-dominant search over the
global generation (i.e. over a suit of u+A by nruns feasible designs) and the previous tem-
porary Pareto set. A local Pareto front is computed in every global generation; the global
Pareto front is reached when the optimization procedure converges.

Independent runs
Loop: For i=1, nruns

_______ _L_ii1_____ __y_=2 ii=nruns

—% Select p parents ‘

Mutation
Crossover

I
I I
I I
I I
I I
I I
I I
I I
I I
‘ Generate A offsprings ‘ | LEREL |
No I ! I '

‘ Global Generation - Perform Non-dominant search in order to update the Pareto front.

Yes I ! I i
I |

I | '

Convergence? | | | |

|| | :
L . |

- ' =

Figure 4.4 The non-dominant Cascade Evolutionary Algorithm.

A non-dominant search is performed in the context of the CEA and the Tchebycheff
metric in the sense that all non-dominated solutions attained so far are kept in a set
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called temporary Pareto set. It was mentioned before that the multi-objective optimiza-
tion problems are decomposed into subproblems which are solved with independent
runs (nruns in total) of the CEA methodology. Each subproblem is independent from the
other and therefore all subproblems can be dealt with simultaneously. Furthermore, in
every global generation a non-dominant search is applied for updating the temporary
Pareto set. The global generation is achieved when all local generations of the independ-
ent CEA runs are completed. According to this procedure in every global generation a
local Pareto front is produced which approaches the global one. A schematic description
of the method is given in Figure 4.4. The basic steps inside an independent run of the
multi-objective algorithm, as adopted in this study, are shown in Figure 4.5.

Independent run i, i=1,...,nrun

Generate the weight coefficients w;; (j=1, ...,m) of the Tchebycheff metric. Check if
the requirement of Eq. (4.11) is fulfilled, if not change the weight parameters using

Eq. (4.12).
CEATm loop
Initial generation:
1a. Generate x; (k=1,...,ut) vectors.
1b. Structural analysis step
1c. Evaluation of the Tchebycheff metric, Eq. (4.22).
1d. Constraint check: If satisfied k=k+1 else k=k. Go to step 1a.

Global non-dominant search: check if global generation is accomplished. If yes,
then non-dominant search is performed, else wait until global generation is ac-
complished.

New generation:

3a. Generate x; ({=1,...,A) vectors.

3b. Structural analysis step

3c. Evaluation of the Tchebycheff metric, Eq. (4.22).

3d. Constraint check: If satisfied {={+1 else {={. Go to step 3a.

Selection step: selection of the next generation parents according to (u+A) or (u,A)
scheme.

Global non-dominant search: Check if global generation is accomplished. If yes,
then non-dominant search is performed, else wait until global generation is ac-
complished.

Convergence check: If satisfied stop, else go to step 5.
End of CEATm loop

End of Independent run i

Figure 4.5 The CEATm algorithm’s steps.
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4.10.2 ESMO algorithm

Instead of using scalarizing functions in order to convert the multi-objective optimiza-
tion problem into a series of single-objective optimization problems, the purpose in us-
ing an ES optimizer is to find the full Pareto front with one optimization run, by working
with a population of design points that search the space of design variables simulta-
neously. In order to implement ES for solving multi-objective optimization problems,
some modifications have to be introduced to the standard method which was initially
designed to search for a single optimum. For this purpose two issues need to be consi-
dered:

i. The implementation of fitness selection taking into account all the different objec-
tive functions, in order to guide the search towards the Pareto front curve;

ii. The maintenance of a diverse population in order to prevent premature conver-
gence and to achieve a well distributed and well spread Pareto front curve.

In the present thesis an Evolution Strategies for Multi-objective Optimization (ESMO)
algorithm is proposed for solving the optimization problem. ESMO consists of the stan-
dard ES algorithm which has been modified to take into account the issues discussed
above (Papadrakakis et al. 2002a). The modifications introduced are presented in the fol-

lowing sections.

Fitness selection

In a single-objective optimization problem the selection operator is based on the value of
the single fitness function. In the case of optimization problems with multiple objectives,
the selection operator has to be modified in order to allow for multiple objectives. In the
present work, the fitness function switches randomly between the objective functions
(Schaffer 1984) during the selection phase instead of combining them into a scalarizing
function. A random objective function criterion is used to decide whether an individual
will be part of the next generation.

Preserve diversity of the population

The goal of fitness sharing is to distribute the population over a number of different
peaks in the search space, with each peak receiving a fraction of the population in pro-
portion to the height of that peak. In order to preserve diversity in the population, fit-
ness sharing is implemented (Horn et al. 1994). Sharing calls for the degradation of an
individual’s objective fitness by a niche count calculated for that individual. According to
fitness sharing the fitness values of an individual are degraded depending on the number
of the individuals located in its neighborhood, while stable subpopulations are also
maintained. This procedure is employed in order to avoid converging to a single opti-
mum. Each subpopulation has its own optimum, which is also called a niche. Fitness
sharing causes multiple optimum designs to co-exist in the population. The shared fit-

ness ]?,(x) of an objective function fi(x) is equal to its initial fitness degraded using the
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design’s niche count. This degradation is obtained by simply dividing the objective fit-
ness by the niche count to find the shared fitness:

fi~(x)=#_1 fi(%) (4.23)
fshare(xaxh)
h=1
d(xaxh) : h
h -] —= if d(x,x") < Ogare

Sshare (X, X") = Oshare (4.24)

0 otherwise
d(x,x") =] f(x) = 1 (x")| (4.25)

where i is the size of the population, d(x,x") is a distance function defining the distance
of the design x from another member of the population, x", in the objective space.

To estimate the value of oghare, the following expression is used

7

Oshare = %

where r is the volume of an n-dimensional hypersphere of radius oghare, and g is the num-

(4.26)

ber of peaks that the algorithm is asked to locate. In this study q is taken equal to 2o0.

The sum over the y-1 members of the population in the denominator of Eq. (4.23) defines
the niche count of design x. The niche count is an estimate of how crowded the neigh-
borhood (niche) of the individual is. It is calculated over all individuals in the current
population. Depending on whether the distance function d(x,x") works on the phenotyp-
ical or the genotypical space, phenotypical or genotypical sharing is defined. In pheno-
typical sharing the distance between two members of the population x and r is measured
with their Euclidean distance in the n-dimensional space, where n refers to the number

d(x,r) = ,/Zn)(xi - 1)’ (4.27)
i=1

The steps of the ES algorithm for Multi-objective Optimization can be summarized as

of design variables, as follows:

ESMO algorithm pseudocode

shown in the flowchart of Figure 4.6.
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1. Initialization: generate the u parent vectors of the first generation (x, i=1,.., 1)

a. Design step: structural analysis - constraints check (Generate u feasible parent
vectors)

b. Evaluate the objective functions: calculate f; and f,
2. Non-dominated search: obtain a temporary Pareto front curve

3. Offspring generation: generate the A offspring vectors of the g-th generation (x;,
j=1,..,A)

a. Design step: structural analysis - constraints check (generate A feasible offspring
vectors)

b. Evaluate the objective functions: calculate f, and f,

4. Fitness sharing: all the members of the parent and offspring populations are sub-
jected to fitness sharing (Egs. (4.23) and (4.24))

5. Selection step: select the parent population of the next generation from the parent
and offspring populations of the current generation (see fitness selection section).

6. Non-dominated search: obtain a new temporary Pareto front set

7. Convergence check: if satisfied stop, else go back to step 3.

Figure 4.6 The ESMO algorithm's steps.

Non-dominated search is used in order to find the Pareto optimal set in the current pop-
ulation. The death penalty method is employed for handling the constraints. If a design
is not feasible then it is rejected and a new design is generated by means of the recombi-
nation and mutations operators (Lagaros et al. (2004)). Details on constraint handling
techniques can be found in Section 3.11.4.

4.11 Particle Swarm Optimization for multi-objective problems

Given the similarities of the Particle Swarm Optimization (PSO) method with Evolutio-
nary Algorithms and the promising results reported in the literature comparing PSO to
EA techniques for single-objective optimization problems, a transfer of PSO to multi-
objective problems seems a natural progression. Recently, in 2002 this progression oc-
curred, with a number of different studies published on Multi-objective Particle Swarm
Optimization (MOPSO) (Coello Coello and Lechuga 2002; Fieldsend and Singh 2002; Hu
and Eberhart 2002; Parsopoulos and Vrahatis 2002).

Although most of these studies were generated in tandem, each of them implements
MOPSO in a different fashion. The research in the field of multi-objective PSO is an
open field, continuing with great interest (Abido 2007; Omkar et al. 2008; Parsopoulos et
al. 2004; Reyes-Sierra and Coello Coello 2006; Vlachogiannis and Lee 2009). In the
present thesis, the PSO algorithm has been only applied to single objective optimization
problems. The application of the method to multi-objective problems will be one of the
next research steps, as will be described in detail in Section 9.3 (Future work).
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5 Neural Networks

5.1 Introduction

5.1.1  Historical background

The first wave of interest in Artificial Neural Networks, also known as connectionist mod-
els or parallel distributed processing models emerged after the introduction of simplified
neurons by McCulloch and Pitts (1943). These neurons were presented as models of bio-
logical neurons and as conceptual components for circuits that could perform computa-
tional tasks. The interest in the field was reduced and funding was redirected to other
scientific fields when Minsky and Papert published the book ‘Perceptrons’ (Minsky and
Papert 1969), illustrating the deficiencies of perceptron models. Only a few researchers
continued their work in NNs, until the interest in the field re-emerged after some impor-
tant theoretical results were attained in the early 1980s (most notably the discovery of
error back-propagation) and new hardware developments increased the processing ca-
pacities. This renewed interest is reflected in the number of scientists, the amounts of
funding, the number of large conferences and the number of journals associated with
NNs lately (Krose and van der Smagt 1996).

Artificial neural networks can be most adequately characterized as computational models
with particular properties such as the ability to adapt or learn, to generalize, or to cluster
or organize data, and which operation is based on parallel processing. However, many of
the abovementioned properties can be also attributed to other (non-neural) models. The
intriguing question is to which extent the neural approach proves to be better suited for
certain applications than existing models. Thus, NNs can be generally considered as an
alternative computational scheme.

5.1.2 Biological Neural Networks

In neuroscience, a (biological) neural network describes a population of physically inter-
connected neurons or a group of disparate neurons whose inputs or signaling targets de-
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fine a circuit. A neuron consists of a soma (cell body), axons (output connection, that
send signals), and several dendrites (input connections, that receive signals). A synapse
connects an axon to a dendrite. Communication between neurons often involves an elec-
trochemical process. Given a signal, a synapse might increase (excite) or decrease (inhi-
bit) electrical potential. A neuron fires when its electrical potential reaches a threshold.
Learning might occur by changes to synapses. If the sum of the input signals surpasses a
certain threshold, the neuron sends an action potential at the axon hillock and transmits
this electrical signal along the axon.

A single neuron is very slow compared to a modern computer processor, as it takes about
one millisecond (107s) to react to an impulse, while a 1GHz processor performs one in-
struction in a nanosecond (10°s). However, if we take into account that a human brain
has roughly 100 billion (10") simultaneously functioning neurons and about 100 trillion
(10') synapses, then we can safely presume that a human brain has great computing
power. Figure 5.1 depicts a biological neuron (the cell body, or Soma) and its connec-
tions. Together they comprise the basic building blocks for biological brains.

Synapses

Cell Body or Soma
Figure 5.1 A biological neuron.

The first rule of neuronal learning was described by Hebb (1949), named Hebbian learn-
ing. The theory is commonly evoked to explain some types of associative learning in
which simultaneous activation of cells leads to pronounced increases in synaptic
strength. Hebbian pairing of pre-synaptic and post-synaptic activity can substantially
alter the dynamic characteristics of the synaptic connection and therefore facilitate or

inhibit signal transmission.

5.1.3  Artificial Neural Networks

The development of artificial neural networks was initially inspired and motivated by
insights into how biological brains - and in particular mammalian brains - function. It
was found that mammalian brains learn as connections between neurons are streng-
thened - the result of electrochemical processes triggered by external or internal stimuli
(experiences). As in biological systems, learning involves adjustments to the synaptic
connections that exist between the neurons. NNs, like human beings, learn by example.
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Although parallels with biological systems are often described, there is still so little
known (even at the lowest cell level) about biological systems, that the models that are
being used for artificial neural systems seem to introduce an oversimplification of the
'biological' models. The real, biological nervous system is highly complex and includes
some features that may seem superfluous based on an understanding of artificial net-

works.

In the first work on the processing of neural networks (Lettvin et al. 1959) it was shown
theoretically that networks of artificial neurons could implement logical, arithmetic, and
symbolic functions. Simplified models of biological neurons were set up, now usually
called perceptrons or artificial neurons. These simple models accounted for neural sum-
mation, i.e. potentials at the post-synaptic membrane would sum in the cell body. Later
models also provided for excitatory and inhibitory synaptic transmission.

Artificial Neural Networks are made up of fully or partially interconnecting artificial neu-
rons (programming constructs that mimic the properties of biological neurons). Artificial
neural networks may either be used to gain an understanding of biological neural net-
works, or for solving artificial intelligence problems without necessarily creating a model
of a real biological system. Artificial Intelligence (Al) and cognitive modeling try to simu-
late some properties of neural networks. While similar in their techniques, Al has the
aim of solving particular tasks, while cognitive modeling aims to build mathematical
models of biological neural systems.

In the Al field, artificial neural networks have been trained to perform complex functions
in various scientific fields and have been applied successfully to identification, classifica-
tion, simulation, inverse simulation, speech recognition, pattern recognition, image
analysis and adaptive control, and also in order to construct software agents (in comput-
er games) or autonomous robots. Most of the currently employed artificial neural net-
works for artificial intelligence are based on statistical estimation, optimization and con-
trol theory. In the present thesis, the term Neural Network (NN) will refer to an artificial
Neural Network, as opposed to a biological neural network.

5.2 Soft computing as opposed to Hard computing

5.2.1 The concept of computing

Computing takes place in human designed personal computers as well as biologically
evolved computers (brains). All computers perform the same fundamental task of infor-
mation processing. Information to be processed in computing is normally contained in
some data. Desktop and laptop computers are designed to do hard computing. On the
other hand, brains are also computers, that have evolved to do soft computing. Desktops
and laptops can be used today in order to simulate soft computing.
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5.2.2 Hard computing

Hard computing methods are based on mathematics. They inherit the properties of ma-
thematically based problem solving methods that are employed in science and engineer-
ing. The properties of mathematically based hard computing methods are:

i. Precision: Using a personal computer in order to solve a mathematical problem,
the solution can be given in any desired accuracy, based on the program’s settings.

ii. Universality: In practical problems, one is normally interested only in a range of
variables. Mathematically based hard computing methods provide universal solu-
tions, that are valid for all the possible ranges of variables.

iii. Functional uniqueness: Mathematical functions are unique. For example there is
only one cos(x) and it is valid for all the possible values of x.

Hard computing methods, such as the Finite Element Method (FEM) have been extreme-
ly useful in engineering problem solving. However, it is important to recognize some
fundamental limitations that are the consequences of the properties that hard compu-
ting methods inherit from mathematics:

i. Lack of robustness: For instance, a Finite Element Analysis (FEA) will likely fail if
a portion of the computer program is removed. Many solution methods also lack
robustness. This is a direct consequence of the precision requirement in hard com-
puting.

ii. Suitability for forward problems: Mathematically based hard computing me-
thods are inherently suitable for solving forward problems. Yet, they lack the capa-
bility for directly solving inverse problems.

iii. Relatively slow operation: Operations in hard computing methods are sequen-
tial and therefore relatively slow.

5.2.3 Soft computing

Soft computing methods are inspired by the computing and problem solving strategies
in nature. They inherit their properties from nature’s problem solving methods and they
are fundamentally different from the mathematically based hard computing problem
solving methods that are routinely used in engineering.

Problem solving in nature

The human brain is a massively parallel computer that has evolved through time in na-
ture. It is built and operates very differently than personal computers. Large number of
neurons that perform simple tasks are interconnected, giving the brain complex proper-
ties. The brain has evolved in order to solve problems that are important in the survival
of species.
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Human beings can normally recognize up to about 200 faces and voices. The tasks of
face and voice recognition that our brains perform so well are inverse problems that have
to be solved in real time and robustly. The massively parallel nature of the brain is the
reason that these difficult inverse problems are solved in real-time and robustly. In fact,
one may surmise that the brain has evolved as a massively parallel system, partly because
it has to solve the problems this way for the survival of species.

The characteristics of soft computing methods for problem solving in nature are:

i. Operating with robustness: Face and voice recognition occurs in a robust way.
For instance, humans can recognize partially covered faces.

ii. Directly solving inverse problems: Our brains solve inverse problems. Nature
solves inverse problem through evolution. Face and voice recognition or an animal
recognizing its prey is a typical inverse problem that has to be solved directly.

iii. Operating and providing response in real time: In nature, there is no time for

slow, sequential algorithmic thinking and problems has to be solved in real time.

While hard computing methods rely on mathematics, soft computing methods rely on
nature’s problem solving strategies, such as: (i) Learning; (ii) Reduction in disorder; and
(iii) Random search and gradual improvement. The main properties of soft computing
methods are:

i. Imprecision tolerance: Precision is not that important. Nature’s problem solving

strategies have evolved with imprecision tolerance.

ii. Non-universality: Universality is also not important. Face and voice recognition
methods in human brain have evolved to recognize a limited number of faces and
voices; not all the possible faces and voices. Non-universality is an important prop-
erty or nature’s problem solving methods.

iii. Functional non-uniqueness: While the details of neural connections in brains
are different, they can perform similar tasks with imprecision tolerance. This
amounts to functional non-uniqueness.

Understanding the differences between hard and soft computing is very significant in
full utilization of the potential of the biologically inspired soft computing methods. It is
very important that soft computing methods are not treated as another form of mathe-
matically based problem solving methods.

Inverse problems in engineering

The vast majority of engineering problems are inverse problems. For instance, the fun-
damental engineering tasks of structural modeling and design are inverse problems. Yet,
we do not pose these issues as inverse problems, because our mathematically based en-
gineering problem methods are not suitable for solving inverse problems. Such problems
are often solved by repeated application of forward solutions. Soft computing methods
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inherit the capability for solving inverse problems directly from nature’s problem solving
strategies.

Neural Networks as soft computing tools

Neural Networks belong to soft computing methods, inspired by the massively parallel
structure and operation of the brain, inheriting the main properties of nature’s problem
solving strategies. In that sense, they are fundamentally different than the mathematical-
ly based hard computing methods. An implication of the above observations is that soft
computing methods such as neural networks, have also the potential of solving inverse
problems robustly and in real-time.

5.3 Neural Networks characteristics

Neural networks exhibit a remarkable ability to derive meaning from complicated or im-
precise data, extract patterns and detect trends that are too complex to be noticed by
either humans or other computational techniques. A trained neural network can be
thought of as an "expert" in the category of information it has been given to analyze. This
expert can then be used to provide projections given new situations of interest and an-
swer "what if" questions. NN characteristics are the following:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for

training or initial experience.

2. Self-Organization: A NN can create its own organization or representation of the

information it receives during learning time.

3. Real Time Operation: NN computations may be carried out in parallel, and spe-
cial hardware devices are being designed and manufactured which take advantage
of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a
network leads to the corresponding degradation of performance. However, some

network capabilities may be retained even after major network damage.

Neural networks take a different approach to problem solving than conventional compu-
ting techniques. Conventional computing uses an algorithmic approach to problem solv-
ing, i.e. the computer follows a set of instructions in order to solve a problem. The whole
process is totally predicable. Unless the specific steps are known, the computer cannot
solve the problem. That restricts the problem solving capability of conventional compu-
ting to problems that we already understand and know how to solve.

Yet, computers would be so much more useful if they could do things that we don't ex-
actly know how to do. Neural networks process information in a similar way the human
brain does. The network is composed of a large number of highly interconnected
processing elements (neurons) working in parallel to solve a specific problem. Neural
networks learn by example. They cannot be programmed to perform a specific task. The
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examples must be selected carefully in order for the network to function properly and
provide useful results.

5.4 Activation functions

Most units in a NN transform their net inputs by using a scalar-to-scalar function called
activation function or transfer function, yielding a value called the unit's activation. Ex-
cept possibly for output units, the activation value is fed to one or more other units. Ac-
tivation functions with a bounded range are often called squashing functions. Some of
the most commonly used activation functions are (Fausett 1994):

5.4.1 ldentity function

The output of the identity function is given by
a=f(n)=n (5.1)

It is obvious that the input units use the identity function. Sometimes a constant is mul-
tiplied by the net input to form a linear function. The graphical representation of the
identity function is given in Figure 5.2(a).

5.4.2 Binary step function

The binary step function is also known as Threshold function, Heaviside function or Hard
limit function. The output of this function is limited to one of the two values

0, ifn<0

a=f(n)={1’ - (5.2)

This kind of function, often used in single layer networks, is non-continuous and
non-differentiable at point n=o0. The graphical representation of the binary step function
is shown in Figure 5.2(b).

+1

(@) ()
Figure 5.2 (a) Identity function, (b) Hard limit function.
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5.4.3 Binary sigmoid function

The output of the binary sigmoid function and its derivative are given by

a=f(n)= 1 — (5.3)
I+e
[ _ e” — _
f'(n) = —(1 PPy a(l—a) (5.4)

This function is especially advantageous for use in NNs trained by back-propagation, be-
cause it is easy to differentiate, and thus can dramatically reduce the computation bur-
den for training. It yields output values in the interval [o0,1], while its derivative yields
output values in the interval [0,0.25]. The graphical representations of the binary sigmo-
id function and its derivative are given in Figure 5.3.
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Figure 5.3 (a) Binary sigmoid function, (b) Its derivative.

5.4.4 Bipolar sigmoid function

The output of the bipolar sigmoid function and its derivative are given by

—n

a=f(n)= (5.5)

1-e
1+e™”
e—}’l
(1+e™)?

i) =2 :%(1+a)(1—a) (5.6)

This function has similar properties with the sigmoid function. It yields output values in
the interval [-1,1], while its derivative yields output values in the interval [0,0.5]. The
graphical representations of the sigmoid function and its derivative are given in Figure

5.4.
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Bipolar sigmoid
Derivative of bipolar sigmoid

(b)
Figure 5.4 (a) Bipolar sigmoid function, (b) Its derivative.

5.4.5 Hyperbolic tangent function

The output of the hyperbolic tangent function and its derivative are given by

e —1

a= f(n)= T = i -tan(Lix) (5.7)
2n

7= 4(e25 e >8)

This function has similar properties with the binary sigmoid and the bipolar sigmoid
functions. It yields output values in the interval [-1,1], while its derivative yields output
values in the interval [0,1]. The graphical representations of the hyperbolic tangent func-
tion and its derivative are shown in Figure 5.5.

Hyperbolic tangent
Derivative of hyperbolic tangent

(b)
Figure 5.5 (a) Hyperbolic tangent function, (b) Its derivative.
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5.4.6 The choice of proper activation functions

Non-linear activation functions for the hidden units are needed in order to introduce
non-linearity into the network, as a composition of only linear functions would be again
a linear function. However, it is the non-linearity (i.e. the capability to represent non-
linear functions) that makes multi-layer networks that powerful. Almost any non-linear
function can be used as an activation function, although for back-propagation learning it
must be differentiable and it helps if the function is bounded and also if it has an easy to
calculate derivative. In any case, the sigmoid functions are the most common choices.

For the output units, activation functions should be chosen to be suited to the distribu-
tion of the target values. For binary [0,1] outputs, the sigmoid function is an excellent
choice. For continuous-valued targets with a bounded range, the sigmoid functions are
again useful, provided that either the outputs or the targets to be scaled to the range of
the output activation function. But if the target values have no known bounded range, it
is better to use an unbounded activation function, most often the identity function
(which amounts to no activation function). If the target values are positive but have no
known upper bound, an exponential output activation function can be used.

5.5 Neural Networks elements

Neural networks are composed of simple elements operating in parallel. As in nature, the
connections between elements largely determine the network’s function. A NN can be
trained to perform a particular function by adjusting the values of the connections
(weights) between elements. Typically, neural networks are adjusted, or trained, so that
a particular input will lead to a specific target output. Figure 5.6 illustrates this situation
where the network is adjusted, based on a comparison of the output and the target, until
the network output matches the target. Typically, many such input/target pairs are
needed to train the network.

106.e] .

Neural Network including
Input—| connections (weights) ——Output: Compare
between neurons

LAdjust weights

Figure 5.6 Simple Neural Network training flowchart.
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NNs exhibit several distinguishing elements or features (Krose and van der Smagt 1996):
e A set of processing units;
e An activation state for each unit, which is equivalent to the output of the unit;

¢ Connections between the units, each connection being defined by a weight w; that
determines the effect that the signal of unit j has on unit k;

e A propagation rule, which determines the effective input of the unit from its exter-
nal inputs;

e An activation function, which determines the new level of activation based on the
effective input and the current activation;

e An external input (called bias) for each unit;
¢ A method for information gathering (learning rule);

e An environment within which the system can operate, provide input signals and, if

necessary, error signals.

5.5.1 Simple Neuron with scalar input

A neuron with a single scalar input and a bias appears in Figure 5.7. The specific notation
is the one used in Matlab (Demuth et al. 2008).

Input Neuron with bias

Y R

bW (n) ()

- B

n=wp+b, a=f(n)

Figure 5.7 A simple neuron with bias.

The scalar input p is transmitted through a connection that multiplies its strength by the
scalar weight w to form the scalar product w-p. A scalar bias, b, is added to the sum. The
sum of the weighted input w-p and the bias b, n=w-p+b, is the argument of the transfer
function f; typically a step function or a sigmoid function, that takes the argument n and
produces a scalar output a. Details on the transfer functions that can be used can be
found in Section 5.4.

The bias b can be viewed as simply being added to the product w-p as shown by the
summing junction, or as shifting the function f'to the left by an amount b. The bias is like
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a weight, except that it has a constant input of 1. The bias is not an input, yet the con-
stant 1 that drives the bias is an input and must be treated as such. Both w and b are ad-
justable scalar parameters of the neuron. The central idea of neural networks is that such
parameters can be adjusted in order for the network to exhibit the desired behavior.
Thus, the network can be trained to do a particular task by adjusting the weight or bias
parameters, or perhaps the network itself will adjust these parameters to achieve some
desired end.

5.5.2 Neuron with vector input

A neuron with a single R-element input vector is shown below.

Input Neuron with vector input

0

(n) (a)

_

a=f(Wp+b)

Figure 5.8 A neuron with a single R-element input vector.

Here the individual element inputs p,, ..., pr are multiplied by weights w,,, ..., w,r and the
weighted values are fed to the summing junction. The sum is W-p, the dot product of the
(single row) matrix W=[w,,, .., w,z] and the vector p=[p,, ...,pr]". The neuron has a bias b,
which is summed with the weighted inputs to form the net input n which is the argu-
ment of the transfer function f:

nle,lpl+W1,2p2+~--+WLRPR+b:W'P+b (59)

In the above case, p is a column vector (Rx1), Wis a row vector (1xR) and b is a scalar.

5.5.3 A layer of neurons

Two or more of the neurons shown above in Figure 5.8 of Section 5.5.2 can be combined
in a layer, and a particular network could contain one or more such layers. A layer in-
cludes the combination of the weights, stored in matrix W (SxR), the multiplication and
summing operation (here realized as a matrix product W-p), the vector bias b (Sx1), and
the activation (transfer) function f; described in Section 5.4. The array of inputs, vector
p=I[p, ...pr]", is not included in or called a layer. A one-layer network with R input ele-
ments and S neurons is shown in Figure 5.9.
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Inputs Layer of Neurons
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a=f(Wp+b)

Figure 5.9 A layer of neurons.

In this network, each element of the input vector p is connected to each neuron input
through the weight matrix W. The i-th neuron has a summer that gathers its weighted
inputs and bias to form its own scalar output n; (i=1, ...,S). The various n; taken together
form a net input vector n (Sx1).

n=W . -p+b (5.10)

Finally, the neuron layer outputs form a column vector a=fWp+b), where function f op-
erates on every element of the input vector Wp+b and the output is also a vector (Sx1).

The input vector elements enter the network through the weight matrix W. The row in-
dices on the elements of matrix W indicate the destination neuron of the weight, and the
column indices indicate which source is the input for that weight. Thus, w; denotes the
strength of the signal from the k-th input element to the j-th neuron.

Wi W2 ot WiR
W1 Wao 0 Whp

w=| . R ) (5.11)
Wsi1 Wspo2 = WsRr

Single-layer Perceptron

A single-layer Perceptron or simply Perceptron is a layer of neurons with threshold acti-
vation function on the output units and biases. The perceptron has a discrete output (+1
or —1). It can be seen as the simplest kind of feedforward neural network: a linear classi-
fier. The Perceptron is a binary classifier that maps its input p (a real-valued vector) to

an output value g, a single binary value.
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Although the perceptron initially seemed promising, it was eventually proved that per-
ceptrons could not be trained to recognise many classes of patterns. They proved to be
only capable of learning linearly separable patterns. In the famous monograph ‘Percep-
trons’ (Minsky and Papert 1969) it was shown that it was impossible a single-layer per-
ceptron to learn an Exclusive OR (XOR) function. The authors conjectured (incorrectly)
that a similar result would hold for a multi-layer perceptron network. This led to the
field of neural network research stagnating for many years, before it was recognised that
a feedforward neural network with two or more layers (multilayer perceptron) had far
greater processing power than perceptrons with one layer. It took ten more years until

neural network research experienced resurgence in the 198o0s.

Most perceptrons have outputs of 1 or -1 with a threshold of 0 and there is some evidence
that such networks can be trained more quickly than networks created from nodes with
different activation and deactivation values. Perceptrons can be trained by a simple
learning algorithm that is usually called the Delta rule. It calculates the errors between
calculated output and sample output data, and uses this to create an adjustment to the
weights, thus implementing a form of gradient descent.

It should be noted that in the literature the term Perceptron often refers to networks
consisting of just one of these units, as opposed to a layer of such units.

5.5.4 Multiple layers of neurons

A network can have several layers of neurons. Each layer has a weight matrix W, a bias
vector b, and an output vector a. To distinguish between the weight matrices, output
vectors, etc., for each of these layers in the figures, the number of the layer is appended
as a superscript to the variable of interest. A two-layer network using the above notation

is shown in Figure 5.10.

The network shown in the figure has R inputs, S' neurons in the first layer, S* neurons in
the second layer, etc. The outputs of each intermediate layer are the inputs to the next
layer. The layers of a multilayer network play different roles. A layer that produces the
network output is called an output layer. All other layers are called hidden layers. The
two-layer network shown in Figure 5.10 has one output layer (layer 2) and one hidden
layer (layer 1). Some authors refer also to the inputs as another layer.
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Figure 5.10 A two-layer network.

Multiple-layer networks are quite powerful. The universal approximation theorem for
neural networks states that the standard multilayer feed-forward network with a single
hidden layer that contains finite number of hidden neurons, and a sigmoid activation
function are universal approximators on a compact subset of R" . This means that every
continuous function that maps intervals of real numbers to some output interval of real
numbers can be approximated arbitrarily closely by a multi-layer feed-forward NN with
just one hidden layer. Kurt Hornik (1991) showed that it is not the specific choice of the
activation function, but rather the multilayer feed-forward architecture itself which gives
neural networks the potential of being universal approximators. The output units are
always assumed to be linear. This kind of two-layer network is used extensively in Back-
propagation, as will be discussed in Section 5.9.

Multi-layer Perceptron

A multi-layer Perceptron consists of several layers of single-layer Perceptrons. Figure 5.11
depicts a two-layer perceptron capable of calculating the XOR function. The network has
two neurons in the hidden layer (layer 1) and one neuron in the output layer (layer 2).
The inputs p, and p, are binary values (o or 1). The weights and biases of the network are
given in the figure. The network uses the binary step function described in Section 5.4.2
as the transfer function for both layers (f; and f). The output a* of the network is also a
binary value representing XOR(p,, p,).
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Figure 5.11 A two-layer perceptron capable of calculating the XOR function.

Graphical representations of the OR and XOR functions are given in Figure 5.12 (a) and
(b), respectively. Black points indicate a value of “1” while white points indicate a value of
“0”. It can be seen that the result of the OR function is linearly separable as the diagonal
of the triangle of Figure 5.12(a) can divide the points in black and white ones. On the
other hand, the result of the XOR function, shown in Figure 5.12(b) is not linearly separ-

able, as there is no single line that can divide the black and white points.

X2 4 X2 A

[ ] ° <
{0,1} RO {13

0,0} 10 | xq 0.0}

(a) (b)
Figure 5.12 Graphical representations of the (a) OR function and (b) XOR function.

The numerical outputs of the OR and XOR functions are given in Table 5.1.
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Table 5.1 Output of the OR and XOR functions.

Input OR Output XOR Output
{o,0} 0 0
{1,0} 1 1
{o,1} 1 1
{1,13 1 o

5.5.5 Abbreviated Notation for NNs

When networks with many neurons and layers of many neurons are considered, an ab-
breviated notation (Demuth et al. 2008) for an individual neuron or a layer of neurons
can be used.

Neuron with vector input

The notation of Figure 5.13 is an abbreviated notation for the single neuron with vector
input shown in Figure 5.8 of Section 5.5.2. The input vector p is represented by the solid
dark vertical bar at the left. The dimensions of p are shown below the symbol p in the
figure as Rxi.

Input Neuron
Y R
(p)
Rx1 W
— (n) ()
: fl—»
(1) 11 1x1
5l b 1
R 1x1
- Ju_ B
a=f(Wp+b)

Figure 5.13 Abbreviated notation for a neuron with vector input.

A layer of neurons

The notation of Figure 5.14 is an abbreviated notation for the S neuron R input one-layer
network shown in Figure 5.9 of Section 5.5.3. The R length input vector is p, W is an SxR

matrix, and b and a are vectors with dimension S.
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Figure 5.14 Abbreviated notation for a layer of neurons with vector input.

Multiple layers of neurons

The notation of Figure 5.15 is an abbreviated notation for the two-layer network shown in
Figure 5.10 of Section 5.5.4.

Input Layer 1 (Hidden) Layer 2 (Output)
— - — -
(P) (@ (@)
w"' | LW -
Rx1 1 S'x1 2 Sx1
=5 )] & = )]
(1 ) S'x1 (1 ) S%1
—» b’ —» Pb?
R & st lﬂ 8
__J
a'=f(Iw" " p+b") a>=A(LW*"a'+b?)

Figure 5.15 Abbreviated notation for a two-layer network.

Multiple Layers of Neurons use layer weight matrices as well as input weight matrices. In
the above notation for multiple layers, weight matrices connected to inputs are called
input weights (IW); weight matrices coming from layer outputs are called layer weights
(LW). Furthermore, superscripts are used to identify the source (second index) and the
destination (first index) for the various weights and other elements of the network. The
weight matrix connected to the input vector p is labeled as an input weight matrix IW"'
having a source 1 (second index, which means the first input vector) and a destination 1
(first index, which means the first hidden layer). Elements of layer 1, such as its bias, net
input, and output have a superscript 1 as they are associated with the first layer. For in-
stance, weight matrix LW*' is the matrix that holds the weights of connections from the
first layer to the second layer, b* is the bias vector of the second layer, while a” is the
output of the second (output) layer.
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5.6 Network topologies

The topology of a network is defined in general by the number of layers, the number of
units per layer, and the interconnection patterns between layers. Based on the pattern of
connections, networks are generally divided into two categories (Krose and van der
Smagt 1996):

i. Feed-forward networks;

ii. Recurrent networks.

5.6.1 Feed-forward networks

A feed-forward neural network is an artificial neural network where the data flow from
the input units to the output units is strictly feed-forward, so the information moves in
only one direction. The data processing can extend over multiple layers of units, but no
feedback connections are present. That is, connections extending from outputs of units
to inputs of units in the same layer or previous layers are not permitted, thus connec-
tions between the units do not form cycles or loops. The feed-forward neural network
was the first and arguably simplest type of artificial neural network devised. Feed-
forward networks are the main focus of the present thesis. A feed-forward NN is depicted
in Figure 5.6, where all connections (lines) have a direction from the left to the right.
This can be called a feed-forward 4-3-2-1 NN, the numbers denoting the number of hid-
den neurons in the input, the two hidden and the output layer (from left to right), re-
spectively.

S I e B G

- J - b J

Input Hidden Output
Layer Layers Layer

Figure 5.16 A three-layer 4-3-2-1 feed-forward NN.

According to Saarinen et al. (1993) the feed-forward NN is likely to produce ill-
conditioned Jacobian matrices due to the bad properties of the activation function used
and this type of ill-conditioning is encountered in some applications.



128 Chapter 5

5.6.2 Recurrent networks

Recurrent Neural Networks (RNNs) contain feedback connections. Much of the early
work on recurrent networks was pioneered by John Hopfield (1982). In fact, some have
argued that it was because of Hopfield's stature as a well-known physicist that neural
network research was made respectable again (Anderson and Rosenfeld 1989). Hence,
certain configurations of recurrent networks are referred to as Hopfield nets.

The human brain is a recurrent neural network. Contrary to feed-forward networks, the
dynamical properties of recurrent networks are important. In some cases, the activation
values of the units undergo a relaxation process such that the network will evolve to a
stable state in which activation does not change further. In other applications in which
the dynamical behavior constitutes the output of the network, the changes of the activa-
tion values of the output units are significant.

Figure 5.17 depicts a recurrent NN with two hidden layers, with one recurrent connection
from the first hidden layer to itself. Each time a pattern is presented, the unit computes
its activation just as in a feed forward network. However its net input now contains a
term which reflects the state of the network (the first hidden unit activation) before the
pattern was seen. When subsequent patterns are presented, the hidden and output units'
states will be a function of everything the network has seen so far. The network behavior
is based on its history, and so pattern presentation should be considered as it happens in
time.

S R e B G
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N N

Input Hidden Output
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Figure 5.17 A three-layer recurrent NN.

There is growing interest in RNNs for technical applications, as they seem to be more
powerful and biologically more plausible than other adaptive approaches such as Hidden
Markov Models, feed-forward networks and Support Vector Machines. RNNs have been
used successfully in various scientific applications, such as learning formal grammars,
speech recognition and music composition.
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5.7 Input and Target vectors normalization

The input vectors for a neural network model can be a set of raw data, preprocessed data
or a set of parameters. As each individual element of an input vector measures different
things, in different units in general, it is obvious that these elements can have great dif-
ferences in their values, e.g. for an input vector p consisting of 2 elements, values for p,
measuring a section’s moment of inertia may be in the interval [200, 8000] in cm* units,
while values for p, measuring the material’s modulus of elasticity may be in the interval
[1.5x10% 3.5x10%] in kPa units. The same also applies for the target vectors of the neural
network model that can also measure different things, in different units, for example the
maximum displacement and the maximum stress of a finite element model. For this rea-
son, it is necessary to perform some kind of normalization for the inputs and target vec-
tors of the model, which helps avoid convergence problems, speeds up the learning
process for many networks and makes NN training more efficient.

For the back-propagation neural network model, that will be described in detail in Sec-
tion 5.9, each input should be normalized between o and 1 if the activation function used
is the standard sigmoid function and between -1 to 1 for the hyperbolic tangent function
(Kim 1999). In order to normalize the data, we use some processing functions for the in-
puts and targets of the NN model. Processing functions transform user input and target
data to a form that is easier or more efficient for a network.

Forward processing function

Let Q be the number of patterns for inputs and targets, p be an input vector of dimen-
sion R, while t be a target vector of dimension S. The training set 7 consists of Q pairs of
p and t vectors as follows:

T ={{p" '}, (%1%} (512

The following normalization formula is applied for pattern k and dimension i (i=1,...,R)
of the input vector p:

k _  min
pr="t P (5.13)
b — D
where
pimin = min{pk, k=1..0} (5.14)
PP = max{pl, k=1..0} (5.15)

The above formula maps the range of input values to the range [-1,1]. Similarly, network
targets (outputs) can also have associated processing functions. Output processing func-
tions are used to transform user-provided target vectors for network use. The same ap-
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proach can be also applied for the target vectors, where the following normalization
formula is applied for pattern k and dimension i (i=1,...,S) of the target vector ¢:

k min
s kg
fr=—i 1 (5.16)

; -
max min
] —t

where

th = min{tf, k=1,..0} (5.17)

("™ = max{tf, k=1,...0} (5.18)

1

Reverse processing function

Processing functions associated with a network target (output) transform targets into a
better form for network training. Using the process described above, the range of the
network targets are mapped to the range [-1,1]. Thus, in order for the trained network to
give valuable results, its outputs should be reverse-processed using the same functions to
produce output data with the same characteristics as the original user-provided targets.
If the network output is a vector @ with dimension S (same as the target), then the fol-
lowing reverse transformation should be done for every dimension i (i=1,...,S):

a =" +a; (" -4 (5.19)

Using the above formula, the unnormalized network output a is in the same units as the
original targets t.

5.8 Training of NNs

The network parameters include all the weights and biases of the network. A neural net-
work has to be configured such that the application of a set of inputs produces the de-
sired set of outputs. Various methods to set the network parameters exist. One way
would be to set the weights explicitly, using a priori knowledge. Another way is to 'train’
the neural network by feeding it teaching patterns and letting it change its weights ac-
cording to some learning rule. A training algorithm or learning rule is defined as a proce-
dure for modifying the network parameters in order to perform some particular task.
Learning rules can be classified into two broad categories:

i. Supervised learning;

ii. Unsupervised learning.

5.8.1 Supervised learning

In Supervised learning or Associative learning, the training algorithm is provided with a
set of examples (the training set), described in Eq. (5.12), of proper network behavior.
These input-output pairs can be provided by an external teacher, or by the system which
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contains the network (self-supervised). As the inputs are applied to the network, the
network outputs are compared to the targets. The learning rule is then used to adjust the
weights and biases of the network in order to move the network outputs closer to the

targets.

5.8.2 Unsupervised learning

In Unsupervised learning or Self-organization, the weights and biases are modified in re-
sponse to network inputs only, as there are no target outputs available. An output unit is
trained to respond to clusters of pattern within the input. In this paradigm the system is
supposed to discover statistically salient features of the input population. Unlike the su-
pervised learning paradigm, in this case there is no a priori set of categories into which
the patterns are to be classified, as the system must develop its own representation of the
input stimuli. Most of unsupervised learning algorithms perform clustering operations.
They categorize the input patterns into a finite number of classes. This is especially use-
ful in such applications as vector quantization.

5.9 Back-Propagation Neural Network

From among many architectures of NNs, the most popular is the feed-forward multilayer
NN, also called a multilayer perceptron (Haykin 1998) or Back-Propagation Neural Net-
work (BPNN). Here, the output values are compared with the correct answer to compute
the value of a predefined error-function. By various techniques, the error is then fed back
through the network. Using this information, the algorithm adjusts the weights of each
connection in order to reduce the value of the error function by some small amount. Af-
ter repeating this process for a sufficiently large number of training cycles, the network
will usually converge to some state where the error of the calculations is small. In this
case, one would say that the network has learned a certain target function. As the algo-
rithm's name implies, the errors propagate backwards from the output nodes to the in-
ner nodes. So technically speaking, back-propagation is used to calculate the gradient of
the error of the network with respect to the network's modifiable weights. To adjust
weights properly, one applies a general method for non-linear optimization that is called
gradient descent. In order to minimize the error, the derivative of the error function with
respect to the network weights is calculated, and the weights are then changed such that
the error decreases (thus going downhill on the surface of the error function). For this
reason, back-propagation can only be applied on networks with differentiable activation
functions. Often the term back-propagation is used in a more general sense, to refer to
the entire procedure encompassing both the calculation of the gradient and its use in
stochastic gradient descent. Back-propagation usually allows quick convergence on satis-
factory local minima for error in the kind of networks to which it is suited.

A BPNN is a feed-forward, multilayer network of standard structure, i.e. neurons are not
connected in the layer but they join the layer neuron with all the neurons of previous
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and subsequent layers, respectively. A BPNN has a standard structure that can be written
in short as

N-H-H,—..—Hy_—M (5.20)

where N is the number of inputs, H; is the number of neurons in the [-th hidden layer,
NL is the number of layers (including the output layer) and M is the number of output
neurons. Figure 5.18 depicts an example of a BPNN composed of an input layer with 4
neurons, two hidden layers with 3 neurons each and an output layer with 2 neurons, i.e.
a 4-3-3-2 BPNN.

Forward direction of signals

Back-propagation of errors
Figure 5.18 A three-layer 4-3-3-2 BPNN (input not counted as a layer).

The same 4-3-3-2 BPNN can be visualized using the abbreviated notation described in
Section 5.5.5, as shown in Figure 5.19. The abbreviated notation for this network seems
more complicated than the classical notation of Figure 5.8, yet it is quite useful for
representing bigger networks with many neurons for each layer, where the classical nota-
tion with every neuron connected to every other for consecutive layers would be much
more complicated.

Input Layer 1 (Hidden) Layer 2 (Hidden) Layer 3 (Output)
N
3
(P) (@
i,1 N 2
4x1 w (n1) LVVQ (nz) vaa (na) 2x1
cayot s O™ e O
1 3x1 3x1 2x1
LL b’ b2 b? Vol
4 3x1 3x1 2x1
«_ J
a'=f (IW""'p+b") a’=F(LW"a'+b?%) a’=P(LW*?a*+b°)

Figure 5.19 The abbreviated notation for the three-layer 4-3-3-2 BPNN.
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The input layer serves only to introduce signals (values of input variables) and the hid-
den and output layers are composed of neurons (processing units) of the NN structure
(Kuzniar and Waszczyzyn 2007). The values of weights Wli,j and biases b; are called net-
work parameters. The number of network parameters NNP equals the total number of
generalized weights (NN connections and neuron biases):
NL-1 NL
NNP=NNW+NNB=(N-H1+ Z (H,~H,+1)]+ H, (5.21)
I=1 I=1
where NNW is the number of weights and NNB is the number of biases. For instance, the
network shown in Figure 5.18 has NNW=4-3+3-3+3-2=27, NNB=3+3+2=38, thus the total
number of NN parameters is NNP=27+8=35. The number of network parameters NNP

can be used as a measure of the network size. For the NN design purposes it is of value to
satisfy the inequality (well-posed formulation):

NNP<L-M (5.22)

where L is the number of training patterns.

Back-propagation is a common supervised training algorithm. The term is an abbrevia-
tion for "backwards propagation of errors". It was first described in the PhD thesis of
Paul Werbos (1974), but it wasn't until 1986, through the work of David E. Rumelhart,
Geoffrey E. Hinton and Ronald J. Williams (Rumelhart et al. 1986), that it gained recogni-
tion, and it led to a “renaissance” in the field of artificial neural network research (Hagan
et al. 1996). Back-propagation is the generalization of the Widrow-Hoff learning rule
(a.k.a. Adaline rule, Delta rule, Least Mean Squares (LMS) Rule) to multiple-layer net-
works and non-linear differentiable transfer functions. Input vectors and the correspond-
ing target vectors are used to train a network until it can approximate a function, asso-
ciate input vectors with specific output vectors, or classify input vectors in an appropri-
ate way.

Networks with biases, a sigmoid layer, and a linear output layer are capable of approx-
imating any function with a finite number of discontinuities. Standard in back-
propagation is the gradient descent algorithm, in which the network weights are moved
along the negative of the gradient of the performance function. The term back-
propagation refers to the manner in which the gradient is computed for non-linear mul-
tilayer networks. There are a number of variations of the basic algorithm that are based

on other standard optimization techniques, such as conjugate gradient and Newton me-
thods.

Properly trained back-propagation networks tend to give reasonable answers when pre-
sented with inputs that they have never seen. Typically, a new input leads to an output
similar to the correct output for input vectors used in training that are similar to the new
input being presented. This generalization property makes it possible to train a network
on a representative set of input/target pairs and get good results without training the
network on all possible input/output pairs.
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It is important to note that in order for the hidden layer of a BPNN to serve any useful
function, multilayer networks must have non-linear activation functions for the multiple
layers. A multilayer network using only linear activation functions is equivalent to a sin-

gle layer linear network.

5.9.1 Summary of the back-propagation technique

The back-propagation technique follows the following steps:
1. Present a training sample to the NN.

2. Compare the network's output to the desired output from that sample. Calculate
the error in each output neuron.

3. For each neuron, calculate what the output should have been, and a scaling factor,
how much lower or higher the output must be adjusted to match the desired out-
put. This is the local error.

4. Adjust the weights of each neuron to lower the local error.

5. Assign "blame" for the local error to neurons at the previous level, giving greater
responsibility to neurons connected by stronger weights.

6. Repeat from step 3 on the neurons at the previous level, using each one's "blame"
as its error.

The values of weights w;; and biases b'; can be put in order as components of the vector
of generalized weights:

w={w |i=1,...,NNP} (5.23)

The computation of the network parameters is called training (learning) process. It is
based on a training set of patterns £, composed of known pairs of inputs and outputs
(targets), i.e. input and output vectors x, t, respectively. After being trained, the network
is tested on an independent testing set 7. The training and testing pattern sets can be
written in the following form:

C:{(Xl‘,ti), izl,...,L} (524)
T={(x;,t;), j=1...T} (5.25)

where L and T are the number of patterns in training and testing sets, respectively. The
components of generalized weight vector w; (network parameters) are iteratively com-
puted by means of the following formula:

wi(s+1) =w(s)+Awi(s) (5.26)

where s is the number of iteration step. The learning formula for the weight increment
can be written in the following form:
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oF

AWi = —77%

(5.27)

where 7 is the learning rate and E is the network error function (called the Least-Mean-
Square error):

E =

M=

>

p=l1

N =

]
—

(17 -y7)%= %ZZ(@-” )2 (5.28)
p i

This formula is related to the output vectors y” and the target vectors t”. The error &;
corresponds to the i-th output for p-th pattern and V=L, T, the learning or the testing
set.

Eq. (5.27) corresponds to the gradient method of steepest descent. This method is sensi-
tive to values of the learning rate 1. For small values of n the iteration process can be
slowly convergent or even divergent below certain values of .. Other learning methods
can be also used, such as the Resilient propagation (Rprop) method.

Measures of errors

Besides the Least-Square-Error E defined in Eq. (5.28) there are also other error measures
for evaluation of the accuracy of neural approximation. The most popular is the Mean
Square Error (MSE):

1 vV M
MSE(V) =——>" > (" -y")?, (5.29)

VMp:I =1 l

where ti(P ), y}p Jare the target and neurally computed i-th outputs for p-th pattern. The
values of ?i(p ) and 71-(1’ ) are usually scaled to the range [0.1, 0.9] if the sigmoid activation

function is used. The formula of Eq. (5.29) can be applied to the computation of both the
training error MSE(L) and testing error MSE(T) depending on the sets of patterns used.

5.9.2 Strengths and weaknesses of back-propagation learning

The strengths of the back-propagation learning technique include the following:
e It has great representation power;
e It has a wide practical applicability;
e [t is easy to implement;
e It exhibits a good generalization power.

On the other hand, the weaknesses of the back-propagation learning technique are the
following:

e Learning can sometimes take a long time to converge;
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e The network can be essentially considered as a black box;

e The gradient descent approach can only guarantee a local minimum error;
e Generalization is not guaranteed even if the error is reduced to zero;

e There is no well-founded way to assess the quality of BP learning;

e Network paralysis may occur (learning is stopped, see Section 5.10.2);

e Selection of learning parameters can only be done by trial-and-error;

e BP learning is non-incremental. As a result, to include new training samples, the

network must be re-trained with all old and new samples.
5.10 Problems with Neural Networks

5.10.1 Extrapolation

Compared to linear methods of function approximation, feed-forward Neural Networks
exhibit great generality and flexibility, but also a significant drawback: they cannot
extrapolate. By the term extrapolation, we denote the ability of an approximation me-
thod to give reliable results when confronted with data outside of the region used to ca-
librate the model. A neural network can map virtually any function by adjusting its pa-
rameters according to the presented training data. For unknown data points which fall
into the region where the training data are present, interpolation can be done, giving
reliable results, provided that he training has been done successfully. For regions of the
variable space where no training data are available, extrapolation must be done and the
output of the neural network cannot be considered reliable. Extrapolation remains a
problem despite the fact that special types of NNs have been proposed for this reason
(Dariani et al. 2007; Sari et al. 2007).

Figure 5.20 shows the performance of a NN trained to simulate the linear function y=x.
The training data is within the interval [-20,20]. The NN is trained and then asked to
provide results for the interval [-40,40]. It is clear that the NN performance within the
range of the training data, where interpolation is done, is excellent, yet outside of the
range of the training data, where extrapolation is done, performance is bad.



Neural Networks 137

30 .

Range of training data L et

20

10

y=X
NN

-30 -20 -10 0 10 20 30

-30 LJ | I |

Figure 5.20 Performance of a NN trained to simulate the linear function y=x.

In order to avoid NN extrapolation, one should record the range of the variable space
where training data is available. This can be done by calculating the convex hull of the
training data set. The convex hull or convex envelope for a set of points X in a real vector
space Vis defined as the minimal convex set containing X. In other words, it is the min-
imum volume polyhedron circumscribing the training points. If unknown data presented
to the net are within this hull, the output of the net can be considered as reliable. The
convex hull for a training data set with 50 patterns in a two-dimensional training space is

shown in Figure 5.21.
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Figure 5.21 Training data in a two-dimensional space and the corresponding convex hull.
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However, the concept of the convex hull is not always satisfactory since on the one hand
the hull can be complicated to calculate and on the other hand, in case of non-
convexities, training data may be absent even from regions inside the convex hull, as
shown in Figure 5.22 for a training data set with 50 patterns in a two-dimensional train-

ing space.

Convex hull
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region of the

convex hull

Training point
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Figure 5.22 Non-convexity in the training data set, in a two-dimensional space.

In this case, for data points within the region of the convex hull where training data are
missing, the performance of the NN can be poor, although interpolation is done instead
of extrapolation.

A better method, proposed by Leonard et al. (1992), suitable for all types of networks, is
to estimate the local density of training data by using Parzen windows (Parzen 1962).
Radial basis function networks provide another elegant yet simple method of detecting
extrapolation regions (Lohninger 1993). Shao et al. (1997) proposed a method for the cal-
culation of confidence bounds for feed-forward NN models, taking into consideration
the accuracy of the NN to predict the unknown data and the distribution of the available
training data.

In any case, when using NNs to predict the structural response, it is advisable to select
the training set in such a way that interpolation is always done by the NN, instead of
extrapolation. This basic rule has been followed for all the NN applications of the thesis.

5.10.2 Network paralysis

Under some circumstances, the correction of the network parameters by NN training can
cause no improvement to the output values. In this case, the training process can con-
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tinue infinitely. This phenomenon, called network paralysis, can occur when a large ratio
of the network neurons have big values of weights and therefore generate big values of
input signals. Then also the output values take big values, which are at the boundaries of
the sigmoid transfer function. At these positions, the derivative of the function ap-
proaches zero. This derivative is then used by the training algorithm in order to correct
the network parameters, and therefore no correction is done. If this phenomenon hap-
pens to a big part of the network, then the learning process can in fact come to a halt.

It is difficult to determine when a network will face the problem of paralysis. Empirically
it has been seen that rather small step sizes do not cause this problem, but on the other
hand they can lead to very long training time. By normalizing properly the input values,
as was shown in Section 5.7, the problem can be restricted.

5.10.3 Network over-training

The information contained in any data set of inputs and outputs for neural network
training may not be fully accurate, as these data can contain also a small or bigger
amount of “noise”. The information contained can be generally classified into two
groups: (i) major trends; and (ii) scatter (noise). In order for the network to maintain the
precious property of generalization, it is desirable that the trained neural network learn
the major trends in the data, but not the scatter. If the network also learns the scatter,
then it is said to be over-trained. Over-trained neural networks lose their generalization
capability. In order to avoid overtraining, the size of the network and the number of the
training epochs should be in correspondence with the complexity of the problem, espe-
cially if the training data contains significant amount of noise. An excessive number of
training epochs, or an excessive size of the neural network can cause network over-

training.

Training point

yﬂ

><V

Figure 5.23 Training data points and NN prediction.
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Consider a simple NN with one input and one output. Figure 5.23 shows the training da-
ta as points in the x-y plane. The data has obvious scatter: the major trend consists of
two slopes and there is also a transition between them. Figure 5.23 shows also the predic-
tion of a trained NN (bold line). The network has identified the two major trends and the
transition and can generalize, giving valuable results.

yﬂ

Training point

NN prediction

X

Figure 5.24 Non-convexity in the training data set, in a two-dimensional space.

Figure 5.24 shows the same training data set and the corresponding prediction of an
overtrained NN (bold line). In this case, it is obvious that, although the approximation
error for the training data itself is smaller than in the previous case, the approximation
for other values of x, not included in the training set, will be in gross error. Overtraining
resulted in the NN learning also the scatter, thus losing its generalization capability.

In order to avoid this problem, a validation data set can be used during the training
process, as is the case in the present thesis. The validation data set is not taken into ac-
count for the training process, but it is used as an error measurement to stop the process.
If, after a number of training epochs, the error for the training data still gets smaller,
while at the same time the error for the validation data increases, then it is time to stop

the training process in order to avoid network overtraining.

5.1 Neural Networks as metamodels in structural engineering

Over the last ten years Artificial Intelligence techniques have emerged as a powerful tool
that could be used to replace time consuming procedures in many scientific or engineer-
ing applications. The principal advantage of a properly trained NN is that it requires a
trivial computational effort to produce an approximate solution. Such approximations, if
acceptable, appear to be valuable in situations where the actual response computations
are intensive in terms of computing time and a quick estimation is required. For each
problem a NN is trained utilizing information generated from a number of properly se-
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lected analyses. The data from these analyses are processed in order to obtain the neces-
sary input and output pairs, which are subsequently used to produce a trained NN. The
training of a NN is an unconstrained minimization problem where the objective is to
minimize the prediction error. In the case of structural optimization, the analysis corre-
sponds to a finite element solution of the resulting equilibrium equations and the
trained NN is then used to predict the response of the structure in terms of constraint
function values due to different sets of design variables.

The use of artificial Neural Networks to predict finite element analysis outputs has been
studied previously in the context of optimal design of structural systems (Adeli and Park
19953a; Adeli and Park 1995b; Arslan and Hajela 1997; Berke et al. 1993; Hajela and Berke
1991; McCorkle et al. 2003; Papadrakakis et al. 1998b; Shieh 1994) and also in some other
areas of structural engineering applications, such as structural damage assessment (Za-
charias et al. 2004), structural reliability analysis (Hurtado and Alvarez 2001; Nie and El-
lingwood 2004; Papadrakakis et al. 1996a), finite element mesh generation or fracture
mechanics (Gunaratnam and Gero 1994; Khan et al. 1993; Papadrakakis et al. 1996a;
Stephens and VanLuchene 1994; Theocaris and Panagiotopoulos 1993; Topping and
Bahreininejad 1997), evaluation of buckling loads of cylindrical shells with geometrical
imperfections (Waszczyszyn and Bartczak 2002) and others.

NNs have been recently applied to the solution of the equilibrium equations resulting
from the application of the finite element method in connection to reanalysis type of
problems, where a large number of finite element analyses is required. Reanalysis type of
problems are encountered, among others, in the reliability analysis of structural systems
using Monte Carlo Simulation (MCS) and in structural optimization using Evolutionary
Algorithms (EAs). In these problems NNs have been proved to give very satisfactory re-
sults (Papadrakakis et al. 1998b; Papadrakakis et al. 1996a).

In the present thesis, the Neural Networks have been used in order to assist the method-
ologies for the problems of optimum structural design considering uncertainties, namely
the Reliability-Based Design Optimization (RBDO), the Robust Design Optimization
(RDO) and the Reliability-based Robust Design Optimization (RRDO) methodologies, by
providing computationally inexpensive estimates of the structural response or the con-
straints checks, as will be described in detail in Chapter 6 (Design Optimization Consid-
ering Uncertainties), as well as Chapter 8 (Numerical Applications - Probabilistic Opti-

mization).






Chapter

6 Design Optimization Considering
Uncertainties

6.1 The concept of probabilistic design optimization

The primal engineering objective during the design of any structural system is the mini-
mization of its construction cost, the improvement of its structural performance and at
the end the minimization of its total life-cycle cost. Improvements during the design
stage can be achieved either by simply using design rules based on experience and trial-
and-error, or by an automated way using structural optimization procedures, described
in detail in Chapters 3 and 4. Taking into account the complexity of a structural optimi-
zation problem, it is obvious that finding the global optimum solution is not an easy
task. In real-world conditions the significance of any “optimum” solution would be li-
mited if the uncertainties involved in the geometric and material description of the
structure as well as the loading conditions are not taken into account. Real-world struc-
tures have always imperfections which induce deviations from the nominal state as-
sumed by the design codes.

In Deterministic Design Optimization (DDQO), where the formulation of the optimization
problem ignores scatter of any kind of the parameters affecting its response, the designs
are often driven to the limit of the design constraints, leaving little space for uncertain-
ties. Consequently, a deterministically optimum design may result in an infeasible design
due to unavoidable scattering of the values of its basic parameters affecting its structural
response. Additionally, the deterministic optimum is never materialized in an absolute
way and as a result a near optimal solution is always applied in practice, which can be
associated with an undesirable high probability of failure, due to the influence of the un-
certainties present during the modeling and manufacturing phases and in the external
operating conditions. Uncertainties are inherently present and need to be accounted for
in the design optimization process as they may lead to large variations in the perfor-
mance characteristics of the system and to a high probability of failure. Optimized de-
terministic designs obtained without considering uncertainties can be unreliable and
might lead to catastrophic structural failure.
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In order to account for the randomness of the parameters that affect the response of the
structure, a different formulation of the optimization problem has to be introduced,
based on probabilistic treatment of the uncertainties involved. The development of
probabilistic analysis methods over the last two decades has stimulated the interest for
considering randomness and uncertainty in the formulation of structural optimization
problems (Schuéller 2005; Tsompanakis et al. 2008).

Probabilistic-based design optimization methodologies can be generally classified in the
following two formulations:

i.  Reliability-Based Design Optimization (RBDO) (Acar and Haftka 2007; Agarwal and
Renaud 2004; Du et al. 2006; Frangopol 1995; Frangopol and Maute 2003; Gasser
and Schuéller 1997; Gunawan and Papalambros 2006; Jensen et al. 2008; Jiang et al.
2000; Lagaros et al. 2008a; Liang et al. 2007; Moses 1997; Nikolaidis 2007; Pu et al.
1997; Rackwitz 2004; Repalle and Grandhi 2005; Rosenblueth and Mendoza 1971;
Royset et al. 2001; Sorensen and Tarp-Johansen 2005; Streicher and Rackwitz
2004);

ii. Robust Design Optimization (RDO) (Anthony and Keane 2003; Beyer and Sendhoff
2007; Doltsinis and Kang 2004; Doltsinis et al. 2005; Lagaros and Papadrakakis
2007; McAllister and Simpson 2003; Park et al. 2006; Parkinson et al. 2007; Ranga-
vajhala et al. 2007; Ray and Smith 2006; Schumacher and Olschinka 2008; Zang et
al. 2005).

A reliable design is one for which the probability of failure or the probability of exceed-
ing certain limits of the system is low. The main goal of RBDO methods is to find the op-
timum design, which at the same time satisfies the objective of the minimum weight in
conjunction with limitations on the allowable probability of failure or probability of ex-
ceedance of certain characteristic structural response quantities.

On the other hand, a robust design is one for which the variation of the performance
function is minimal. RDO methods primarily seek to minimize the influence of random
variations of the nominal structural dimensions, material parameters and loading on the

response of the structure, aiming at a reduction of the spread of critical responses.

Designing for both reliability and robustness is extremely desirable in structural engi-
neering, as will be described in detail in the following sections.

6.2 Reliability-Based Design Optimization (RBDO)

6.2.1 Introduction

In deterministic optimization, the target is to reduce the initial structural cost under a
number of constraints. In this type of problem, the structural safety is assumed to be en-
sured by the introduction of the safety factors within the constraints. It is assumed that
the safety factors are appropriate whatever the optimal configuration. Yet, for most sys-
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tems it can be shown that the safety level is not independent of the selected optimal de-
sign parameters.

Uncertainties in the loading conditions, material properties and analysis modeling con-
tribute to making the performance of the optimal design different from the expected
one. In this sense, the optimization process has a large effect on the structural reliability.
The simplistic safety factor approach cannot ensure the required level of reliability and
safety, as it does not explicitly consider the probability of failure regarding some perfor-
mance criteria. In other words, the optimal design obtained from deterministic optimi-
zation procedures does not necessarily meet the reliability targets.

Reliability theory is introduced in structural engineering and structural optimization in
order to consider, in a more rational way, all existing uncertainties which are not known
with the desirable degree of precision and can influence structural response. Reliability is
recognized as a safety constraint in structural engineering, therefore any optimum de-
sign under reliability constraints should balance both cost and safety. While in DDO,
stress and displacement constraints are considered in accordance with the design code
safety factors, in RBDO additional probabilistic constraints are incorporated into the op-
timization procedure leading to unbiased estimates of the structural performance and,
subsequently, to the determination of designs that are located within a range of target
failure probabilities. The probabilistic constraints enforce the condition that the proba-
bility violation is smaller than a certain threshold value.

RBDO aims at finding the optimal solution that fulfills the prescribed reliability re-
quirements, characterized by a low probability of failure or in other words the one that
assures that the failure limit state is kept sufficiently far from the operating point. The
obtained failure surface must lie on the iso-reliability level corresponding to the pre-
scribed safety target (Chateauneuf 2008). The solution can be quite different from the
deterministic optimization where homothetic reduction of the design space is applied. In
this sense, RBDO can really ensure optimal cost, without compromising the structural
safety. In RBDO problems, there is a trade-off between obtaining higher reliability and
lowering cost. RBDO allows us to consider the safety margin evolution, leading to the
settlement of the best compromise between the cost and the required reliability. The
task is complicated, due to the inherent non-deterministic nature of the input informa-
tion.

The probabilistic framework allows for a consistent treatment of both cost and safety.
The RBDO problem can be also considered as a multi-objective optimization problem
where the objective is to minimize the cost and maximize the structural safety (Kuschel
and Rackwitz 1997; Kuschel and Rackwitz 2000). It is generally acceptable that reliability
and economy have conflicting requirements that must be considered simultaneously in
the optimization process. The most common RBDO formulations try to deal with the
problem indirectly, either by combining the two objectives into one weighted objective,
or more often by transforming the safety objective into a probabilistic constraint. A more
accurate formulation would be to deal with the multi-objective problem directly, so that



146 Chapter 6

the designer can obtain the Pareto Front curve and decide between Pareto optimal con-
figurations in order to make consistent choices in the design process.

The first step in RBDO is to characterize the important uncertain variables and the fail-
ure modes. In most engineering applications, the uncertainty is generally characterized
using probability theory. The probability distributions of the random variables are ob-
tained using statistical models. In designing models with multiple failure modes, it is
important that the design be sufficiently reliable with respect to each of the critical fail-
ure modes or to the overall system failure. In a RBDO formulation, the critical failure
modes in deterministic optimization are replaced with constraints on probabilities of
failure corresponding to each of the failure driven modes or with a single constraint on
the system probability of failure.

RBDO aims at searching for the best compromise between cost reduction and reliability
assurance, by considering system uncertainties. RBDO can produce a more efficient de-
sign than a deterministic approach without sacrificing safety, or alternatively, it can yield
a safer design than a deterministic approach for a given maximum allowable cost. The
solution of a RBDO problem is not easy, even for simple structures, let alone realistic
complicated structural systems with many design variables and/or random variables. The
difficulty lies in the consideration of the reliability constraints which require a large
computational effort. While the optimization process is carried out in the space of the
design variables, the reliability analysis is performed in the space of random variables,
where a lot of numerical calculations are required to evaluate the failure probability.

6.2.2 Formulation of a RBDO problem

The formulation of a RBDO problem can be written as follows:

min f(x), x=[x,....,x,]', feR

xeR”

Subject to
g(x)<0, gelR?
h(x)=0, heR?

p(¥(x,r)<0)< p;, reR”
xl' EXl fOrizl,...,n

(6.1)

where:
e x=[x,..,x,]" is the vector of the n design variables.
e r=[r,..,rm]" is the vector of the m random variables.

e X is the set of x;, which may be continuous, discrete or integer. The whole design
space for the n design variables can be denoted as .X.

e f(x) is the scalar function to be minimized.
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o g(x)" =[g:.(x), ..., gp(x)] is the vector function of p inequality constraints.
e h(x)" =[h(x), ..,hg(x)] is the vector function of q equality constraints.
¢ p(-) denotes the probability of a random event.

e y(x,r) is the limit state function, thus p(y(x, r)) denotes the probability of failure of
the design.

e pris the threshold value for the probability of failure.

Using the above formulation, the structure is designed so that the probability of failure
does not exceed a certain threshold value p during a prescribed period (life cycle).

It should be noted that in the above formulation, a certain structural parameter, such as
the size of a structural cross section, can belong to both the design variables and the
random variables of the problem. In this case, the mean value of the specific parameter
will play the role of the design variable for the calculation of the objective function and
the deterministic constraints, while the Probability Density Function (PDF) of the para-
meter will be taken into account for the calculation of the probability of failure using a
stochastic analysis process.

6.3 Robust Design Optimization (RDO)

6.3.1 The concept of robustness

The requirement of practical, sometimes simplifying approaches can be considered as
the implicit but dominating rule in engineering design. This has fostered the concept of
robustness, meaning a product that exhibits strength with respect to variations or fluctu-
ations of random, uncontrollable or unknown parameters. A robust product assures the
engineer that it can absorb such fluctuation without compromising its quality, which is
its main feature. In general, robust design orientation aims at overcoming the need of
considering particular uncertain situations and guaranteeing the imperturbability of the
system under the presence of unknown, unpredictable or random parameters. However,
the question for a quantitative measure of the uncertainty in extreme situations is not
addressed directly by the robustness approach.

A robust solution is defined as one which is less sensitive to the perturbation of the deci-
sion variables in its neighborhood. Consider a single-objective optimization problem
with one design variable, where the objective function to be minimized is shown in Fig-
ure 6.1. In a deterministic formulation of the optimization problem, the global optimum
is represented by point A, while solution B is only a local optimum.

On the other hand, it is clear that solution A is quite sensitive to the variable perturba-
tion and often cannot be recommended in practice, despite having a better objective
function value than solution B. Of the two optimal solutions, solution B is considered
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robust as a small variation in the design variable does not alter the objective function
value of the solution significantly.

af(x)—min

Uncertainty
N

Uncertainty

RDO optimum

Determin.istic optimum

»
|

X

Figure 6.1 Illustration of deterministic versus robust solutions in a scalar optimization problem
with one design variable.

The concept of robustness discussed above for single-objective optimization can be ex-
tended also to multi-objective optimization cases. In Figure 6.2 two Pareto-optimal solu-
tions (A and B) are checked for their sensitivity in the design variable space, at the left of
the figure. The corresponding solutions are also shown in the objective function space at
the right of the figure. Since a local perturbation of point A causes a large change in ob-
jective values, this solution may not be considered as a robust solution, whereas solution
B which does not cause a large change in objective values due to a local perturbation in
its vicinity, can be considered as a robust solution. Of course, although the two solutions
are both Pareto optimal, they are not directly comparable as they correspond to different
decision criteria in terms of the objective function values f; and f..

To qualify as a robust solution, each Pareto-optimal solution has to demonstrate its in-
sensitivity towards small perturbations in its decision variable values. In multi-objective
optimization problems the sensitivity has to be established with respect to all m objec-
tives. That is, a combined effect of variations in all m objectives has to be used as a
measure of sensitivity to variable perturbation, while there are many solutions to be
checked for robustness.
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Figure 6.2 Illustration of deterministic versus robust solutions in a multi-objective optimiza-
tion problem with two objective functions.

Although a great deal of studies has been done during the last three decades in structural
optimization, those devoted to RDO are rather limited. Chen and Lewis (1999) presented
some preliminary results of robust design for multidisciplinary optimization applying ef-
ficient methods for the uncertainty analysis. Lee and Park (2001) solved a RDO problem
where the multi-objective problem considered had two criteria to be minimized, the
mean value and the standard deviation of the structural weight. The multi-objective prob-
lem was solved using the weighting sum method in the context of a mathematical pro-
gramming algorithm. Sandgren and Cameron (2002) proposed a hybrid genet-
ic/non-linear programming algorithm for the solution of the multi-objective problem in
the framework of RDO. Messac and Ismail-Yahaya (2002) developed the flexible physical
programming-based RDO methodology that formulates the RDO problem in terms of
physically meaningful design performance degradation levels. Jung and Lee (2002) incor-
porated the probability of feasibility into the RDO problem, where each probability con-
straint was transformed into a sub-optimization problem by the advanced first-order
second moment method. Doltsinis and Kang (2004) dealt with the RDO problem consi-
dering the minimization of the mean value and the standard deviation of a nodal dis-
placement and treating the structural weight as a constraint function.

6.3.2 Formulation of a RDO problem as a Multi-objective Optimization Problem

The formulation of a Robust Design Optimization problem can be written as a multi-
objective optimization problem as follows:
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m]ilg[f(x),au(x,L)]T, feR,o, eR

Subject to
g2(x)<0, geR? (6.2)
h(x)=0, heRfY

x;eX; fori=1,..,n

where:
e x=[x, ..., xa]" is the vector of the n design variables.
e r=[r, .., rm]" is the vector of the m random variables.

e X is the set of x;, which may be continuous, discrete or integer. The whole design
space for the n design variables can be denoted as .X.

¢ f(x) is the scalar function to be minimized, usually the weight of the structure.

e o,(xr) is a scalar function (a statistical quantity), the standard deviation of a re-
sponse measure of the structure to be minimized. This response measure is in
most cases associated with displacements, i.e. the maximum displacement of the
structure.

e g(x)" =[g(x), ..., gp(x)] is the vector function of p inequality constraints.

o h(x)"=[h(x), ..., hq(x)] is the vector function of q equality constraints.

6.4 Relationship between RBDO and RDO formulations

RDO methods primarily seek to reduce the spread of critical responses, while RBDO me-
thods seek to control the probability of failure. Since the reduction of the response
spread not necessarily precludes a failure with regard to extreme cases, the two methods
can be considered as complementary. In general, it is desirable to have available methods
that yield a design that satisfies both reliability and robustness criteria. The nature of
these two alternative methods can be explained with the help of Figure 6.3, which shows
two alternative probability density functions of the structural response. RDO aims to re-
duce the spread, while RBDO is intended to limit the probability of surpassing a critical
threshold value (dashed line) (Hurtado 2008).

It should be noted that the effect pursued by RBDO can be indirectly obtained by apply-
ing RDO, due to the fact that in this case the reduction of the spread implies a reduction
of the failure probability. The reliability refers to the occurrence of extreme events, whe-
reas robustness refers to the spread of the structural response under a large variation of
the input parameters. This is assumed to assure a narrow response density function,
which in turn assures most of the times a low failure probability. However, to a signifi-
cant spread of the structural response may correspond a low failure probability (dotted
line) because the definition of the limit state can be such that the possibility of surpass-
ing it is very rare, as the situation it describes is rather extreme.
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Figure 6.3 Robust and Reliability-based design options.

The comparison between RDO and RBDO cannot be conclusive because, as it is shown
in Figure 6.3, the choice depends on the critical thresholds selected for reliability estima-
tions. Besides, the relationship between statistical moments and probabilities is highly

non-linear.

For the above reasons, both approaches are valuable and complementary for taking into
account uncertainties in structural design. Since both kinds of designs correspond to a
different way of incorporating the uncertainties and to different goals, a method allowing
monitoring both the moments (mean and variance) and the failure probabilities, with a
low computational cost, would be most suitable.

6.5 Reliability-based structural optimization using metamodel as-
sisted ES

In the reliability analysis of structures considering elasto-plastic material behavior using
MCS, the computed critical load factors are compared to the corresponding external
loading leading to the computation of the probability of structural failure. The probabil-
istic constraints enforce the condition that the probability of a local failure of the system
or the global system failure is smaller than a certain value (i.e. 10” to 103). In the present
thesis, the overall probability of failure of the structure, as a result of a limit state elasto-
plastic analysis, is taken as the global reliability constraint.

Three metamodel-assisted RBDO methodologies are investigated:

i. RBDO-NN1 methodology: NN used for the deterministic and probabilistic con-
straints check.

ii. RBDO-NN2 methodology: NN prediction of the maximum load capacity.

iii. RBDO-NN3 methodology: A two-level NN for RBDO, combining the other two me-
thodologies.
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6.5.1 RBDO-NN1 methodology: NN used for the deterministic and probabilistic
constraints check

In this methodology, a trained NN that utilizes information generated from a number of
properly selected design vectors is used to perform both the deterministic and probabil-
istic constraints checks that are needed during the optimization process. After the selec-
tion of a suitable NN architecture, the training procedure is performed using a number
(M) of data sets in order to obtain the input/output pairs needed for the NN training.
The trained NN is then applied to predict the response of the structure in terms of de-
terministic and probabilistic constraints checks due to different sets of design variables.

The combined RBDO-NN1 optimization procedure is performed in two phases. The first
phase includes the training set selection, the corresponding structural analysis and MCS
for each training set required to obtain the necessary input/output data for the NN train-
ing, and finally the training and testing of a suitable NN configuration. The second phase
is the ES optimization stage where the trained NN is used to predict the response of the
structure in terms of the deterministic and probabilistic constraints checks due to differ-
ent sets of design variables. The RBDO-NN1 implementation is described in Figure 6.4.

NN training phase:
1. Training set selection step: Select M input patterns.
2. Deterministic constraints check: Perform the check for each input pattern vector.

Monte Carlo Simulation step: Perform MCS for each input pattern vector.

W

Probabilistic constraints check: Perform the check for each input pattern vector.

+

5. Training step: Training of the NN.
6. Testing step: Test the trained NN.
ES-NN optimization phase:
1. Parents Initialization.
2. NN (Deterministic-Probabilistic) constraints check: All parents become feasible.
3. Offspring generation.

4. NN (Deterministic-Probabilistic) constraints check: If satisfied continue, else go to
step 3.

5. Parents’ selection step.

6. Convergence check.

Figure 6.4 The RBDO-NN1 methodology:
NN used for the deterministic and probabilistic constraints check.
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6.5.2 RBDO-NN2 methodology: NN prediction of the maximum load capacity

In this methodology the limit state elasto-plastic analyses required during the MCS are
replaced by the NN prediction of the structural behavior up to collapse. For every MCS a
NN is trained utilizing available information generated from selected conventional elas-
to-plastic analyses. The limit state analysis data is processed to obtain input and output
pairs, that are used for the NN training. The trained NN is then used to predict the criti-
cal load factor due to different sets of basic random variables.

1. Parents Initialization.
2. Deterministic constraints check: all parents become feasible.
3. Monte Carlo Simulation step:

a. Selection of the NN training set.

b. NN training for the limit load.

c. NN testing.

d. Perform MCS using NN.
4. Probabilistic constraints check: all parents become feasible.
5. Offspring generation.
6. Deterministic constraints check: if satisfied continue, else go to step 5.
7. Monte Carlo Simulation step:

a. Selection of the NN training set.

b. NN training for the limit load.

N

. NN testing.
d. Perform MCS using NN.
8. Probabilistic constraints check: if satisfied continue, else go to step 5.

9. Parents’ selection step.

10. Convergence check.

Figure 6.5 The RBDO-NN2 methodology:
NN prediction of the maximum load capacity.

At each ES cycle (generation) a number of MCS is carried out. In order to replace the
time consuming limit state elasto-plastic analyses by predicted results obtained with a
trained NN, a training procedure is performed based on the data collected from a num-
ber of conventional limit state elasto-plastic analyses. After the training phase is con-
cluded the trained NN predictions replace the conventional limit state elasto-plastic ana-
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lyses, for the current design. For the selection of the suitable training pairs, the sample
space for each random variable is divided into equally spaced distances. The central
points within the intervals are used as inputs for the limit state analyses. The RBDO-NN2
implementation is described in Figure 6.5.

In reliability analysis of elastoplastic structures using MCS, the computed critical load
factors are compared to the corresponding external loading leading to the computation
of the probability of structural failure according to Eq. (2.45). By approximating the “ex-
act” solution with a NN prediction of the critical load factor, the accuracy of the pre-
dicted pr depends not only on the accuracy of the NN prediction of the critical load fac-
tor but also on the sensitivity of pr with regard to a slightly modified, due to the NN ap-
proximation, sample space of resistances. This sensitivity is represented in Figure 6.6 by
the ratio of the shaded area over the total area defined by the probability density distri-
butions and the failure function on the unsafe side. It occurs that the error due to this
sensitivity is always present but is more pronounced in low probability estimations
where the shadowed area becomes significant compared to the total area that defines the
low probability of failure. Thus, the use of Importance Sampling (IS) technique, described
in detail in Section 2.9, is expected to be beneficial since the sampling is performed in an
area of high probabilities. In this case, as the ratio of the shaded area over the total area
is decreased, the introduced error can be substantially reduced.

pdf A

G>0 safe G<0O unsafe

>
R
Figure 6.6 Sensitivity of ps prediction to different sample space of resistances.

6.5.3 RBDO-NN3 methodology: A two-level NN for RBDO, combining the other
two methodologies

This methodology combines the two other methodologies as follows: a trained NN fol-
lowing the first metamodel-assisted RBDO methodology RBDO-NNj, utilizes informa-
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tion generated from a number of properly selected design vectors in order to perform
both the deterministic and probabilistic constraints checks that are needed during the
optimization process. The difference in comparison to the first RBDO-NN1 methodology
is that a second NNz2 is used, similarly to the way that the second metamodel-assisted
RBDO methodology RBDO-NN2 employs the NN, in order to assist the training of the

NN1.

The RBDO-NNj3 implementation is described in Figure 6.7.

NN1 training phase:

1.

2.

ES-NN optimization phase with NNu:

1.

2.

Training set selection step: Select M input patterns.

Deterministic constraints check: Perform the check for each input pattern vector.
Monte Carlo Simulation step:

a. Selection of the NN2 training set.

b. NN2 training for the limit load.

c. NN2 testing.

d. Perform MCS using NN2.

Probabilistic constraints check: Perform the check for each input pattern vector.
Training step: Training of the NNu.

Testing step: Test the trained NN1.

Parents Initialization.
NN1 (Deterministic-Probabilistic) constraints check: All parents become feasible.
Offspring generation.

NN1 (Deterministic-Probabilistic) constraints check: If satisfied continue, else go
to step 3.

Parents’ selection step.

Convergence check.

Figure 6.7 The RBDO-NN3 methodology:
Atwo-level NN for RBDO, combining the other two methodologies.

The combined RBDO-NN3 optimization procedure is performed in two phases:

I

The first phase includes the training set selection, the corresponding structural
analysis and MCS (performed with the help of NN2) for each training set required
to obtain the necessary input/output data for the NN1 training, and finally the
training and testing of a suitable NN1 configuration;
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ii. The second phase is the ES optimization stage where the trained NN1 is used to
predict the response of the structure in terms of the deterministic and probabilistic
constraints checks due to different sets of design variables.

6.6 Reliability-based Robust Design Optimization (RRDO)

The Reliability-based Robust Design Optimization (RRDO) problem, first addressed by
Youn and Choi (2004; Youn et al. 2007), is also implemented in the present thesis in or-
der to account for the influence of the probabilistic constraints in the framework of RDO
of real-world structures. The key difference between the RDO and RRDO formulations
lies in the probabilistic constraints that are taken into account in the RRDO formulation,
as opposed to a RDO formulation where all constraints are deterministic.

6.6.1 Formulation of a RRDO problem as a Multi-objective Optimization Problem

A structural combined Reliability-based Robust Design Optimization problem can be
formulated as a two objective optimization problem where an additional, to the initial
construction cost, objective function is considered, related to the influence of the ran-
dom nature of structural parameters and loading conditions on the performance of the
structure, while probabilistic constraints are also taken into account. The aim is to mi-
nimize both the initial construction cost and the variance of the response of the struc-
ture. In the RRDO formulation, the probability of failure of the structure or the probabil-
ity of violation of the constraints is taken into account as an additional set of constraints
together with the deterministic constraints imposed by the RDO formulation.

Thus, the mathematical description of the generic RRDO problem implemented in this
thesis is given as follows

min [ f(x),0,(x,r)]", feR,0,eR
xeR”
Subject to

g(x)<0, geR? (6.3)
h(x)=0, heRY

p(y(x,r)<0)<p;, reR”
x,eX; fori=1,..,n

where:
e x=[x, ..., xa]" is the vector of the n design variables.
e r=[r, .., rm]" is the vector of the m random variables.

e X;is the set of x;,, which may be continuous, discrete or integer. The whole design
space for the n design variables can be denoted as .X.

¢ f(x) is the scalar function to be minimized.
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ou(x,r) is a scalar function (a statistical quantity), the standard deviation of a re-
sponse measure of the structure to be minimized. This response measure is in
most cases associated with displacements, i.e. the maximum displacement of the
structure.

e g(x)" =[g\(x), ... gp(x)] is the vector function of p inequality constraints.
e h(x)"=[h(x), ..., hq(x)] is the vector function of q equality constraints.
¢ p(-) denotes the probability of a random event.

e y(x,r) is the limit state function, thus p(y(x, r)) denotes the probability of failure of
the design.

e pris the threshold value for the probability of failure.

6.7 RRDO probabilistic analysis based on NN predictions

Despite the improvements achieved on the efficiency of the computational methods for
treating reliability analysis problems, they still require disproportional computational
effort for practical reliability analysis problems. In probabilistic analysis of structures, the
Monte Carlo Simulation method, discussed in detail in Section 2.6, is particularly suita-
ble when an analytical solution is not attainable. Despite the improvements achieved by
the Latin Hypercube Sampling technique and other variance reduction techniques, de-
scribed in detail in Section 2.7, MCS still requires disproportional computational effort
for reliability analysis of realistic problems with a large number of random variables. This
is the reason why very few successful numerical investigations are known in estimating
the probability of failure and are mainly restricted to simple elastic frames and trusses
(Jiang et al. 2007).

The formulation of the RRDO problem of Eq. (6.3) requires the implementation of relia-
bility analysis in order to calculate o,(x,r) and pymax(x,r). The computational difficulties
described in the previous paragraph are also present in the implementation of the RRDO
problem. In order to reduce significantly the computational cost of the RRDO procedure,
a Neural Network based methodology for RRDO is also proposed in the present thesis.

6.7.1 NN-based MCS probabilistic analysis for RRDO

The methodology takes advantage of the global approximation capabilities of Neural
Networks. In the methodology, shown schematically with the flowchart of Figure 6.8, for
every new candidate Pareto optimum design, a new NN is trained to replace the finite
element analyses required during the Monte Carlo Simulations.
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For i=1, A
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analysis for design [

Step 1

NO
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Feasible ?
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Training of the NN
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Random Structural
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calculating o, and py, max
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design [

Prob. checks
Feasible?
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Figure 6.8 The NN assisted MCS procedure.

Figure 6.8 describes the procedure for assessing the A offspring of an optimization cycle
(generation) of CEA. After training, over a sample of N random vectors generated using
LHS, the trained NN is applied as a predictor of the structural performance for every new
vector of random variables encountered during the MCS. As soon as the NN is trained,
the NN approximations of the structural response can be obtained.

Thus, the computational cost required for performing the probabilistic constraints’
checks and calculating the statistical quantities needed by the RRDO formulation is re-
duced significantly as will be shown in detail in Chapter 8 (Numerical Applications -
Probabilistic Optimization).

To avoid the problem of NN performing extrapolation instead of interpolation, described
in Section 5.10.1, it is important to have sufficient and properly distributed, over the
range of interest, training data. This possible drawback is alleviated by generating the
training sample using the Latin Hypercube Sampling method in the range of y;+60; for
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any random variable, where y; and o; are the mean value and standard deviation of the i-
th random variable. This methodology ensures that 99.9999998% of the samples will be
in this range (Koch et al. 2004) and thus NN will always predict interpolated values. If
during the NN based Monte Carlo Simulation, a sample is generated outside the pre-
scribed range then this sample is rejected and a new one is generated.






Chapter

7 Numerical Applications - Part A:
Deterministic Optimization

This chapter contains the first part (Part A) of the numerical applications investigated in
this thesis, where deterministic optimization is considered. In this chapter, five test ex-
amples are examined in total. The chapter is divided into two sections:

i. In the first section (Section 7.1), two multi-objective optimization test examples are
considered, using either Evolution Strategies (ES) combined with standard multi-
objective optimization methods or the proposed Evolution Strategy for Multi-
objective Optimization (ESMO) algorithm for solving the multi-objective optimiza-
tion problem.

ii. In the second section (Section 7.2), three single-objective examples are considered,
using the proposed Particle Swarm Optimization (PSO) methodology and the pro-
posed hybrid PSO-SQP methodology for solving the constrained structural optimi-

zation problem.

7.1 Multi-objective optimization

The first part of the deterministic optimization section includes two multi-objective op-
timization test examples, a multi-layered space truss under static loading and a six-story
space frame under combined static and dynamic loading. The conclusions for both test
examples are given in Section 7.1.3.

7-1.1  Multi-layered space truss

The optimum design with multiple objectives of a long span three layered aircraft hangar
is investigated (Papadrakakis et al. 2002a). The objective functions considered for the
problem are the weight of the structure and the maximum deflection, both to be mini-
mized. This hangar is a triple layer space truss with a 5-layered front girder spanning
over 130.9m. The front girder is formed by adding two layers, one at the top and the oth-
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er at the bottom of the space truss, as shown in Figure 7.2. The heavily stressed top and
bottom layers are designated as ‘flanges’ consisting of longitudinal and cross-girders,
which are closed box sections. The diagonal members connecting the top and bottom
flanges to the top and bottom chords of the triple-layer space frame are also closed box

sections.

5 O
Figure 7.2 Multi-objective optimization - Multi-layered space truss:
3D model for the half of the real structure.



Numerical Applications - Part A: Deterministic Optimization 163

L . /_j/—3 5
a £
0 A P P ZANZAN NN R AP
p /N NN AN

PN\ EAN 4 ﬁ3 5

Figure 7.2 Multi-objective optimization - Multi-layered space truss:
Cross-section of the space hangar.

The model has 3614 nodes, 10638 Degrees Of Freedom (DOFs) and 12974 members.
Members of groups 1 to 3 are to be selected from the structural sections listed in Table 7.1
and members of groups 4 to 6 from the tube sizes given in Table 7.2. Taking advantage of
the symmetry of the structure, the formulation of the problem was made for one half of
the hangar, depicted in Figure 7.1, which results in a model with 5269 DOFs.

The members of the space truss are grouped (Figure 7.2) as follows:
1. Group 1: Longitudinal members of the top and bottom flanges.
2. Group 2: Cross girders of the top and bottom flanges.

3. Group 3: Bracing diagonals connecting the top and bottom flanges to the top and
bottom chords of the space hangar.

4. Group 4: Top and bottom chords of the space truss.

5. Group 5: Diagonal bracing members connecting the top and bottom chords to
middle chords.

6. Group 6: Middle chords of the space hangar.

Space truss structures usually have the topology of single or multi-layered flat or curved
grids that can be easily constructed in practice. In the optimal design of trusses the con-
straints are the member stresses, nodal displacements, or frequencies. The stress con-

straints can be written as

Omax < Oy (7.1)
(o2

o, =—— (7.2)
M1

where o,,.x is the maximum axial stress in each element group (absolute value) for all
loading cases, o, is the allowable axial stress and oy, is the yield stress of the material. The
safety factor yy, is a Eurocode 1 (CEN 1991) box value usually taken equal to 1.10. Similar-
ly, the displacement constraints can be written as

|d| <d, (7.3)

where d, is the limit value of the displacement at a certain node or the maximum nodal
displacement.
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Euler buckling is also considered as a stress-type constraint in truss structures. This is
enforced when the magnitude of a member’s compressive stress is greater than a critical
stress which usually is taken as the first buckling mode of a pin-connected member:

Onin = Op (7.4)
PR 1 ( 7°EI

where oy, is the critical Euler buckling stress (with negative sign), oy, is the minimum
axial force (with negative sign or the maximum compressive axial force in absolute val-
ues), Py, is the compressive buckling axial force (with negative sign), I is the moment of
inertia and L is the member length.

Table 7.1 Multi-objective optimization - Multi-layered space truss:
Properties of the structural members (Database 1).

Section

number Type Description
1 ISMC 100 Single Channel
2 xI1SMC )
2-12 Closed box section made-up of 2 channels
(75,100,125,150,175,200,225,250,300,350,400)
6 2 x ISMC 400 with Closed box section made-up of 2 channels
13-1
3 2 x(8,12,16,25mm) thick MS Plates With 2 plates welded at top and bottom
1 4 X1SMC 400 Closed double box section made-up of 4

channels

4 X ISMC 400 with Closed double box section made-up of 4

18-22 ) channels with 2 plates welded at top and
2 x(8,16,20,25,32mm) thick MS Plates bottomn

4 X ISMC 400 with Closed double box section made-up of 4

23-27 ) channels with 4 plates welded at top and
4 % (20,25,32,40,50mm) thick MS Plates bottom
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Table 7.2 Multi-objective optimization - Multi-layered space truss:
Properties of the structural members (Database 2).

Section

number Outer diameter  thickness Area (mm?)
1 60.30 3.25 582.73
2 76.10 4.50 1012.63
3 88.90 4.85 1281.16
4 114.30 5.40 1848.19
5 139.70 5.40 2279.26
6 152.40 5.40 2494.8
7 165.10 5.40 2710.34
8 193.70 5.90 3482.35
9 219.10 5.90 3953.34
10 273.00 5.90 4952.8

The performance of the Linear Weighting Method (LWM) of Section 4.7.1 together with
the results of the Distance Function Method (DFM) of Section 4.7.2 with p=1, 2 and 8 and
the proposed ESMO method of Section 4.10.2 for the case of the simultaneous minimiza-
tion of weight and maximum displacement are depicted in Figure 7.3.

‘—Q—LWM — & —DFM-p=2 — - - - DFM-p=8 —a—ESMO

0.65

0.5 4

0.35

Max Displacement (m)

0.2 \
4000 6000 8000 10000 12000

Weight (kN)

Figure 7.3 Multi-objective optimization - Multi-layered space truss:
LWM, DFM and ESMO methods.

Figure 7.4 depicts the performance of the Constraint Method (CM), decribed in detail in
Section 4.7.3, for the simultaneous minimization of the weight and the maximum dis-
placement.
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Figure 7.4 Multi-objective optimization - Multi-layered space truss:
LWM, CM and ESMO methods.

Two cases are considered for the CM:
i. The weight as the only criterion and the maximum displacement as a constraint.
ii. The maximum displacement as the only criterion and the weight as a constraint.

These sets of Pareto optimal solutions are produced for different upper limits of the
maximum displacement and for different upper limits of the weight of the structure. The
proposed ESMO algorithm gives almost identical results compared to those obtained by
the standard methods such as the linear weighting, distance function and constraint
methods, as can be seen in Figures 7.3 and 7.4.

The performance of the LWM and the ESMO methods in terms of computational effort
(no. of generations, no. of finite element analyses and CPU time) are presented in Table

73

Table 7.3 Multi-objective optimization — Multi-layered space truss:
Computational performance of the LWM and ESMO methods.

Method Generations  FE analyses CPU-Time (sec)
LWM 195 1163 7917
ESMO 28 312 2119

In terms of computational efficiency, it appears that all three standard methods consid-
ered require similar computational effort with approximately the same number of gen-
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eration steps. On the other hand, as can be seen in Table 7.3, there is a substantial im-
provement in the computing time as the proposed ESMO method requires almost one
order of magnitude less computing time than the standard methods.

7.1.2  Six story space frame under dynamic loading

The performance of the multi-objective optimization method proposed in the present
thesis is investigated in a six story space frame benchmark test example (Papadrakakis et
al. 2002a; Papadrakakis et al. 2002b). The equations of equilibrium for a finite element
system in motion for the i-th design vector can be written in the usual form

M(xX')-ii(t) + C(x') - i(t) + K(xX') - u(t) = R(t) (7.6)

where M(x'), C(_xi), and K(x') are the mass, damping and stiffness matrices for the i-th
design vector x', R(¢t) is the external load vector, while u(t),u(t) and i(t) are the dis-

placement, velocity, and acceleration vectors of the finite element assemblage for time ¢,
respectively. Two design approaches will be considered:

i.  Based on the Direct Time Integration (DTI) of the equations of motion;

ii. Based on the Response Spectrum Modal Analysis (RSMA), and the mode superposi-
tion approach (Papadrakakis et al. 2000a; Papadrakakis et al. 2000b; Papadrakakis
et al. 2001a).

Direct Time Integration method

The Newmark integration scheme, an implicit method, is adopted in the present study to
perform the DTI of the equations of motion. The equilibrium condition of Eq. (7.6) is
discretized in time as follows

M(x")-ii(t + At) + C(x") - u(t + At) + K(x") - u(t + At) = R(t + At) (7.7)

where the variation of velocity and displacement are given by

it + Af) = a(t) +[ (1 - 8)ii(t) + 5 - ii(t + A) | At (7.8)
u(t + At) = u() + () At + [G - a)ii(t) bt + At)}Atz (7.9)

where o and § are parameters that are determined in order to obtain integration accu-

racy and stability. Characteristic values of these parameters a=1/2 and 1/6<B<1/4 that
give good results in terms of accuracy and stability. Solving for i(t + At) in terms of

u(t + At) from Eq. (7.9) and substituting for #(t + At) in Eq. (7.8) we obtain equations
for i(t + At) and u(t + At) in terms of the unknown displacements u(t + At) only. These
two relations for i(t + At) and a(t + At) are then substituted into Eq. (7.7) to solve for
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u(t + At) . As a result of this substitution the following well-known equilibrium equation

is obtained at each time step

K™ (x") - u(t + At) = R°™ (¢ + A1) (7.10)

Creation of artificial accelerograms

The selection of the proper external loading vector R(t) to perform structural analyses
under seismic loading conditions for design purposes is not an easy task due to the un-
certainties involved in the seismic loading. For this reason a rigorous treatment of the
seismic loading is to assume that the structure is subjected to a set of real and/or artifi-
cial earthquakes that are more likely to occur in the region where the structure is lo-
cated. These artificial seismic excitations are produced as a series of artificial accelero-
grams compatible with the elastic design response spectrum of the region.

In this work the implementation published by Taylor (1989) for the generation of statis-
tically independent artificial acceleration time histories is adopted. This method is based
on the fact that any periodic function can be expanded into a series of sinusoidal waves

x(t) =" Ay sin(awy -1+ ¢) (7.11)
k

where A, is the amplitude, w is the cyclic frequency and ¢ is the phase angle of the k-th
contributing sinusoid. By fixing an array of amplitudes and then generating different ar-
rays of phase angles, different motions can be generated which are similar in general ap-
pearance but different in the “details”. The computer uses a random number generator
subroutine to produce strings of phase angles with a uniform distribution in the range
[0,27]. The amplitudes Ay are related to the spectral density function in the following
way

A 2
G(w) Ao = % (7.12)

where G(wi)-Aw may be interpreted as the contribution to the total power of the motion
from the sinusoid with frequency wi. The power of the motion produced by Eq. (7.11)
does not vary with time. To simulate the transient character of real earthquakes, the
steady-state motions are multiplied by a deterministic envelope function I(t)

Z(t)=1(1)- Y A sin(ayt + ¢) (7.13)
k

The resulting motion is stationary in frequency content with peak acceleration close to
the target peak acceleration. In this study a trapezoidal intensity envelope function is
used. The generated peak acceleration is artificially modified to match the target peak
acceleration, which corresponds to the chosen elastic design response spectrum. An it-
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erative procedure is then implemented to smooth the calculated spectrum and improve
the matching (Taylor 1989).

Response Spectrum Modal Analysis method

The RSMA method is based on a simplification of the mode superposition approach with
the aim to avoid time history analyses which are required by both the direct integration
and mode superposition approaches. In the case of the response spectrum modal analy-
sis, Eq. (7.7) is modified according to the modal superposition approach, for the i-th de-
sign vector, in the following form

M(x")-ii(t) + C(x) - a(t) + K(x')-u(t) = R(t) (7.14)
where
M xH)=0" - M. @' (7.15)
C(x)=0.C"-@' (7.16)
K(x)=0m . K" @' (7.17)
R(t) =@ - R(1) (7.18)

are the generalized values of the corresponding matrices and the loading vector, while @'
is an eigenmode shape matrix to be defined in the following paragraphs. For simplicity
the matrices M(x"), C(x') and K(x') are denoted by M, C and K, respectively. These matri-
ces correspond to the design, which is defined by the i-th vector of the design parame-
ters. According to the modal superposition approach, the system of N simultaneous dif-
ferential equations, is transformed into a set of N independent normal-coordinate equa-
tions.

In the RSMA method, a number of different formulas have been proposed to obtain rea-
sonable estimates of the maximum response based on the spectral values without per-
forming time history analyses for a considerable number of transformed dynamic equa-
tions. The simplest and most popular of these is the Square Root of the Sum of Squares
(SRSS) of the modal responses. According to this estimate the maximum total displace-
ment is approximated by

_ 2 2 2
Umax = \/ul,max + u2,max +...+ uN,max (7-19)

where uj . corresponds to the maximum displacement calculated from the j-th trans-
formed dynamic equations over the complete time period. The use of Eq. (7.19) permits
this type of “dynamic” design by knowing only the maximum modal displacements u; max.

The following steps summarize the response spectrum modal analysis used in this work
and in a number of seismic codes around the world. For every design vector i:
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Calculate a number m’<N of eigenfrequencies and the corresponding eigenmode
shape matrices, which are classified in the following order (@,®,...,@,),
@ =[p',p%,...,p" ], respectively, where w; and ¢’ (a column vector) are the j-th

eigenfrequency and eigenvector, respectively, m’ is a user specified number, based
on experience or on previous test analyses, which has to satisfy the requirement of
step 6.

Calculate the generalized masses 7 :

m=¢'"-M-¢p/ (7.20)
Calculate the coefficients L it

Li=¢'"-M-r (7.21)

where r is the influence vector, which represents the displacements of the masses
resulting from static application of a unit ground displacement.

Calculate the modal participation factor 7 :

L;
m;

Calculate the effective modal mass for each design vector and for each eigenmode:

(L))
Megy ; = n_i (7.23)
J

. Calculate a number m<m" of the important eigenmodes. According to Eurocode

(CEN 1998) the minimum number of eigenmodes that has to be taken into account
is defined by the assumption that the sum of the effective eigenmasses must not be
less than the 90% of the total vibrating mass m,,, of the system. Thus the first m
eigenmodes that satisfy the equation

D Mgy ;> 0.90 - my, (7.24)
j=1

are taken into consideration.

Calculate the values of the spectral acceleration Ry(T}) that correspond to each ei-
genperiod T; of the m important modes from the response spectrum of the region.
The eigenperiods are calculated by

2
T, =2 (7.25)

w;

Calculate the modal displacements according to equation
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Ry(T}) _ Ry(Ty) T/

a)jz 472'2

(SD); = . j=l,...m (7.26)

9. Calculate the maximum modal displacements from

Ujmax =L@/ -(SD);, j=1,....m (7.27)

10. The total maximum displacement is calculated by superimposing the maximum
modal displacements according to Eq. (7.19).

The elastic design response spectrum considered in the study is depicted in Figure 7.5 for
damping ratio é=2.5%, together with the corresponding response spectrum of the first
out of five artificial accelerograms. The five uncorrelated artificial accelerograms shown
in Figure 7.6, produced by the procedure described previously based on the elastic de-
sign response spectrum, are used as the input seismic excitation for the Direct Time In-
tegration approach of the numerical tests.

Elastic design response spectrum —— Artificial response spectrum
2
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Figure 7.5 Multi-objective optimization - Six story space frame: Elastic design response spec-
trum of the region and response spectrum of the first artificial accelerogram (§=2.5%).
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Figure 7.6 Multi-objective optimization - Six story space frame:
The five artificial accelerograms.
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In the optimal design of frames the constraints are usually the member stresses and
nodal displacements or inter-story drifts. For rigid frames with I-shapes, the stress con-
straints under allowable stress design requirements specified by Eurocode 3 (CEN 1993),
are expressed by the following formula

M Mg, .
gDt S Wi <1.0 (7.28)
Afy/7M1 Wpl,yfy/7M1 Wpl,zfy/yMl

where Ny, Msqy, Mg, are the stress resultants, W, W, are the plastic first moments of
inertia, f; is the yield stress and A is the cross section area. The safety factor yy, is a Euro-
code 1 (CEN 1991) box value usually taken equal to 1.10.

The objective functions considered for this problem are the weight of the structure, the
maximum displacement and the first eigenperiod. The weight and the maximum dis-
placement are to be minimized, while the first eigenperiod is to be maximized. The con-
straints are imposed on the inter-story drifts and for each element group on the maxi-
mum non-dimensional ratio q of Eq. (7.28) under a combination of axial force and bend-

ing moments.

The space frame consists of 63 elements with 180 DOFs as shown in Figure 7.7. The
length of the beams and the columns are L,=7.32 m and the columns L,=3.66 m, respec-
tively. The structure is loaded with a 19.16kPa gravity load on all floor levels and a static
lateral load of 109kN applied at each node in the front elevation along the z direction.

Z TITI777 TI77777 T
Wz T T

X

Figure 7.7 Multi-objective optimization - Six story space frame: 3D model of the structure.
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Figure 7.8 Multi-objective optimization - Six story space frame: Element groups.

The element members are divided into 5 groups, as shown in Figure 7.8, each one having
two design variables resulting in ten design variables in total. The cross section of each
member is assumed to be an I-shape and for each member two design variables are as-
signed as shown in Figure 7.9. The modulus of elasticity is E=200GPa and the yield stress
is o,=250MPa.

bi

Figure 7.9 Multi-objective optimization - Six story space frame: |-shape cross section.
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Weight and maximum displacement minimization

The Pareto optimal set of solutions for the case of seeking the simultaneous minimiza-
tion of the weight and the maximum displacement was computed with LWM, CM and
ESMO methods, for both static and combined static and seismic loading conditions.

In Figure 7.10 the performances of LWM, ESMO and the DFM methods are presented for
the static case and the combined static and dynamic case with Direct Time Integration.
For the case of the DFM the zero (o) point was considered as the utopian point, while
four different schemes of the DFM were examined, p=1 (equivalent to the LWM), p=2
(called quadratic LWM) and p=8 (equivalent to the p=).

—o— LWM (Static) —o- -DFM-p=2 (Static
—e—ESMO (Static) —o- -DFM-p=8 (Static
—a—LWM (Combined-DTI — & — DFM-p=2 (Combined-DTI
—=a—ESMO (Combined-DTI) —-m--DFM-p=8 (Combined-DTI
1.45
1.2 4
B
L
= 0.95 4
()
£
()
Q
©
2 0.7 4
a
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[
=
0.45 -
0.2 T T T T T T T —
600 850 1100 1350 1600 1850 2100 2350 2600 2850

Weight (kN)

Figure 7.10 Multi-objective optimization - Six story space frame: Performance of the methods
for static and combined static and seismic loading conditions.
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Figure 7.11 Multi-objective optimization - Six story space frame: Performance of the methods
for static and combined static and seismic loading conditions.
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Figure 7.12 Multi-objective optimization - Six story space frame: Performance of the methods
for combined static and seismic loading conditions.
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In Figure 7.11 the performances of LWM and CM are presented for the static case and the
combined static and dynamic case of DTI. The CM is implemented in the following two

variations:
i. The weight as the only criterion and the maximum displacement as a constraint.

ii. The maximum displacement as the only criterion and the weight as a constraint.

In Figure 7.12 the performances of LWM, ESMO and the DFM methods are presented for
both the combined static and dynamic cases with RSMA and DTI, for comparison pur-

poses.

—o—LWM (RSMA) ——o- -CM-weight (RSMA) - -o --CM-disp (RSMA)

—=—LWM (DTI) — = — CM-weight (DTI) ---m--- CM-disp (DTI)

1.45
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Figure 7.13 Multi-objective optimization - Six story space frame: Performance of the methods
for combined static and seismic loading conditions.

In Figure 7.13 the performances of LWM and CM are presented for both the combined
static and dynamic cases of RSMA and DTI. The CM is again implemented in two varia-

tions:
i. The weight as the only criterion and the maximum displacement as a constraint;
ii. The maximum displacement as the only criterion and the weight as a constraint.

Table 7.4 shows the performance of the methods in terms of computational efficiency for
the combined static and dynamic loading case (no. of generations, no. of finite element
analysis and CPU time).
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Table 7.4 Multi-objective optimization - Six story space frame: Performance of the standard
and ESMO methods for dealing with multi-objectives for dynamic loading conditions.

Method Generations FE analyses CPU-Time (sec)
LWM (Combined-DTI) 372 2609 254112
ESMO (Combined-DTI) 28 367 35788
LWM (Combined-RSMA) 411 2901 109803
ESMO (Combined-RSMA) 31 401 15171

In Figures 7.12 and 7.13 it can be seen that the Pareto optimal solutions achieved by the
DTI approach under the multiple loading conditions of the five artificial accelerograms
given in Figure 7.6 are lower than the corresponding designs given by the RSMA. It can
be concluded that the dynamic approach based on time history analyses gives more eco-
nomic designs than the approximate RSMA, at the expense of requiring more computa-
tional effort.

Weight minimization and first eigenperiod maximization

The Pareto optimal set of solutions for the case of seeking the simultaneous minimiza-
tion of the weight and the maximization of the first eigenperiod was computed with
LWM, CM and ESMO methods, for static loading conditions.

In Figure 7.14 the performances of LWM, ESMO and the DFM methods are presented for
the static case. For the case of the DFM the zero (o) point was considered as the utopian
point, while three different schemes of the DFM were examined: (i) p=1, equivalent to
the LWM; (ii) p=2, called quadratic LWM; and (iii) p=8, equivalent to the p=co.
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Figure 7.14 Multi-objective optimization - Six story space frame: Performance of Linear (p=1),
Distance and ESMO methods.



Numerical Applications - Part A: Deterministic Optimization 179

‘—Q—LWM — - — CM-weight - --x--- CM-period —a«—ESMO

N
(S)]
L

N
I

First eigenperiod (sec)

o
[$]
L

0 T T
600 800 1000 1200

Weight (kN)

Figure 7.15 Multi-objective optimization - Six story space frame: Performance of Linear (p=1),
Constraint and ESMO methods.

In Figure 7.15 the performances of LWM, CM and ESMO are presented for the static case.

The CM is implemented in two variations:
i. The weight as the only criterion and the first eigenperiod as a constraint;
ii. The first eigenperiod as the only criterion and the weight as a constraint.

The proposed ESMO algorithm gives almost identical results compared to those ob-
tained by the standard methods such as the linear weighting, distance function and con-

straint methods, as can be seen in Figures 7.14 and 7.15.

7.1.3 Conclusions on the multi-objective optimization test examples

The test examples show that Evolution Strategies and in particular the proposed ESMO
algorithm can be considered as an efficient tool for multi-objective design optimization
of space frames under static or combined static and dynamic loading. The proposed
ESMO algorithm proved to be a robust and reliable optimization tool. The various stan-
dard methods, such as LWM, DFM, CM and the proposed ESMO have shown to produce
almost equivalent results, in terms of the final Pareto front achieved.

In terms of computational efficiency, it appears that all three standard methods consid-
ered require similar computational effort with approximately the same number of gen-
eration steps. On the other hand there is a substantial improvement in the computing
time for the ESMO case as the proposed methodology requires almost one order of mag-
nitude less computing time than the standard methods.
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The presented results also show that it is possible to achieve an optimal design under
seismic loading and multiple objectives. Both design methodologies, DTI based on a
number of artificially generated earthquakes and the RSMA adopted by the seismic
codes have been implemented and compared. It can be concluded that the dynamic ap-
proach based on time history analyses gives more economic designs than the traditional
approximate RSMA, at the expense of requiring more computational effort.

7.2 Particle Swarm Optimization (PSO)

The performance of the proposed PSO algorithm is examined in three benchmark test
examples (Plevris et al. 2008b; Plevris and Papadrakakis 2009a; Plevris and Papadrakakis
2009b). The first one is a ten bar truss example with 10 design variables, the second is a
25 member space truss with 8 design variables, while the third is a 72 member space
truss with 16 design variables.

The PSO scheme used in the study is the fully informed PSO described in Section 3.1,
equipped with the non-linear inertia update rule described in Section 3.11.5 and the con-
straint handling technique of Section 3.11.4, unless otherwise stated. The conclusions for
both test examples are given together in Section 7.2.3.

7.2.1 10 bar plane truss

This is the standard benchmark 10 bar plane truss shown in Figure 7.16 with the follow-
ing structural characteristics: modulus of elasticity E=10000ksi, material weight
p=o.1lb/in’, length L=360in, load P=100kip. The structural members are divided into 10
groups. The design variables are the cross section areas of each member group in the in-
terval [0.1, 35] (in*). The constraints are imposed on stresses and displacements. The
maximum allowable displacement in the +x and +y directions for each node is dpg=2in,
while the maximum allowable stress (absolute value) is oa0w=25ksi in tension or com-
pression and the objective is to minimize the weight of the structure under the specified

constraints.
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Figure 7.26 PSO - 10 bar plane truss: The truss model.

The influence of the inertia update rule on the optimization process of the PSO schemes
will be first investigated. Three PSO schemes are considered, with a fixed inertia value
W=Wpn.x during all iterations, the linear update rule of Eq. (3.50) and the proposed
non-linear update rule shown in Figure 3.12. The basic PSO used is shown in Table 7.5.

Table 7.5 PSO - 10 bar plane truss: PSO parameters used for the inertia update rule check.

Symbol Value
NP 20
n 10
w Wmax=0.95
Wimin=0.5

x-, x” x5=0.1
XUi=35

for all dimensions (in%)

v V'™=17.5

for all dimensions (in?)
€y, Cs €,=C,=2

tnax 200

Ten PSO optimization runs are performed for each of the three cases. The results ob-
tained for 200 PSO iterations are reported in Table 7.6 which shows the objective func-
tion values obtained for the best run, the worst run and the average of the 10 runs for

each case.
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Table 7.6 PSO - 10 bar plane truss:
Statistical results of the objective function for 20 PSO runs after 200 iterations.

Result Fixedrule Linearrule Non-linear cubic

(W=Wpnay) rule (a,=1.3)
Best (Ib) 5212.69 5111.72 5062.30
Worst (Ib) 5573.70 5225.75 5121.46
Average (Ib) 5396.36 5162.84 5098.77

It can be observed that the linear rule performs much better than the fixed rule, while
the non-linear cubic rule improves further the result of the linear rule. Figure 7.17 depicts
the convergence history for the three cases in terms of the average results over 10 opti-

mization runs.

Carvergence history: Obj.Fun \alue vs lterations
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lterations

Figure 7.17 PSO - 10 bar plane truss: Convergence history for the three PSO schemes.

For this test example, the best design and the values of the constraints obtained by the
non-linear rule are given in Tables 7.7 and 7.8, respectively.
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Table 7.7 PSO - 10 bar plane truss: Optimum design obtained.

Property Value
A1 (in) 30.9810
A2 (in) 0.1000
A3 (in*) 23.1714
Ag (i) 15.6935
As (in%) 0.1000
A6 (in%) 0.5848
A7 (in*) 7-4298
A8 (in%) 20.6310
Ag (in®) 21.3287
A1o (in%) 0.1000
Weight (Ib) 5062.30

Table 7.8 PSO - 10 bar plane truss: Feasibility of the optimum design.

Constraints Value Allowable value  Active
Max Stress (ksi) 24.9745 25 .
Max Displacement (in) 1.999998 2 °

It can be seen that for the above optimum design, all constraints have been met and are
active, as the proposed constraint handling technique for the PSO always guarantees fea-
sibility of the optimum design achieved.

The performance of the optimization algorithms is also studied with a convergence crite-
rion connected to the improvement of the value of the objective function for a given
number of iterations. If the relative improvement of the objective function over the last
ke=30 iterations is less or equal to f,=10° convergence is supposed to have been
achieved.

The results reported in Table 7.9 include the average number of iterations needed for
convergence and the objective function values obtained for the best run, the worst run
and the average of 10 runs.

Table 7.9 PSO - 10 bar plane truss: Statistical results for 10 PSO runs.

Result Fixed rule Linear rule Non-linear rule

(W=Wmax) (aw=1.3)
Average number of iterations 122 172 185
Best (Ib) 5356.71 5102.53 5065.24
Worst (Ib) 5720.01 5443.08 5227.05

Average (Ib) 5548.38 5259.88 5106.04
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The non-linear rule performs much better than the other two PSO schemes in terms of
the best result, the worst result and the average result. This is due to the fact that using
the non-linear rule, convergence towards the optimum is smoother, and as a result the
optimizer is more likely to find a better optimum solution before the termination crite-
rion is satisfied. This is very important in practical structural optimization where the

number of iterations needed for convergence is not known a priori.

Constraint handling technique investigation

In this study, the proposed linear segment penalty function constraint handling tech-
nique is compared with the death penalty approach (Hu et al. 2003) and the redirection
approach (Venter and Sobieszczanski-Sobieski 2004), described in detail in Section o.
With the proposed technique, a penalty function proportional to the degree of the max-
imum violation of the constraints is applied to the objective function. In the death penal-
ty approach, infeasible designs are ignored for the calculation of PBest or Gbest, which is
equivalent to applying a very severe penalty to every infeasible design. In the redirection
approach, infeasible designs are redirected closer to the feasibility boundary by resetting
to zero the velocity vector v/(t) for a particle j with violated constraints at iteration t.

The PSO parameters of the previous study were used, with the non-linear weight update
rule. The redirection constraint handling technique failed to produce good quality of re-
sults, since it converged to infeasible solutions far from the feasibility boundary for a
number of runs, while for other runs it converged to feasible solutions far from the opti-
mum. For this reason the two other constraint handling techniques are compared which
produce always feasible optimum designs and good quality of results. The convergence
history of these two techniques is depicted in Figure 7.18.

Convergence histary: Obj.Fun %alue vs lterations
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Figure 7.128 PSO - 10 bar plane truss:
Convergence history for the two PSO constraint handling techniques.
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It can be seen that both methods converge to the optimum, while the convergence rate
of the proposed constraint handling method is better. This is due to the fact that the
proposed method takes into account the infeasible designs as well, which is beneficial for
the convergence behavior of the optimization algorithm (Michalewicz 1995).
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Figure 7.19 PSO - 10 bar plane truss:
Ratio of feasible particles in the population.

Figure 7.19 depicts the ratio of feasible particles in the population, throughout the PSO
iterations, for the linear segment penalty function approach. It can be seen that the ratio
varies widely with the iterations and that the algorithm always tries to improve the ratio
once it reaches lower values of 10% - 30%. At the end of the optimization process, the
value of the ratio improves, reaching 60%.

The hybrid PSO-SQP method

For the hybrid PSO-SQP scheme a relaxed termination criterion is applied for the PSO
before SQP takes over the search for the optimum. The PSO is mainly used to explore
the design space, detect the neighborhood of the global optimum and provide a good
starting design point for the SQP phase.

First we apply the SQP optimizer, for various initial designs. Four initial designs have
been selected, corresponding to design variables values 35, 25, 15 and 5 for every dimen-
sion of the problem, resulting to the objective function values given in Table 7.10.
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Table 7.120 PSO - 10 bar plane truss: Convergence behavior of SQP.

Starting point Iterations Obj. fun.  Obj. function
(in% evaluations value (Ib)
35" 17 210 5473.62
“25” 14 181 5473.62
“a5” 15 184 5179.48
“g"” 21 250 5179.48

It can be seen that the SQP method converges to suboptimal solutions, as a good model
initialization is always required for SQP to produce good results.

Next, we implement the PSO-SQP scheme. If the relative improvement of the objective
function over the last k¢=15 iterations of the PSO optimizer is less or equal to a threshold
value (in this case f,=10*), the PSO phase is terminated and subsequently the SQP starts
from the best estimate of the PSO. The SQP termination criterion is connected to the
first order optimality measure for constrained optimization, in terms of the infinite
norm. If the magnitude of directional derivative in the search direction is less than a to-

lerance value of 10 and there is no constraint violation, convergence has been achieved.

Convergence history: Obj.FunMalue ws Obj.Fun.Evaluations
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Figure 7.20 PSO - 10 bar plane truss: Convergence history for the hybrid PSO-SQP scheme.

The convergence history of the hybrid PSO-SQP scheme, compared to the basic PSO
scheme is depicted in Figure 7.20 in terms of objective function value and objective func-
tion evaluations. In the hybrid scheme, the PSO needs 1520 function evaluations to reach
an objective function value of 5395.43 and SQP needs another 169 objective function
evaluations to converge to an optimum value of 5060.85. The total number of objective
function evaluations for the hybrid scheme is 1689.
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For this test example, the best design and values of the constraints obtained by the PSO-
SQP method are given in Tables 7.1 and 7.12, respectively. It can be seen that for the
above optimum design, all constraints have been met and are active. The minus symbol
(-) as a superscript after the constraint value of Table 7.12 and in other tables means that
the value of the constraint is slightly less than the one written, but has been rounded.
This means that the optimum reaches the feasibility boundary from the “safe” or feasible
side, as opposed to the case of a plus symbol (+) which means that the feasibility boun-
dary is reached from the “unsafe” or infeasible side.

Figure 7.21 gives a graphical representation of the best design obtained by the PSO-SQP
method, where the thickness of each member is proportional to the corresponding value
of each design variable.

Table 7.11 PSO - 10 bar plane truss: Optimum design obtained by the hybrid PSO-SQP.

Property Value
A1 (in% 30.5218
A2 (in%) 0.1000
A3 (in*) 23.1999
Az (in?) 15.2229
As (in%) 0.1000
A6 (in%) 0.5514
A7 (in%) 7-4572
A8 (in®) 21.0364
Ag (in%) 21.5285
A1o (in®) 0.1000
Weight (Ib) 5060.85

Table 7.122 PSO - 10 bar plane truss:
Feasibility of the optimum design obtained by the hybrid PSO-SQP.

Constraints Value Allowable value  Active

Max Stress (ksi) 25.0000° 25 °

Max Displacement (in) 2.0000 2 °
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Figure 7.21 PSO - 10 bar plane truss: Graphical representation of optimum design obtained by
the hybrid PSO-SQP.

Comparison with results from the literature

For this specific benchmark problem, various results from the literature can be found in
(Perez and Behdinan 2007a). In Tables 7.13 and 7.14, the objective function value and the
constraints values are calculated for every proposed optimum design. Violated con-
straints are marked in bold.

Table 7.123 PSO - 10 bar plane truss: Optimum designs from the literature (a).

(Gellatly (Schmit (Schmit (Dobbs

Property (Rizzi and ?nd (Gha::rar;f anc! and propo-::

1976) Berke Miura 1997) Farshi Nelson PSO

1971) 1976) 1974) 1976)

A1 (in*) 30.7300 31.3500 30.5700 25.7300 33.4300 30.5000 30.9810
A2 (in%) 0.1000 0.1000 0.3690 0.1090 0.1000 0.1000 0.1000
A3 (in% 23.9340 20.0300 23.9700 24.8500 24.2600 23.2900 23.1714
Ag (in?) 14.7330 15.6000 14.7300 16.3500 14.2600 15.4300 15.6935
Asg (in®) 0.1000 0.1400 0.1000 0.1060 0.1000 0.1000 0.1000
A6 (in?) 0.1000 0.2400 0.3640 0.1090 0.1000 0.2100 0.5848
A7 (in% 8.5420 8.3500 8.5470 8.7000 8.3880 7.6490 7.4298
A8 (in% 20.9540 22.2100 21.1100 21.4100 20.7400 20.9800 20.6310
Ag (in?) 21.8360 22.0600 20.7700 22.3000 19.6900 21.8200 21.3287
A1o (in%) 0.1000 0.1000 0.3200 0.1220 0.1000 0.1000 0.1000

Weight (Ib) 5127.58 5112.62 5107.32 5095.64 5091.50 5080.21 5062.30
Max Stress
(ksi)
Max Displ.
(in)

20.3549 22.9369 20.3959 18.5255 21.1915 24.0675 24.9745

1.9823  1.99999 1.99998 2.0137 1.9998 1.9999  1.999998




Numerical Applications - Part A: Deterministic Optimization 189

Table 7.124 PSO - 10 bar plane truss: Optimum designs from the literature (b).

(Haug (Haftka The (Adeli (Perez (El- (Memari
Property and "and propose and a.nd Sayed (Galante and

Arora Girdal d PSO- Kamal Behdina andJang 1992) Fuladgar

1979) 1992) sapP 1991) n2007b) 1994) 1994)
A1 (in*) 30.0300 30.5200 30.5218 31.2800 33.5000 32.9700  30.4400 30.5610
A2 (in%) 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
A3 (in% 23.2740 23.2000 23.1999 24.6500 22.7660 22.7990 21.7900 27.9460
Az (in?) 15.2860 15.2200 15.2229 15.3900 14.4170 14.1460 14.2600 13.6190
Ag (in%) 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
A6 (in%) 0.5570 0.5510 0.5514 0.1000 0.1000 0.7390 0.4510 0.1000
A7 (in% 7.4680 7.4570 7.4572 7.9000 7.5340 6.3810 7.6280 7.9070
A8 (in% 21.1980 21.0400 21.0364 21.5300 20.4670 20.9120 21.6300 19.3450
Ag (in) 21.6180 21.5300 21.5285 19.0700 20.3920 20.9780 21.3600 19.2730
A1o (in%) 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Weight (Ib) 5061.63 5060.93 5060.85 5052.63  5024.25  5013.39  4999.22  4981.06
Max Stress
(ksi)
Max Displ.
(in)

24.9206 25.0027  25.0000 23.0690 25.0171 31.2885  25.0867 20.5999

2.000004  1.99996 2.0000° 2.0195 2.0389 2.0131 2.0280 2.0605

It is clear from Tables 7.13 and 7.14 that the best feasible optimum designs are the ones
found with the proposed hybrid PSO-SQP and PSO algorithms, since any better design
in terms of objective function value violated at least one of the problem constraints.

7.2.2 25 bar space truss

The second test example is a 25-member space truss. The structure is depicted in Figures
7.22 and 7.23. The “xxx” sign for nodes 7, 8, 9, 10 of the model denotes a restriction for all
three DOFs of the node (pinned constraint). Variations of this test example can be found
in the literature (Perez and Behdinan 2007a; Zhou and Rozvany 1993). The problem de-
scribed below is the one described in (Zhou and Rozvany 1993), as in (Perez and Behdi-
nan 2007a) the load cases and the stress constraints are different, leading to different,
non-comparable results. The nodal coordinates are shown in Table 7.15.
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Figure 7.22 PSO - 25 bar space truss: 3D view of the truss model (coordinates in inches).
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Figure 7.23 PSO - 25 bar space truss: Top view of the truss model (coordinates in inches).
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Table 7.15 PSO - 25 bar space truss: Nodal coordinates.

Node x(in) y(in) z(in)

1 -37.5 o} 200
2 37.5 o 200
3 -37:5 37.5 100
4 37.5 37-5 100
5 375 -375 100
6 -37.5 -37.5 100
7 -100 100 o}
8 100 100 o}
9 100 -100 o}
10 -100 -100 o}

The structural characteristics are the following: modulus of elasticity E=100000 ksi, ma-
terial weight p=o0.11b/in’. The structural members are divided into 8 groups. The design
variables are the cross section areas of each member group in the range [o.01, 5] (in®).
The 8 design variable groups together with the constraints imposed on stresses for each
group are presented in Table 7.16.

Table 7.126 PSO - 25 bar space truss: Design variable groups and allowable stresses.

Design Allowable Allowable
variable Member tension (ksi) compression (ksi)
1 1 40 -35.092
2 2-5 40 -11.590
3 6-9 40 -17.305
4 10,11 40 -35.092
5 12,13 40 -35.092
6 14-17 40 -6.759
7 18-21 40 -6.759
8 22-25 40 -11.082

The maximum allowable displacement in the +x, +y and +z directions for each node is
dmax=0.351in. Two load cases have been considered. The nodal loads for each load case are
presented in Tables 7.17 and 7.18. The objective to minimize is the weight of the structure
under the constraints described above for both load cases simultaneously.
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Table 7.127 PSO - 25 bar space truss: Nodal loads — First load case.

Node Fy(kip) F,(kip) F,(kip)

1 1 10 -5
2 10 -5
3 0.5
6 0.5

Table 7.128 PSO - 25 bar space truss: Nodal loads — Second load case.

Node F.(kip) F,(kip) F,(kip)

1 20 -5

2 -20 -5

The influence of the inertia update rule on the optimization process of the PSO schemes
will be investigated first. Three PSO schemes are considered, as in the previous example.
The basic PSO parameters used are shown in Table 7.19.

Table 7.19 PSO - 25 bar space truss: PSO parameters used for the inertia update rule check.

Symbol Value
NP 15
n 8
W Wnax=0.95
Wmin=0.5
L
X;=0.01,
L

X, XU XU,‘= 5
for all dimensions (in%)

max
Vmax v i=2.5
for all dimensions (in®)
¢, G, G=6=2
tmax 200

Since two load cases are considered, the number of finite element analyses needed for
each iteration is 2:NP=30, while the number of objective function evaluations for each
iteration is NP. Ten PSO optimization runs are performed for each of the three cases.
The results obtained for 200 PSO iterations are reported in Table 7.20 which shows the
objective function values obtained for the best run, the worst run and the average of the

10 runs for each case.



Numerical Applications - Part A: Deterministic Optimization 193

Table 7.20 PSO - 25 bar space truss: Statistical results for 10 PSO runs after 200 iterations.

Result Fixed rule Linear rule Non-linear cubic

(W=Wpax) rule (a,=1.3)
Best (Ib) 599.79 547.78 545.45
Worst (Ib) 679.46 604.92 558.97
Average (Ib) 627.35 557.14 549.08

Figure 7.24 depicts the convergence history for the three cases, in terms of the average
result over 10 optimization runs. Furthermore, the performance of the algorithm is stu-
died with the convergence criterion f,,=10"° connected to the relative improvement of the
objective function over the last kf=30 iterations. The results reported in Table 7.21 in-
clude the average number of iterations needed for convergence and the objective func-
tion values obtained for the best run, the worst run and the average of the 10 runs. The
non-linear rule outperforms the other two rules in terms of the best result, the worst re-
sult and the average result for 10 runs, due to its smoother convergence characteristics.

Convergence history: Obj.Fun.Value vs lterations

950 T T T T T T T T
77777 Fixed
900 i — - Linear o
Non-linear

850

800

750

700

Objective function value

650

600

550

500 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

lterations

Figure 7.24 PSO - 25 bar space truss: Convergence history for the three PSO schemes.
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Table 7.22 PSO - 25 bar space truss: Statistical results for 10 PSO runs.

Result Fixed rule Linear rule Non-linear
(W=Wpnay) rule (a,=1.3)

Average number

of iterations 107 T 75
Best (Ib) 581.72 576.80 546.12
Worst (Ib) 697.88 692.44 694.15
Average (Ib) 659.60 633.97 576.16

Comparison of PSO with Evolution Strategies

In order to investigate the performance of the proposed PSO algorithm with respect to
established Evolutionary Programming algorithms, we consider one of the most efficient
optimization algorithms, namely the Evolution Strategies (ES), for comparison. The ES
version implemented is a (10+15) ES version with 10 parents and 15 offspring and the latest
version of a series of improvements developed by Papadrakakis et al. (2001b). The PSO
scheme is implemented with 15 individuals. Ten independent ES runs are also performed.
For both methods, 30 finite element analyses are needed for every iteration (or genera-
tion).

Convergence history: Obj.Fun.Value vs lterations
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Figure 7.25 PSO - 25 bar space truss:
Convergence history for PSO and ES (average of ten runs).

A given number of iterations (200) is adopted as the termination criterion. Figure 7.25
shows the convergence history of the two optimization methods, where the horizontal
axis represents the PSO iterations or the ES generations. It can be seen that the ES per-
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forms better than the PSO during the first 95 iterations, however its convergence rate
deteriorates substantially after that point. On the contrary, PSO continues to converge in
a uniform rate until it reaches the lowest value of 548.30 (in average) for the objective

function.

A combination of ES and PSO

Taking into consideration the results of the previous study, where the ES was shown to
perform better than the PSO during the first iterations while the PSO performed better
at the end of the optimization process, we investigated a combined ES-PSO scheme,
where ES is implemented at the beginning and PSO is implemented after the ES has
reached a plateau of no substantial reduction of the objective function for a certain
number of generations. The PSO takes over after 95 ES generations with initial condi-
tions the final generation of the ES. All members of the swarm are initialized at the posi-
tion of the best estimate of the ES and they are given random velocities. Figure 7.26
shows the convergence history for the hybrid ES-PSO scheme compared to the ES and
PSO schemes. A similar test was conducted with the PSO taking over after 40 ES genera-
tions and the results are depicted in Figure 7.27.
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Figure 7.26 PSO - 25 bar space truss: Convergence history for the combined ES-PSO (a).
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Convergence history: Obj.Fun.Value vs lterations
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Figure 7.27 PSO - 25 bar space truss: Convergence history for the combined ES-PSO (b).

Next we will examine a combined ES-PSO scheme using a termination criterion for the
ES based on the improvement of the objective function. If the relative improvement of
the objective function over the last k=30 ES generations is less or equal to f,,=10, then
the PSO starts from the best estimate of the ES, given random velocities. Figure 7.28
shows the history of the combined scheme compared to the previous ES and PSO
schemes, where the horizontal axis represents the PSO iterations or the ES generations.
It can be seen that the combined method produces the same quality of the final result as
the PSO method, while its convergence rate is better over the iterations, while the differ-
ence between the ES and ES-PSO schemes until generation 86 is due to the stochastic
nature of the ES method.
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Convergence history: Obj.Fun.Value vs lterations
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Figure 7.28 PSO - 25 bar space truss: Convergence history for the combined ES-PSO (c).

The hybrid PSO-SQP method

First we apply the SQP alone, for various initial designs. Four initial designs have been
selected, namely the ones corresponding to design variables values 5, 3.5, 2 and o.5 for
every dimension of the problem. It can be seen that the SQP method converges to sub-
optimal design points, or does not converge at all, as a good model initialization is al-
ways required for SQP to produce good results. Next, we implement the PSO-SQP
scheme. The termination criterion and other settings are the same as those used for the
previous PSO-SQP test example.

Table 7.22 PSO - 25 bar space truss: Convergence behavior of SQP.

Starting point Iterations Obj. fun. Obj. function value
(in*) evaluations

"5" 34 396 825.991
"3.5” 41 514 825.991
"2 18 308 653.357

“0.5" 100 1204 No convergence
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Convwergence history: Obj.Fun.Value vs Obj.Fun.Evaluations
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Figure 7.29 PSO - 25 bar space truss: Convergence history for the hybrid PSO-SQP.

The convergence history of the hybrid PSO-SQP scheme, compared to the simple PSO
scheme is depicted in Figure 7.29 in terms of objective function value and the objective
function evaluations. In the hybrid scheme, the PSO needs 960 function evaluations to
reach an objective function value of 687.097, while from that point on, SQP needs 306
objective function evaluations to converge to an optimum value of 545.037. The total
number of objective function evaluations for the hybrid scheme is 1266.

The best design obtained by the hybrid PSO-SQP method, together with the best result
of the PSO employing the non-linear rule and the results of Zhou & Rozvany (Zhou and
Rozvany 1993) are presented in Table 7.23.

Table 7.23 PSO - 25 bar space truss: PSO results.

Property (Zhou and PSO  Hybrid PSO-SQP

Rozvany 1993) (This study) (This study)
A1 (in%) 0.0100 0.01000 0.01000
A2 (in%) 1.9870 2.0363 2.04300
A3 (in*) 2.9935 3.1216 3.00239
Az (in?) 0.0100 0.01000 0.01000
Asg (in%) 0.0100 0.01000 0.01000
A6 (in%) 0.6840 0.6740 0.68337
A7 (in%) 1.6769 1.5771 1.62296
A8 (in?) 2.6621 2.6657 2.67194

Weight (Ib) 545.163 545.45 545.037
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It can be seen that the best design, in terms of objective function value, is the one
achieved by PSO-SQP. It can also be seen that although the result of Zhou & Rozvany is
slightly better than the one obtained with the proposed PSO, there is a slight violation of
the maximum nodal displacement constraint. For the optimum designs achieved by PSO
and PSO-SQP, all constraints have been met while the maximum nodal displacement
constraint is active. Figure 7.30 gives a graphical representation of the best design ob-
tained by the PSO-SQP method, where the thickness of each member is proportional to
the corresponding value of each design variable.

z Coordinate

y Coordinate -100°-100

¥ Coordinate

Figure 7.30 PSO - 25 bar space truss: Graphical representation of
the optimum design obtained by the hybrid PSO-SQP.
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Table 7.24 PSO - 25 bar space truss: Feasibility of the optimum design.

(Zhou and Rozvany PSO Hybrid PSO-SQP
1993) (This study) (This study)
Constraints AIIOV;::LI: Value Active Value Active Value  Active
Max stress (ksi) 40 6.9846 o 7.3735 o 7.1580 o
Max Nodal Displ. (in) 0.35 0.3500012 ° 0.3499 ° 0.3500° °
(Glé(i))Up 3 4 5 Min stress -35.092 -5.2989 o -5.3741 o -5.4084 o
Group 2 Min stress (ksi) -11.590 -6.9382 o 6.8239 o -6.8192 o
Group 3 Min stress (ksi) -17.305 -4.8531 o -4.6253 o -4.7991 o
(Gkrsci))up 6,7 Min stress -6.759 -5.3200 o -5.6338 o -5.4665 o
Group 8 Min stress (ksi) -11.082 -4.0980 o -4,.1084 o -4.1037 o

7.2.3 72 bar space truss

The third test example is a space truss with 72 members, shown in Figures 7.31 and 7.32.
It can be found in the work of Adeli and Kamal (1986) , Adeli and Park (1998), Sarma and
Adeli (2000), among others. The modulus of Elasticity is E=10000ksi and the material
weight p=0.11b/in’. The basis of the structure is a rectangle with a side of 120 in, while
the total height is 4x60in=240in. The “xxx” sign for the basis nodes of the model denotes
a restriction for all three DOFs of the node (pinned constraint). The nodal coordinates
are shown in Table 7.25. The basis nodes, 1, 2, 3, 4 are fixed on the ground. The structural
members are divided into 16 groups, shown in Table 7.26. Two load cases as considered.
The nodal loads for each load case are presented in Tables 7.27 and 7.28. The element
connectivity for elements 1-18 of the first floor of the structure is shown in Figure 7.33.
For the other elements 19-72 of floors 2-4, the connectivity has the same pattern as the
one of the first floor. The design variables are the cross section areas of each member
group with a lower limit of o0.01in* and no upper limit. The constraints are imposed on
stresses and displacements. The maximum allowable displacement in the +x and +y di-
rections for each node is d.,x=0.25in, while the maximum allowable stress (absolute val-
ue) is o,w=25ksi in tension or compression and the objective is to minimize the weight
of the structure under the specified constraints.
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Figure 7.31 PSO - 72 bar space truss: 3D view of the model (coordinates in inches).
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Figure 7.32 PSO - 72 bar space truss: Top view of the model (coordinates in inches).
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Figure 7.33 PSO - 72 bar space truss: Element connectivity for the first floor.

Table 7.25 PSO - 72 bar plane truss: Nodal coordinates (in inches).

Node x(in) y(in) z(in) | Node x(in) y(in) z(in)
1 o} o} o} 11 120 120 120
2 120 o o 12 o 120 120
3 120 120 0 13 0 0 180
4 o} 120 o} 14 120 o) 180
5 o} o} 60 15 120 120 180
6 120 o} 60 16 o} 120 180
7 120 120 60 17 o} o) 240
8 o 120 60 18 120 0 240
9 o} o} 120 19 120 120 240
10 120 o} 120 20 o} 120 240
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Table 7.26 PSO - 72 bar plane truss: Design variable groups.

Design Design

variable Member | variable Member
A1 1-4 | A9 37-40
A2 5-12 | A10 41-48
A3 13-16 | Ana 49-52
Ag 17,18 | A12 53,54
Ag 19-22 | A13 55-58
A6 23-30 | A14 59-66
A7 31-34 | A15 67-70
A8 35,36 | A16 71,72

Table 7.27 PSO - 72 bar plane truss: Nodal loads — First load case.

Node F, (kip) F, (kip) F; (kip)
17 5 5 -5

Table 7.28 PSO - 72 bar plane truss: Nodal loads — Second load case.

Node F, (kip) F, (kip) F; (kip)

17 0 o} -5
18 0 o} -5
19 0 o -5
20 o o -5

Comparison of PSO with GA

This test example is considered in order to compare the proposed PSO methodology
with Genetic Algorithms. At first, the PSO algorithm itself is implemented with the con-
vergence criterion f;,=10° connected to the relative improvement of the objective func-
tion over the last ke=150 iterations. The objective is to compare the convergence proper-
ties of the proposed PSO methodology with the corresponding GA results of Sarma and
Adeli (2000). The characteristics of the PSO scheme used are shown in Table 7.29.
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Table 7.29 PSO - 72 bar plane truss: PSO parameters used.

Symbol Value
NP 40
n 16
Wmax=0.95
w

Wmin=0.5
L x"=0.01

X, X

(ST

tmax

Qw

for all dimensions (in%)
max

vV™®i=1.5

for all dimensions (in®)

C,=C,=2

2000

1.3

The convergence history of PSO is shown in Figure 7.34. The optimum design achieved is

364.01 lb, obtained in 1512 iterations. The optimum design achieved is shown in Table

7.30 and compared with the results obtained by Adeli and Park (1998) and Sarma and

Adeli (2000). It is shown that the proposed PSO algorithm converged to a slightly better

value of the objective function, in less iterations than the two GA algorithms.
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Figure 7.34 PSO - 72 bar space truss: Convergence history for the PSO.
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Table 7.30 PSO - 72 bar plane truss: Comparison of the
optimum design with results from the literature.

Property (Adeli and (Sarma and (Sarmaand The proposed The proposed

Park 1998) Adeli 2000) Adeli 2000) PSO PSO-SQP

Simple GA Fuzzy GA

A1 (in%) 2.7547 2.1407 1.7321 1.8497 1.8875
A2 (in% 0.5102 0.5098 0.5215 0.5217 0.5169
A3 (in% 0.0100 0.0538 0.0100 0.0100 0.0100
Ag (in%) 0.0100 0.0100 0.0129 0.0101 0.0100
Asg (in%) 1.3696 1.4889 1.3451 1.3041 1.2901
A6 (in”) 0.5070 0.5507 0.5507 0.5225 0.5170
A7 (in% 0.0100 0.0568 0.0100 0.0100 0.0100
A8 (in%) 0.0100 0.0129 0.0129 0.0100 0.0100
Ag (in) 0.4807 0.5653 0.4923 0.5215 0.5211
A1o (in%) 0.5084 0.5273 0.5449 0.5014 0.5181
A11 (in%) 0.0100 0.0100 0.0655 0.0119 0.0100
A12 (in®) 0.0643 0.0655 0.0129 0.1257 0.1140
A13 (in®) 0.2151 0.1737 0.1778 0.1651 0.1665
A14 (in%) 0.5179 0.4250 0.5244 0.5442 0.5362
A1s (in®) 0.4190 0.4367 0.3958 0.4465 0.4457
A16 (in%) 0.5039 0.6413 0.5952 0.5783 0.5759
Weight (Ib) 376.50 372.40 364.40 364.01 363.82
Iterations - 2776 1758 1512 -

Furthermore, it can be seen in Table 7.31 that the optimum design of the proposed PSO

methodology is truly feasible, confirming that the proposed method yields always feasi-

ble optimum designs. Violated constraints are highlighted in bold.

Table 7.312 PSO - 72 bar plane truss: Comparison of the
constraints of the optimum design with results from the literature.

Constraints Allowable (Adeli (Sarmaand (Sarmaand The The
value andPark Adeli2000) Adeli2000) proposed proposed

1998) Simple GA Fuzzy GA PSO PSO-SQP

Max Abs. x-displ. (in) 0.25 0.2494 0.2500" 0.2523 0.2500° 0.2500"
Max Abs. y- displ. (in) 0.25 0.2494 0.2500" 0.2523 0.2500 0.2500"
Min. stress (ksi) -25 -6.8170 -7.2150 -7.2885 -6.9616 -7.1494
Max. stress (ksi) 25 20.7658 24.8790 24.0550 24.9759 25.0000"

The hybrid PSO-SQP method

Next, the hybrid PSO-SQP scheme is applied. If the relative improvement of the objec-

tive function over the last k=95 iterations of the PSO optimizer is less or equal to

fm=107, the PSO phase is terminated and subsequently the SQP starts from the best es-

timate of the PSO. The SQP termination criterion is the same as the one used for the
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previous test example. The results of the hybrid method are also reported in Tables 7.30
and 7.31. It is shown that the optimum result achieved by the PSO-SQP is slightly better
than that of PSO, without violating the constraints. The main advantage of the PSO-SQP
method is its fast convergence rate, as shown in Figure 7.35, where the convergence his-
tory of the hybrid PSO-SQP scheme is depicted in terms of objective function value vs.
objective function evaluations.

Convergence history: Obj.Fun.Value vs Obj.Fun.Evaluations
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Figure 7.35 PSO - 72 bar space truss: Convergence history for the hybrid PSO-SQP.

In the hybrid scheme, the PSO needs 579 iterations, or 23160 objective function evalua-
tions to reach an objective function value of 399.78, while from that point on, SQP needs
715 additional objective function evaluations to converge to an optimum value of 363.82.
The total number of objective function evaluations for the hybrid scheme is 23875 com-
pared to 60480 for the PSO scheme. Figure 7.36 gives a graphical representation of the
best design obtained by the PSO-SQP method, where the thickness of each member is
proportional to the corresponding value of each design variable.
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Figure 7.36 PSO - 72 bar space truss: Graphical representation
of the optimum design obtained by the hybrid PSO-SQP.

7.2.4 Conclusions on the PSO test examples

An optimization algorithm for the optimum structural design based on the Particle
Swarm Optimization algorithm is introduced. A non-linear weight update rule for PSO,
an efficient constraint handling technique and a hybrid PSO-SQP scheme for global
structural optimization are proposed and evaluated in three benchmark problems. The
PSO algorithm showed efficient and robust performance in all the test examples, achiev-
ing better results than other evolutionary algorithms such as ES and GAs, in terms of fi-
nal optimum and convergence speed.

The non-linear weight update rule for PSO showed better performance than the fixed or
the linear rule, especially in cases where a termination criterion connected to the relative
improvement of the objective function was used, exhibiting smoother convergence. The
constraint handling technique used in the study, based on a linear segment penalty func-
tion, showed excellent performance, since it always led to feasible optimal designs, while
taking also advantage of infeasible designs during the optimization procedure.

The proposed hybrid algorithm based on the PSO and SQP is a well-suited optimization
tool for solving non-convex optimization problems, in identifying the global optimum
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from multiple local ones. It managed to improve further the PSO results, achieving bet-
ter or the same quality of final result, in significantly better computational time. The
numerical results demonstrated the efficiency of the proposed hybrid PSO-SQP algo-
rithm for structural optimization problems.

In the standard PSO procedure, the characteristic parameters have to be fine-tuned care-
fully, based on the experience of the designer, or on trial and error and any other infor-
mation available for the specific problem at hand. The selection of the PSO parameters
plays a significant role in the result of the process in terms of both convergence rate and
final optimum design achieved. In general, a bad selection of these parameters can lead
to a poor result. By using the proposed hybrid PSO-SQP methodology, the significance of
the PSO parameters in the performance of the method is substantially alleviated. There
is no need of fine-tuning the PSO algorithm for obtaining a high quality final result since
the SQP optimization phase can improve drastically the PSO solution and increase sig-
nificantly the robustness of the optimization scheme.
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8 Numerical Applications - Part B:

Probabilistic Optimization

This chapter contains the second part (Part B) of the numerical applications investigated

in the thesis, where probabilistic optimization is considered. In this chapter, ten test ex-

amples are considered in total. The chapter is divided into five sections:

1.

8.1

In the first section (Section 8.1), two Robust Design Optimization (RDO) test ex-
amples are considered, using standard methods for solving the multi-objective op-

timization problem,;

. In the second section (Section 8.2), two RDO test examples are considered, using

the proposed non-dominant CEATm methodology for solving the multi-objective

optimization problem;

In the third section (Section 8.3), two Reliability-Based Design Optimization
(RBDO) test examples are considered, assisted by Neural Network (NN) predic-

tions;

In the fourth section (Section 8.4), two Reliability-based Robust Design Optimiza-
tion (RRDO) test examples are considered;

In the fifth section (Section 8.5), two RRDO test examples are considered, assisted
by NN predictions.

Robust Design Optimization (RDO) with standard multi-objective
methods

The first part of the probabilistic optimization test examples section includes two Robust

Design Optimization test examples, namely a 13-bar plane truss bridge and a 39-bar

space truss. For both problems, a multi-objective optimization formulation is used,

where the objective is to minimize the weight of the structure and the variance of the

structural response.
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A discrete ES scheme is used, where the design variables (corresponding to the cross sec-
tions of the members of the structures) are taken from Eurocode tables. The multi-
objective optimization problem is solved with the Linear Weighting Method (LWM) of
Section 4.9 where all objectives are combined into a single scalar parameterized objec-
tive using weight coefficients, while for dealing with the uncertain parameters the Monte
Carlo Simulation (MCS) method of Section 2.6 is used. The conclusions for both test ex-
amples are given together in Section 8.1.3.

8.1.1  13-bar plane truss bridge — RDO test example

A two dimensional 13-bar truss, shown in Figure 8.1, is considered for presenting the effi-
ciency of the proposed RDO methodology (Papadrakakis et al. 2004a). The truss struc-
ture corresponds to the finite element model of the Gateway Bridge over the Fork River,
Idaho in the USA, which was built in 1948. Two objective functions are used, the weight
and the variance of the response of the structure, under constraints on stresses and dis-
placements imposed by the design codes (CEN 1991; CEN 1993).

12 m 12 m 12 m 12 m

Figure 8.1 RDO - 13-bar plane truss bridge: Model.

Due to engineering practice demands, the members are divided into groups having the
same design variables. The design variables are discrete, the dimensions of the members
of the structure, four groups in total, taken from the double Equal Angle Section (EAS)
table of the Eurocode. Table 8.1 shows the single EAS sections of the Eurocode, while
Figure 8.2 shows a 3D view of a single EAS section. A double EAS section is composed of
two single EAS sections with a distance d between them.

For this test example, three types of constraints have been considered, as imposed by the
European design code (CEN 1993):

i.  Stress constraints;
ii. Compression force constraints (for buckling);

iii. Displacement constraints.
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Table 8.1 RDO - 13-bar plane truss bridge: Equal Angle Section of the Eurocode.

Equal Moment | Equal Moment
Angle Height Area  ofinertia | Angle Height Area ofinertia
Section (mm) (cm?) (cm*) | Section (mm) (cm?) (cm*)
20x3 20 1.12 0.39 | 8ox6 8o 9.35 55.8
25x3 25 1.42 0.79 | 80x 8 8o 12.3 72.3
25X 4 25 1.85 1.01 | 8ox 10 8o 15.1 87.5
30%x3 30 1.74 1.41 | 90 %7 90 12.2 92.6
30X 4 30 2.27 1.81 | goxg 90 15.5 116
30x5 30 2.78 2.16 | 100x 8 100 15.5 145
35X 4 35 2.67 2.96 | 100 x 10 100 19.2 177
35X 5 35 3.28 3.56 | 100 x 12 100 22.7 207
4O X 4 40 3.08 4.48 | 110 x 10 110 21.2 239
4LOX§ 40 3.79 5.43 | 120 x 10 120 23.2 313
45 X 4 45 3.49 6.43 | 120x 11 120 25.4 341
45%X5 45 4.3 7.83 | 120x12 120 27.5 368
50X 5§ 50 4.8 11 | 130 x 12 130 30 472
50X 6 50 5.69 12.8 | 140 x13 140 35 638
50 X7 50 6.56 14.6 | 150 x 12 150 34.8 737
55%6 55 6.31 17.3 | 150 X 14 150 40.3 845
60 x5 60 5.82 19.4 | 150 X 15 150 43 898
60x6 60 6.91 22.8 | 160 x 15 160 46.1 1100
60x8 60 9.03 29.1 | 160 x 17 160 51.8 1230
65x7 65 8.7 33.4 | 180x16 180 55.4 1680
70 x 6 70 8.13 36.9 | 180 x 18 180 61.9 1870
70 X7 70 9.4 42.4 | 200X 16 200 61.8 2340
70 %9 70 11.9 52.6 | 200x18 200 69.1 2600
75 %7 75 10.1 52.4 | 200 % 20 200 76.4 2850
75% 8 75 11.5 58.9 | 200 x 24 200 90.6 3330

Figure 8.2 RDO - 13-bar plane truss bridge:

3D view of an Equal Angle Section of the Eurocode.
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The stress constraint considered can be written as follows

Omax < Oy (8.1)
(o2

= 8.2

%71 &.2)

where o, is the maximum axial stress (absolute value) in each element group for all
loading cases, o, is the allowable axial stress according to Eurocode 3 (CEN 1993) and o,
is the yield stress of the material. For members under compression the additional buck-

ling constraint is implemented as

|R:,max | <R (8.3)
P,
P == .
CcC 1.05 (8 4)
2
Pe = ETEI (8.5)
Leff

where P, ..« is the maximum axial compression force for all loading cases, P, is the criti-
cal Euler buckling force in compression, taken as the first buckling mode of a pin-
connected member, and L is the effective length of the member. The effective length is
taken equal to the actual length of the corresponding member. Similarly, the displace-

ment constraint can be written as

|d| <d, (8.6)

where d, is the limit value of the displacement at a certain node or the maximum nodal
displacement. A constraint of 200mm on the maximum deflection is imposed.

For each design variable, three stochastic variables are assigned: the length L, the width ¢
of the legs and the distance d between the two identical equal angle sections. A vertical
load of 300kN is applied to the middle node and 100kN to the rest of the nodes of the
deck, both considered as probabilistic actions. The types of probability density functions,
the mean values, and the variances of the random parameters are presented in Table 8.2.
For this test case the (u+A)-ES approach is used with y=A=s5, while a sample size of 1000
simulations is taken for the MCS needed for the stochastic analysis. The multi-objective
optimization problem is solved with the Linear Weighting Method, where all objectives
are combined into a single scalar parameterized objective using weight coefficients, as
described in Section 4.7.1.
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Table 8.2 RDO - 13-bar plane truss bridge: Characteristics of the random variables.

— — .
Ser1boI Description Prob?blllty Mean Standard 95% of
(units) Density value Deviation o olu values
Function K within

E (kN/m?) Young's Normal 2.10x10° 1.50x10’ 14% (81x10,,
Modulus ' > 714 2.39x108)

.. Allowable (2.85x10°

0, 1

g, (kN/m?) stress Normal 355000 35500 10.00% 4.25%10%)
V (kN) Vert?cal Normal Vy 10-V, 10.00% (2.85:V,,
loading 4.25:V))

L Legslength  Normal L;i* 0.02-L; 2% (0.962-L,
1.039-L))

t Legswidth ~ Normal t* 0.02-t; 2% (0.962,
1.039-t))

d EAS section Normal d;i* 0.02-d; 2% (0.962-d,
Distance 1.039:d))

* Taken from the double Equal Angle Section table of the Eurocode for every design.

The resultant Pareto front curve is depicted in Figure 8.3, with the weight of the struc-
ture on the horizontal and the standard deviation of the horizontal displacement on the

vertical axis.
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Figure 8.3 RDO - 13-bar plane truss bridge: Pareto Front curve.

From the Pareto front curve, the difference between Deterministic Design Optimization
(DDO) and RDO optimum designs is demonstrated in terms of the structural weight, the
variance of the response and the probability of violation of the constraints. The two ends
of the Pareto front curve represent two extreme designs. Point A corresponds to the de-
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terministic optimum where the weight of the structure is the dominant criterion. Point C
is the optimum when the standard deviation of the response is considered as the domi-
nant criterion. The intermediate Pareto optimal solutions (such as the one correspond-
ing to point B) are compromise solutions between these two extreme optimum designs

under conflicting criteria.

8.1.2 39-bar space truss - RDO test example

A three dimensional 39-bar truss, shown in Figure 8.4, is considered for testing the effi-
ciency of the proposed RDO methodology (Papadrakakis et al. 2004b; Papadrakakis et al.
2005; Papadrakakis et al. 2004c). The height of the structure is 16 m, while its basis is an
equilateral triangle of side 6.93m.
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Figure 8.4 RDO - 39-bar space truss: (a) 3D view,
(b) Side view, (c) Top view (dimensions in m).

Two objective functions are considered: the weight and the standard deviation of a cha-
racteristic nodal displacement representing the response of the structure, in this test ex-
ample the variance of the top displacement (characteristic node) in x direction is se-
lected.

The design variables considered are the dimensions of the members of the structure,
four groups in total, taken from the Circular Hollow Section (CHS) table of the Eurocode
(CEN 1993), shown in Table 8.3. For each design variable, two stochastic variables are
assigned, the external diameter d and the thickness t of the circular hollow section. A
vertical load V=2kN is applied to all nodes, while a probabilistic horizontal load F with a
mean value 8kN is applied to the top nodes at the x-direction.
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Table 8.3 RDO - 39-bar space truss: Circular Hollow Section
of the Eurocode, Table 1 of 2.
Circular Moment|Circular Moment
Hollow Diameter Thickness Area of inertiaHollow Diameter Thickness Area ofinertia
Section (mm) (mm)  (cm?) (cm*)|Section (mm) (mm)  (cm?) (cm®)
21.3%2.3 21.3 2.3 1.373 0.6286|168.3x10 168.3 10 49.73 1564
26.9%2.3 26.9 2.3 1.778 1.356/168.3x12.5 168.3 12.5 61.18 1868
33.7x2.6 33.7 2.6 2.54 3.093(193.7x6.3 193.7 6.3 37.09 1630
33.7%2.9 33.7 2.9 2.806 3.357193.7%8 193.7 8  46.67 2016
33.7%4 33.7 4 3.732 4.19(193.7%X10 193.7 10 57.71 2442
42.4%2.6 42.4 2.6 3.251 6.464/193.7x12.5 193.7 12.5 71.16 2934
42.4%2.9 42.4 2.9 3.599 7.056(193.7x16 193.7 16 89.32 3554
42.4%X4 42.4 4 4.825 8.991/219.1x7.1 219.1 7.1 47.29 2660
48.3x2.9 48.3 2.9 4.136 10.7219.1x8 219.1 8 153.06 2960
48.3%3.2 48.3 3.2 4.534 11.59(219.1%10 219.1 10 65.69 3598
48.3%4 48.3 4 5.567 13.77|219.1x12.5 219.1 12.5 81.13 4345
60.3x2.9 60.3 2.9 5.229 21.59[219.1x16 219.1 16 102.1 5297
60.3%x3.2 60.3 3.2 5.74 23.47|219.1x20 219.1 20 125.1 6261
60.3%x4 60.3 4 7.075 28.17|244.5%7.1 244.5 7.1  52.95 3734
60.3x5 60.3 5 8.687 33.48|244.5%8 244.5 8 59.44 4160
76.1x2.9 76.1 2.9 6.669 44.74]24,4.5%X10 244.5 10 73.67 5073
76.1x3.2 76.1 3.2 7.329 48.78[244.5%x12.5 244.5 12.5 91.11 6147
76.1x4 76.1 4 9.06 59.06|244.5%16 244.5 16 114.9 7533
76.1x5 76.1 5 11.17 70.92(244.5%20 244.5 20 141.1 8957
88.9%3.2 88.9 3.2 8.616 79.21|273%7.1 273 7.1  59.31 5245
88.9%4 88.9 4 10.67 96.34(273%8 273 8 66.6 5852
88.9x%5 88.9 5 13.18 116.4[273%10 273 10 82.62 7154
88.9x6.3 88.9 6.3 16.35 140.2|273%12.5 273 12.5  102.3 8697
88.9x8 88.9 8 20.33 168|273x16 273 16  129.2 10710
101.0%3.6 101.6 3.6 11.08 133.2(273%20 273 20 159 12800
101.0x5 101.6 5 15.17 177.5(323.9%7.1 323.9 7.1 70.66 8869
101.0x6.3 101.6 6.3 18.86 215.1[323.9%8.0 323.9 8 79.39 9910
101.6x8 101.6 8 23.52 259.5(323.9%10 323.9 10 98.61 12160
101.6x10 101.6 10 28.78 305.4(323.9x12.5 323.9 12.5  122.3 14850
114.3x3.6 114.3 3.6 12.52 192[323.9x16 323.9 16  154.8 18390
114.3%5 114.3 5 17.17 256.9[323.9%20 323.9 20 190.9 22140
114.3%6.3 114.3 6.3 21.38 312.7]355.6x8 355.6 8 87.36 13200
114.3%8 114.3 8 26.72 379.5355.6x10 355.6 10 108.6 16220
114.3%X10 114.3 10 32.77 449.7|355.6x12.5 355.6 12.5  134.7 19850
139.7%4 139.7 4 17.05 392.9[355.6x16 355.6 16 170.7 24660
139.7%5 139.7 21.16 480.5[355.6x20 355.6 20 2109 29790
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Table 8.4 RDO - 39-bar space truss: Circular Hollow Section
of the Eurocode, Table 2 of 2.

Circular Moment |Circular Moment
Hollow Diameter Thickness Area of inertia Hollow Diameter Thickness Area  of inertia
Section (mm) (mm) (cm®  (cm®) Section (mm) (mm) (cm? (cm*)

139.7%x6.3 139.7 6.3 26.4 588.6(406.4%8.8 406.4 8.8 109.9 21730
139.7x8 139.7 8 33.1 720.3|406.4%10 406.4 10 124.5 24480
139.7x10 139.7 10 40.75 861.9|406.4x12.5 406.4 12.5 154.7 30030
139.7x12.5 139.7 12.5  49.95 1020(406.4x16 406.4 16 196.2 37450
168.3%4.5 168.3 4.5 23.16 777-2|406.4%20 406.4 20 242.8 45430
168.3x6.3 168.3 6.3 32.06 1053/610%x16 610 16 298.6 131800
168.3x8 168.3 8  40.29 1297|635%16 635 16 3111 149100

Figure 8.5 RDO - 39-bar space truss:
3D view of a Circular Hollow Section of the Eurocode.

Three types of constraints are imposed to the sizing optimization problem: (i) stress; (ii)
compression force (for buckling); and (iii) displacement constraints, as imposed by the
European design code (CEN 1993). The constraints are the same as the ones used for the
numerical application of Section 8.1.1. Stress constraints are described in Egs. (8.1) and
(8.2), buckling constraints are described in Egs. (8.3), (8.4) and (8.5), while the dis-
placement constraint is described in Eq. (8.6). A constraint of 200mm on the maximum
deflection is imposed. The type of Probability Density Functiosn (PDFs), the mean value,
and the variance of the random parameters are shown in Table 8.5.

For this test case the (u+1)-ES approach is used with p=A=5, while a sample size of 1000
simulations is taken for the MCS. The multi-objective optimization problem is solved
with the LWM, where all objectives are combined into a single scalar parameterized ob-
jective using weight coefficients, as described in Section 4.7.1. The resultant Pareto front
curve is depicted in Figure 8.6, with the weight of the structure and the standard devia-
tion of the horizontal displacement on the horizontal and vertical axis, respectively.
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Table 8.5 RDO - 39-bar space truss: Characteristics of the random variables.

Symbol Description Standard 95% of
. Mean ..
(units) PDF value Deviation ofu values
H within
E (kN/m?®) Young's Normal 2.10x10° 1.50X107 14 % (181310 ,
Modulus ' 5 7147 2.39x10°)
.. Allowable (2.85x10°
0, 1
g, (kN/m”) stress Normal 355000 35500  10.00% 4.25%10%)
Horizontal (2.12
0 1
F (kN) loading Normal 8 3 37.50% 13.88)
d CHS Normal d; * 0.02-d; 2% (0.9608-d,
Diameter 1.0392-d)
t CH.S Normal t* 0.021; 2% (0.9608-¢;
Thickness 1.0392-t)

* Taken from the Circular Hollow Section table of the Eurocode, for every design.
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Figure 8.6 RDO - 39-bar space truss: Pareto front curve.

From the Pareto front curve the difference between DDO and RDO optimum designs is
demonstrated in terms of the structural weight, the variance of the response and the
probability of violation of the constraints. The upper left end of the Pareto Front corres-
ponds to the deterministic optimum where the weight of the structure is the dominant
criterion, while the lower right end of the curve corresponds to the optimum when the
standard deviation of the response is considered as the dominant criterion. The interme-
diate Pareto optimal solutions are compromise solutions between these two extreme op-

timum designs under conflicting criteria.
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8.1.3 Conclusions

In order to account for the response of the structure that is affected by the randomness
of structural parameters, an RDO formulation of the optimization problem has to be
used, as shown in this work. The Pareto front curves obtained in the two test examples
show a strong conflict between the two objective functions in question. The determinis-
tic formulation leads to an optimum design having the minimum weight, yet the maxi-
mum variance of the response. This wide variation of the response might cause the viola-
tion of some constraints that could consequently put the quality of the final design in
doubt.

The proposed ES methodology combined with the standard LWM for treating multi-
objective robust design optimization problems proved to be an efficient and reliable op-
timization tool, as it managed to generate good quality Pareto front curves.

8.2 Robust Design Optimization (RDO) with the non-dominant CEATm
methodology

In this section two test examples are examined, a 3D transmission tower and a space
truss bridge. For both problems, a multi-objective optimization formulation is used, as in
the previous section, where the objective is to minimize the weight of the structure and
the variance of the structural response.

A discrete ES scheme is used, where the design variables (the members of the structures)
are taken from Eurocode tables. The multi-objective optimization problem is solved with
the proposed non-dominant CEATm multi-objective optimization methodology using
the Tchebycheff metric, described in detail in Section 4.10.1, while for treating the in-
duced uncertainties the MCS method of Section 2.6 equipped with the Latin Hypercube
Sampling (LHS) technique of Section 2.8 is used.

The numerical tests are performed in three stages:

i. In the first stage the statistical methods used for the stochastic analysis are veri-
fied. The number of LHS simulations required for the calculation of the mean
value and the standard deviation of the characteristic displacement representing
the structural response is compared with the corresponding number required by
the basic MCS.

ii. In the second stage the advantages of the proposed non-dominant CEATm method
over the LWM method are demonstrated through the comparison of the Pareto
front curves obtained.

iii. At the third stage, the differences between DDO and RDO optimum designs, in
terms of the final structural weight, the variance of response, the probability of vio-
lation of the constraints and the probability of failure, are illustrated.

The conclusions for both test examples are given together in Section 8.2.3.
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8.2.1 3D Transmission tower - RDO test example

In this test example an RDO procedure is investigated in a 3D transmission tower exam-
ple (Lagaros et al. 2005¢; Plevris et al. 2005a; Plevris et al. 2005b). The transmission tower
is depicted in Figures 8.7 and 8.8 together with its geometric characteristics. The nodal

loads applied to the structure are shown in Table 8.6 in kN units.
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Figure 8.7 RDO - 3D Transmission tower: (a) 3D view, (b) Side view (dimensions in m).

Three types of constraints are imposed to the sizing optimization problem: (i) stress; (ii)
compression force (for buckling); and (iii) displacement constraints. The constraints are
the same as the ones used for the numerical application of Section 8.1.2. Stress con-
straints are described in Egs. (8.1) and (8.2), buckling constraints are described in Egs.
(8.3), (8.4)and (8.5), while the displacement constraint is described in Eq. (8.6).
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Figure 8.8 RDO - 3D Transmission tower: Top view (dimensions in m).

Table 8.6 RDO - 3D Transmission tower: Nodal loads (in kN units).

Fy F, F.
Node A -8.51 0.00 -4.82
Node B -9.77 0.00 -5.36
Node C -9.77 0.00 -5.36
Node D -10.70 0.00 -5.36
Node E -10.70 0.00 -5.36

The design variables considered are the dimensions of the structural members, divided
into seven groups, taken from the Equal Angle Section table of the Eurocode (CEN 1993),
shown in Table 8.1. For each design variable, two stochastic variables are assigned: the
length L and the width t of the legs of the section.

The type of probability density function, the mean value, and the variance of the random
parameters are given in Table 8.7. A maximum deflection of 200mm is imposed as a con-
straint for all nodes.
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Table 8.7 RDO - 3D Transmission tower: Characteristics of the random variables.

Syn.‘lbol Description Proba.)blllty Mean Stapd?rd 95% of
(units) Density Deviation alu ko
Function value u o values within

E (kN/m?) Young's Normal 5 10x10° 1 cox10” 1% (1.81x10°,
Modulus . -5 714 2.39%10°)

,. Allowable (2.85%x10°

0 1
g, (kN/m”) stress Normal 355000 35500  10.00% 4 25%10%)
Nodal (0.902-44,

.05 %

F (kN) loading Normal Ur 0.05-F 5% oo
L Legs length  Normal Li* 0.02:L; 2% (0.961-L,
1.039:-L)
t Legswidth  Normal t* 0.02-1; 2% (0.961t;
1.039-t)

* Taken from the Equal Angle Section table of the Eurocode for every design.

Efficiency of the stochastic analysis method

In the first stage of the numerical study, the performance of the LHS procedure in calcu-
lating the statistical parameters required during the RDO procedure is compared to the
basic MCS method. The influence of the number of simulations on the computed value
of the variance of the top horizontal displacement is investigated.
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Figure 8.9 RDO - 3D Transmission tower: Efficiency of the LHS compared to the MCS in calcu-
lating the standard deviation of the structural response.

The results shown in Figure 8.9, for a randomly selected design, demonstrate the effi-
ciency of the implemented LHS procedure. It can be seen that for the transmission



222 Chapter 8

tower, 100 LHS compared to 500 MCS simulations are required in order to calculate the
standard deviation of the structural response.

Comparison between LWM and CEATm

In the second stage of this study the advantages of the cascade evolutionary
multi-objective optimization scheme using the Tchebycheff metric over the LWM are
demonstrated. As was mentioned in Section 4.6, the quality of the Pareto front curve can
be assessed by the number of Pareto optimum solutions obtained and their distribution
along the front curve. Well distributed solutions along the curve give an indication of the
efficiency of the multi-objective optimization method employed. The main drawback of
the multi-objective optimization methods using scalarizing functions, such as the LWM,
is that it is difficult to fulfil these two requirements.

For the comparative study performed, the robust design optimization problem consi-
dered has been solved with the LWM method and the proposed non-dominant CEATm
multi-objective optimization scheme. For both test examples the LWM method has been
implemented through two different runs with 10 and 30 points using the ES(u+A) optimi-
zation algorithm where y=A=5 are the number of parents and offspring, respectively. For
the non-dominant CEATm((+A)run,csteps Optimization scheme the corresponding parame-
ters are u=A=5, nrun=10 and csteps=3. The resultant Pareto front curves are depicted in
Figures 8.10 and 8.1 for LWM and Figure 8.12 for the CEATm. The horizontal axis corre-
sponds to the structural weight and the vertical axis to the standard deviation of the
characteristic node displacement. The RDO multi-objective optimization problem seems
to be non-convex and the weakness of the LWM is obvious from the front curves of Fig-
ures 8.10 and 8.1. Well distributed pairs of weighting coefficients cannot guarantee
equally well distributed Pareto optimum solutions along the front curve. On the other
hand, the proposed CEATm optimization scheme manages to generate the Pareto front
curve having a good distribution of the Pareto solutions along the front curve, as can be

seen in Figure 8.12.
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Figure 8.10 RDO - 3D Transmission tower: The Pareto front curve obtained with the LWM and
10 points.
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Figure 8.11 RDO - 3D Transmission tower: The Pareto front curve obtained with the LWM and

30 points.
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Figure 8.12 RDO - 3D Transmission tower: The Pareto front curve obtained with the
non-dominant CEATm.

Comparison between DDO and RDO solutions

In the third stage of this study the difference between DDO and RDO optimum designs
is demonstrated in terms of the structural weight, the variance of the response and the
probability of violation of the constraints. The resultant Pareto front curve, when the
proposed optimization scheme is used, is shown in Figure 8.12. The two ends of the
Pareto front curve represent two extreme designs. Point A corresponds to the determi-
nistic optimum where the weight of the structure is the dominant criterion. Point C is
the optimum when the standard deviation of the response is considered as the dominant
criterion. The intermediate Pareto optimal solutions are compromise solutions between

these two extreme optimum designs under conflicting criteria.

In Table 8.8 a comparison is performed for the three optimum designs A, B and C of Fig-
ure 8.12. The RDO(B) optimum design is achieved considering a compromise between
the weight and the standard deviation. An important outcome of this investigation is
that the DDO optimum design violates the constraints with probability equal to 1.1% and
probability of failure equal to 0.6%. On the other hand, the probability of violation and
the probability of failure, in the case of the compromise optimum design B, are com-
puted one to two orders of magnitude lower compared to those corresponding to DDO
designs. As a consequence of this reduced probability of violation and failure, an increase
of 70% on the optimum weight achieved is observed in the case of RDO compared to the
DDO. The value of the probability of violation is significantly lower in the case of opti-
mum design C where the corresponding probability is 0.002%. However, the optimum
weight achieved is four times more than the one obtained with the DDO formulation.
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Table 8.8 RDO - 3D Transmission tower: Characteristic optimal solutions.

Property DDO (A) RDO (B) RDO (C)
Section 1 (Lxt)* 80x8 110x10 150%12
Section 2 (Lxt)* 70x7 150X14 160%15
Section 3 (Lxt)* 8ox6 100%8 180x16
Section 4 (Lxt)* 70x9 80x6 150%12
Section 5 (Lxt)* 70x6 8ox8 150x12
Section 6 (Lxt)* 75%7 90x7 150%12
Section 7 (Lxt)* 75%8 100x8 160%17
Weight (kN) 21.1 35.5 85.7
Standard Deviation (m) 1.32x107  4.17x10°  2.28x10°
Puiol (%0) 1.1 7.0x10" 2.0x10°
pr (%) 0.6 1.0x10° 0.8x1073

* Taken from the Equal Angle Section table of the Eurocode for every design.

Computational performance

The hardware platform that was used in this work consisted of a parallel computing im-
plementation, a PC cluster with 25 nodes (Pentium III in 500Mhz) interconnected
through Fast Ethernet, with every node in a separate 100 Mbit/sec switch port. Message
passing is performed with the programming platforms Parallel Virtual Machine (PVM)
working over Fast Ethernet. Two parallel processing schemes have been considered:

i.  Parallel 1 corresponding to the exploitation of the parallel implementation of the

optimization scheme;

ii. Parallel 2 corresponding to the parallel implementation of the stochastic analysis
involved in the optimization procedure.

The computational performance for obtaining the multi-objective RDO Pareto front
curve is compared in Table 8.9. The solution of the single-objective DDO(A) and
RDO(C) problems, in sequential and parallel computing environments is examined. It
can be seen that the computational time required for obtaining the RDO(C) optimum
solution is two orders of magnitude more than the corresponding time required to ob-
tain the DDO(A) optimum solutions in sequential computing environment. This differ-
ence is reduced to one order of magnitude in the parallel computing environment.

Table 8.9 RDO - 3D Transmission tower: Computational performance.

e e . Time (s)
Formulation Optimization Generations FE Parallel Parallel
Scheme analyses  Sequential aralle aralle
1% 2%
DDO (A) CEA(5+5) 103 627 63 19 -
RDO (C) CEATmM(5+5)1,3 109 576 5214 349 229
EzStPareto CEATmM(5+5)10,3 947 5528 51092 3127 2259

*In 25 processors.
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8.2.2 Space truss bridge — RDO test example

The proposed RDO methodology is investigated in a pedestrian truss bridge example
(Lagaros et al. 2005¢). The truss bridge is depicted in Figures 8.13 and 8.14 together with
its geometric characteristics. A 3D representation of the structure is given in Figure 8.15.
Again, the numerical test is performed in three stages. In the first stage the statistical
methods used for the stochastic analysis are verified. The number of LHS simulations
required for the calculation of the mean value and the standard deviation of the charac-
teristic displacement representing the structural response is compared with the corre-
sponding number required by the basic MCS. In the second stage the advantages of the
proposed non-dominant CEATm method over the LWM method are demonstrated
through the comparison of the Pareto front curves obtained. At the third stage, the dif-
ferences between DDO and RDO optimum designs, in terms of the final structural
weight, the variance of response, the probability of violation of the constraints and the
probability of failure, are illustrated.

The design variables considered are the dimensions of the structural members divided
into twelve groups, taken from the double Equal Angle Section table of the Eurocode
(CEN 1993). The single EAS sections are shown in Table 8.1.

1.80
80

10.00 ., 24.00 s 10.00

44.00

Figure 8.13 RDO - Space truss bridge: Side view.

3.00

44.00

Figure 8.14 RDO - Space truss bridge: Top view.
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Figure 8.15 RDO - Space truss bridge: 3D view of the model.

For each design variable, three stochastic variables are assigned: the length L, the width ¢
of the legs and the distance d between the two identical equal angle sections. The ap-
plied loading consists of:

i. Distributed load equal to 5kN/m* (dead load);
ii. Live loads (visiting vehicle);
ili. Wind actions according to Eurocode (CEN 1991; CEN 1993).

The type of PDFs, the mean value, and the variance of the random parameters are given
in Table 8.10, while a maximum deflection constraint of 200mm is imposed on the nodes
of the structure. Three types of constraints are imposed to the sizing optimization prob-
lem: (i) stress; (ii) compression force (for buckling); and (iii) displacement constraints.
The constraints are the same as the ones used for the numerical application of Section
8.1.2. Stress constraints are described in Egs. (8.1) and (8.2), buckling constraints are de-
scribed in Egs. (8.3), (8.4) and (8.5), while the displacement constraint is described in Eq.
(8.6).
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Table 8.120 RDO - Space truss bridge: Characteristics of the random variables.

Symbol Description Standard

0,

(units) PDF Mean Deviation olu 95.A) 9f
value u o values within
E (kN/m?) voung's Normal 2.10x10° 1.50%10’ 14% (81xa0,,
Modulus ' > 734 2.39x108)
.. Allowable (2.85x10°
0 1
g, (kN/m?) stress Normal 355000 35500 10.00% 4.25%10%)
Permanent (0.902-upg
) 0 2
Fe (kN) loading Normal Hep 0.05-Upp 5% 1.098 15
. . (0.902-g,

F. (kN Live loadin Normal .05 %
L (kN) v ing MrL 0.05 U 57 1.098-451)
. . (0-804Hrw
Fw (kN Wind load N I w .10 Upy % !
w (KN) ind loading orma HE 0.10"Up 10% 1.196-11r)
L Legs length Normal Li* 0.02:L; 2% (0.961.L,
1.039-L))
t Legs width Normal t* 0.02't; 2% (0.962,
1.039-t))
d EAS section Normal d;* 0.02:d; 2% (0.962-d
Distance 1.039-d)

* Taken from the double Equal Angle Section table of the Eurocode for every design.

Efficiency of the stochastic analysis method

In the first stage of the numerical study, the performance of the LHS procedure in calcu-
lating the statistical parameters required during the RDO procedure is compared to the
basic MCS method. The influence of the number of simulations on the computed value
of the variance of a characteristic displacement, namely the vertical deflection of the
middle node for the Pedestrian Bridge, is examined. The results, for a randomly selected
design, shown in Figure 8.16 demonstrate the efficiency of the implemented LHS proce-
dure. It can be seen from Figure 8.16 that for the truss bridge example 100 LHS compared

to 1000 MCS simulations are required.
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Figure 8.16 RDO - Space truss bridge: Efficiency of the LHS compared to the MCS in calculat-
ing the standard deviation of the structural response.

Comparison between LWM and CEATm

In the second stage of the study the robust design optimization problem has been solved
with the LWM method and the proposed non-dominant CEATm multi-objective optimi-
zation scheme. For both test examples the LWM method has been implemented through
two different runs with 10 and 30 points using the ES(u+A) optimization algorithm where
u=A=5 are the number of parents and offspring, respectively. For the non-dominant
CEATmM((+A) prun,csteps Optimization scheme the corresponding parameters are p=A=s,
nrun=10 and csteps=3. The resultant Pareto front curves are depicted in Figures 8.17 and
8.18 for LWM and Figure 8.19 for the CEATm. The horizontal axis corresponds to the
structural weight and the vertical axis to the standard deviation of the characteristic
node displacement. As in the previous example, the LWM fails to generate a good Pareto
front, while the proposed CEATm optimization scheme manages to generate the Pareto
front curve having a good distribution of the Pareto solutions along the front curve, as
can be seen in Figure 8.19.
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Standard Deviation (m)
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Figure 8.17 RDO - Space truss bridge:
The Pareto front curve obtained with LWM and 10 points.
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Figure 8.128 RDO - Space truss bridge:

The Pareto front curve obtained with LWM and 30 points.
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Figure 8.19 RDO - Space truss bridge:
The Pareto front curve obtained with the non-dominant CEATm.

Comparison between DDO and RDO solutions

In the third stage of this study the difference between DDO and RDO optimum designs
is demonstrated in terms of the structural weight, the variance of the response and the
probability of violation of the constraints. The resultant Pareto front curve when the
proposed optimization scheme is used is shown in Figure 8.19. The two ends of the
Pareto front curve represent two extreme designs. Point A corresponds to the determi-
nistic optimum where the weight of the structure is the dominant criterion. Point C is
the optimum when the standard deviation of the response is considered as the dominant
criterion. The intermediate Pareto optimal solutions are compromise solutions between
these two extreme optimum designs under conflicting criteria.

In Table 8.1 a comparison is performed for the three optimum designs A, B and C of Fig-
ure 8.19. The RDO(B) optimum design is achieved by considering a compromise between
the weight and the standard deviation. The DDO optimum design violates the con-
straints with probability equal to 0.85% and probability of failure equal to 0.23%. On the
other hand, the probability of violation and the probability of failure, in the case of the
compromise optimum design B, are found to be one to two orders of magnitude lower
compared to those corresponding to DDO designs. As a consequence of this reduced
probability of violation and failure, an increase of 26% on the optimum weight achieved
is observed in the case of RDO compared to the DDO. The value of the probability of
violation is significantly lower in the case of optimum design C where the corresponding
probability is 0.001%. However, the optimum weight achieved is two times heavier than
the one obtained with the DDO formulation.
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Table 8.11 RDO - Space truss bridge: Characteristic optimal solutions.

Property DDO (A) RDO (B) RDO (C)
Section 1 (Lxt,d)* 100x10,20 150%15,20 150%15,20
Section 2 (Lxt,d)* 100x10,20 150%x15,18  200%20,20
Section 3 (Lxt,d)* 120%12,18 120%12,18 180x%15,20
Section 4 (Lxt,d)* 100%10,20  120%12,20 150x%15,20
Section g5 (Lxt,d)* 120%x12,20  100X10,20 120%12,20
Section 6 (Lxt,d)* 100%10,20  100%10,20 120%12,20
Section 7 (Lxt,d)* 120%x12,20  120x12,18 180x%15,20
Section 8 (Lxt,d)* 100%10,20 100%10,20 200%20,20
Section g (Lxt,d)* 100X10,20  100%10,20 150x%15,20
Section 10 (Lxt,d)* 100X10,20  100%X10,20  200%20,20
Section 11 (Lxt,d)* 100%10,20  100X10,20  120%12,20
Section 12 (Lxt,d)* 100%x10,18  100x10,20 100X10,20
Weight (kN) 260.4 328.0 546.3
Standard Deviation (m) 2.42x107 1.19x10°3 5.23x10™*
Puiol (%) 8.5x10™ 1.3x10° 1.0x1073
pr (%) 2.3x10" 0.7x107 1.4x10™

* Taken from the double Equal Angle Section table of the Eurocode for every design.

Computational performance

The hardware platform used in this work for the parallel computing is the same as the
one used for the previous test example. The computational performance for obtaining
the multi-objective RDO Pareto front curve is compared in Table 8.12. Again, the solu-
tion of the single-objective DDO(A) and RDO(C) problems, in sequential and parallel
computing environments is examined. It can be seen that the computational time re-
quired for obtaining the RDO(C) optimum solution is two orders of magnitude more
than the corresponding time required to obtain the DDO(A) optimum solutions in se-
quential computing environment. This difference is reduced to one order of magnitude

in the parallel computing environment.

Table 8.122 RDO - Space truss bridge: Computational performance.

. e . Time (s)

Formulation Optimization Generations FE Parallel Parallel

Scheme analyses  Sequential aralle aralle

1% 2%

DDO (A) CEA(5+5) 114 500 91 31 -

RDO (C) CEATmM(5+5)1,3 103 529 8643 552 368
RDO Pareto

CEATmM(5+5)10,3 863 4372 70673 4209 3055

front curve

*In 25 processors.
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8.2.3 Conclusions

In order to account for the response of the structure that is affected by the randomness
of structural parameters, a RDO formulation of the optimization problem has to be ap-
plied. It was shown that for the transmission tower test example, 100 LHS compared to
500 MCS simulations are required in order to calculate accurately the standard deviation
of the structural response, while for the truss bridge test example, 100 LHS compared to
1000 MCS simulations are required. Thus, by applying the LHS scheme to the standard
MCS method, the computational efficiency of the RDO methodology is improved signifi-
cantly.

It was shown that for the specific test examples considered, the standard LWM using a
scalarizing function did not manage to generate good quality Pareto Front curves in
terms of the distribution of the solutions along the curve. On the other hand, the pro-
posed non-dominant cascade evolutionary multi-objective optimization scheme using
the Tchebycheff metric managed to generate well distributed solutions along the curve,
showing the efficiency of the multi-objective optimization method employed.

From the Pareto front curves obtained, the difference between DDO and RDO optimum
designs is demonstrated in terms of the structural weight, the variance of the response
and the probability of violation of the constraints. The two ends of the resultant Pareto
front curves represent two extreme designs. Point A of the Pareto Fronts of Figures 8.12
and 8.19 corresponds to the deterministic optimum where the weight of the structure is
the dominant criterion. Point C is the optimum when the standard deviation of the re-
sponse is considered as the dominant criterion. The intermediate Pareto optimal solu-
tions (such as the one corresponding to point B) are compromise solutions between

these two extreme optimum designs under conflicting criteria.

It was also shown that the computational effort required for obtaining a single RDO so-
lution (such as solution C), is increased by two orders of magnitude more in sequential
computing environment compared to that for obtaining a single-objective deterministic
solution (such as solution A). In the parallel computing environment used in this study,
this difference is reduced to one order of magnitude.

8.3 Reliability-Based Design Optimization (RBDO) assisted by Neural
Networks

In this section, the Reliability-Based Design Optimization problem is examined in two
test examples, a six-story plane frame and a six-story space frame. The probabilistic con-
straint is imposed on the probability of structural collapse due to successive formation of
plastic hinges, taken equal to p,=0.001 for both test examples.

For the solution of the optimization problem, a (u+A)-ES discrete scheme is used, with
p=A=5 for both test examples. The design variables are the cross sections of the structur-
al members, taken from the Eurocode tables for the first test example and the American
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tables for the second test example. The stochastic problem is solved with the MCS tech-
nique enhanced with the Importance Sampling (IS) methodology, described in detail in
Section 2.9. A sample size of 500 is taken for the first test example, while for the second
test example the sample size is 500, 1000 or 5000, in order to study the influence of the
number of simulations on the quality of the optimization solution.

The three Reliability-Based Design Optimization methodologies assisted by Neural Net-
works have been used, where RBDO-NNi corresponds to the proposed RBDO with NN
incorporating algorithm i (i=1,2,3), as described in detail in Sections 6.5.1, 6.5.2 and 6.5.3.

8.3.1 Six-story plane frame - RBDO test example with NN

The six-story plane frame depicted in Figure 8.20 (Papadrakakis et al. 2004a) has been
considered in order to illustrate the efficiency of the proposed metamodel assisted me-
thodology for reliability-based sizing optimization problems.

3m

3 m

3 m

3 m

3 m

3m

3m 5m 4 m

Figure 8.20 RBDO with NN - Six-story plane frame: View of the steel frame model.

The permanent load is taken as G=5kN/m* and the live load is taken as Q=2kN/m*. The
vertical loads are contributed from an effective area calculated with a depth of 5m per-
pendicular to the plane of the frame. The base shear is obtained from the EC8 (CEN
1998) response spectrum. Moreover, the importance factor y; has been taken equal to 1
and the characteristic periods Ty and Ty of the spectrum were considered equal to
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o.15sec and o.60sec, respectively. The damping correction factor is equal to 1.32, since a
damping ratio of 2% has been considered. The dimensions and properties of the frame
are depicted in Figure 8.20.

For beams, a capacity design against shear requires that the following condition is satis-
fied:

Vosa+Visa g5 (8.7)
Vpira

where Vg, is the shear force due to non seismic actions and Vj; s, is the shear force due
to the application of resisting moments with opposite signs at the extremities of the
beam. Moreover, the applied moment should be less than M, s, while the axial load
should be less than 15% of N, gq4. For columns subject to bending with the presence of
axial load the following formula should be satisfied:

N, K, M
sd + Y sd S
Xmin *Npira M p1ra

1 (8.8)

where ymin is the reduction factor for flexural buckling taken equal to 0.7 and «, is a cor-
rection factor to allow for the combined effect of axial load and moment, taken equal to
1. Moreover the shear capacity should be double than the applied shear force. Plastic ca-

pacities for each member section are determined from the expression:

W f
My pg =—2— (8.9)
VMo
A-f
Nyira = z (8.10)
Y473
1.04-h-t,- .
Vg =—o 2 ¥ 8.11
pl,Rd \/g Yato ( )

where yy, and yy, are considered equal to 1.10 (CEN 1993). The inter-story drift constraint
employed in a frame structure can be written as:

% <0.006 -/ (8.12)

where v is a reduction factor for the serviceability limit state (taken equal to 2.5 for the
test example considered in this study) and d, is the relative drift between two consecu-
tive stories. Different drift limits are adopted for the probabilistic and the deterministic
constraints since failure is supposed to take place for considerably higher deformations.
Furthermore, the strength ratio of column to beam is calculated and a check of whether
the sections chosen are of class 1, as EC3 (CEN 1993) suggests, is also carried out. The sec-
tion class check is necessary in order to ensure that the members of the structure have
the capacity to develop their full plastic moment and rotational ductility, while the
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strength ratio of column to beam is necessary in order to have a design consistent with
the strong column-weak beam design philosophy of the seismic code.

(a) (b)
Figure 8.21 RBDO with NN - Six-story plane frame: 3D views of the European I-beams used:
(a) IPE section for the beams, (b) HEB section for the columns.

The cross section of each member of the frame is assumed to be of European I-shape and
one design variable is allocated for each member, while the objective function is the
weight of the structure. The deterministic constraints are imposed on the inter-story
drifts and for each group of structural members. The probabilistic constraint is imposed
on the probability of structural collapse due to successive formation of plastic hinges and
is set to p,=0.001. The probability of failure caused by uncertainties related to material
properties, geometry and loads of the structures is estimated using MCS with the Impor-
tance Sampling technique, described in detail in Section 2.9. The external loads, yield
stress, modulus of elasticity and the dimensions of the cross-sections of the structural
members are considered as random variables. The loads follow a log-normal probability
density function, while random variables associated with material properties and cross-
section dimensions follow a normal probability density function. The required impor-
tance sampling function g,(x) for the loads is assumed to follow a normal distribution. In
Table 8.16 showing the results of the test examples, DDO stands for the conventional De-
terministic Design Optimization approach, RBDO stands for the conventional Reliabili-
ty-Based Design Optimization approach, while RBDO-NNi corresponds to the proposed
Reliability-Based Design Optimization with NN incorporating algorithm i (i=1,2).
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Table 8.23 RBDO with NN - Six-story plane frame:
Characteristics of the random variables for the steel frame.

Random variable ::z?t?::ny density Mean value ds::?ai?;:
E Normal 200 0.10-E
g, Normal 24.0 0.10:0y
Design variables Normal X; 0.1-X;
Loads (G +0.30-Q) Log- Normal 5.6 0.25

Table 8.14 RBDO with NN - Six-story plane frame: IPE sections of the Eurocode.

Thickness Moment of Moment of

Height Thickness Thickness flange inertial, inertial,

IPE Section (mm) (mm) web (mm) (mm) Area (cm?) (cm®) (cm®)
80 8o 46 3.8 5.2 7.64 80.1 8.49
100 100 55 4.1 5.7 10.3 171 15.9
120 120 64 4.4 6.3 13.2 318 27.7
140 140 73 4.7 6.9 16.4 541 44.9
160 160 82 5 7.4 20.1 869 68.3
180 180 91 5.3 8 23.9 1317 101
200 200 100 5.6 8.5 28.5 1943 142
220 220 110 5.9 9.2 33.4 2772 205
240 240 120 6.2 9.8 39.1 3892 284
270 270 135 6.6 10.2 45.9 5790 420
300 300 150 7.1 10.7 53.8 8356 604
330 330 160 7.5 11.5 62.6 11770 788
360 360 170 8 12.7 72.7 16270 1043
400 400 180 8.6 13.5 84.5 23130 1318
450 450 190 9.4 14.6 98.8 33740 1676
500 500 200 10.2 16 116 48200 2142
550 550 210 11.1 17.2 134 67120 2668
600 600 220 12 19 156 92080 3387

The members of the structure are divided into two groups, each one having one design

variable. The type of probability density functions, mean values, and variances of the

random parameters are presented in Table 8.13. The mean value for each geometric vari-

able (i.e. the cross-sectional dimensions) is taken as the value of the current design step

of the corresponding variable x;. The load-displacement curve of a node in the top floor

of the frame is depicted in Figure 8.22, corresponding to the design vector (IPE3o00-

HEB 400). For this test example the (u+A)-ES approach is used with y=A=5, a sample size

of 500 simulations has been examined for the MCS with the importance sampling tech-

nique (Papadrakakis and Lagaros 2002; Papadrakakis and Papadopoulos 1995).
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Table 8.15 RBDO with NN - Six-story plane frame: HEB sections of the Eurocode.

Thickness Moment of Moment of
HEB Height Thickness Thickness flange inertial, inertial,
Section (mm) (mm) web (mm) (mm) Area(cm?) (cm*) (cm*)
100 100 100 6 10 26 450 167
120 120 120 6.5 11 34 864 318
140 140 140 7 12 43 1509 550
160 160 160 8 13 54.3 2492 889
180 180 180 8.5 14 65.3 3831 1363
200 200 200 9 15 78.1 5696 2003
220 220 220 9.5 16 91 8091 2843
240 240 240 10 17 106 11260 3923
260 260 260 10 17.5 118.4 14920 5135
280 280 280 10.5 18 131.4 19270 6595
300 300 300 11 19 149.1 25170 8563
320 320 300 11.5 20.5 161.3 30820 9239
340 340 300 12 21.5 170.9 36660 9690
360 360 300 12.5 22.5 180.6 43190 10140
400 400 300 13.5 24 197.8 57680 10820
450 450 300 14 26 218 79890 11720
500 500 300 14.5 28 238.6 107180 12620
550 550 300 15 29 254.1 136690 13080
600 600 300 15.5 30 270 171040 13530
650 650 300 16 31 286 210600 13980
700 700 300 17 32 306 256900 14 440
800 800 300 17.5 33 334 369100 14900
900 900 300 18.5 35 371 494100 15820
1000 1000 300 19 36 400 644700 16280
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Figure 8.22 RBDO with NN - Six-story plane frame:
Load-displacement curve for the steel frame for a specific design.

Table 8.126 RBDO with NN - Six-story plane frame:
Performance of the methods for the steel frame.

Optimization Optimum Design Optimum

*%* H

procedure (beam-column) Ps weight (kN) Time (h)
DDO (IPE330 - HEB280) 0.88x10" 107 -
RBDO -

(500 simulations) (IPE330 - HEB360) 0.113x10 130 4.7
RBDO-NN1 .

(500 simulations.) (IPE330 - HEB360) 0.113x10 130 43
RBDO-NN2* (IPE300 - HEB400) 0.905x10 > 139 1.1
RBDO-NN3* (IPE300 - HEB400) 0.905x10 > 139 0.8

*For 100000 simulations.
**For 100000 simulations using the NN2 scheme.

As can be observed from Table 8.16 the computed probability of failure pr for the deter-
ministic optimum design is unacceptable since it exceeds substantially the accepted val-
ue 10°. On the other hand, the optimum weight achieved by the RBDO with 500 simula-
tions is heavier by 21% compared to the deterministic one. For the application of the
RBDO-NN1 methodology the number of NN input units is equal to the number of design
variables, whereas one output unit is needed, according to both deterministic and prob-
abilistic constraints. The output unit takes the values 1 or o, corresponding to a feasible
or infeasible design vector, respectively. Consequently the NN configuration imple-
mented in this case has one hidden layer with 10 nodes resulting in a 2-10-1 NN architec-
ture used for all runs. The training set consists of 100 training patterns chosen with the
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requirement that the full range of the design space should be represented in the training
procedure.

For the application of the RBDO-NN2 methodology the number of NN input units is
equal to the number of the random variables, whereas one output unit is needed corres-
ponding to the critical load factor. Consequently, the NN configuration results in a 3-7-1
NN architecture which is used for all runs. The number of step-by-step limit finite ele-
ment analysis calculations performed for the training of NN is taken 60 corresponding to
different groups of random variables properly selected from the random field. As can be
seen in Table 8.16 the proposed RBDO-NN2 optimization scheme, with 100000 simula-
tions, leads to a heavier design by 30% and 6.9% compared to the DDO and the RBDO
with 500 simulations, respectively. As it can be seen, the number of MCS in the case of
NNz scheme can be extremely large without affecting its computational efficiency due to
the trivial computing time required by the NN to perform one Monte Carlo simulation.
In the case of the RBDO-NN3 methodology the advantages of the NN1 and NN2 metho-
dologies are combined leading to the optimum design achieved by the RBDO-NN2 me-
thodology but with less computing effort.

8.3.2 Six-story space frame - RBDO test example with NN

The test example involves the Reliability-Based Design Optimization of a three dimen-
sional frame (Papadrakakis et al. 2004b; Papadrakakis et al. 2005; Plevris et al. 2006a). It
is used in order to illustrate the efficiency of the proposed methodologies for treating
realistic large-scale RBDO problems.
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Figure 8.23 RBDO with NN - Six-story space frame: 3D view, side view and top view.
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The cross section of each member is an American standard steel wide flange beam (W-
shape) and one design variable is allocated for each member. The objective function is
the weight of the structure to be minimized. The deterministic constraints are applied
on the inter-story drifts and on the member stresses. This example consists of 63 ele-
ments with 180 degrees of freedom as shown in Figure 8.23
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Figure 8.24 RBDO with NN - Six-story space frame:
(a) 3D model, (b) Element groups.

The structure is loaded with a gravity load of 19.16kPa on all floor levels and a lateral load
of 110kN applied at each node in the front elevation along the z direction. The members
of the structure are divided into five groups, as shown in Figure 8.23, each one assigned
to one design variable. According to Eurocode 3 (CEN 1993) for the design of steel struc-
tures, the inter-story drift constraint employed for a frame structure can be written as:

% <0.006- A (8.13)

where v is a reduction factor for the Serviceability Limit State (SLS), taken equal to 2.5 for
this test example, and d, is the relative drift between two consecutive stories. The stress
constraint function for beams subjected to biaxial bending under compression, for each
group of structural members, is given by the formula:
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M M
Noa dy ddz <10 (8.14)
Afy/7M1 Wpl,yfy/7M1 Wpl,z fy/7M1

where Ny, Mgy, Msq, are the computed stress resultants, W, W}, are the plastic first
moments of inertia, f; is the yield stress and yy, is a safety factor, taken equal to 1.10 (CEN

1993).

Figure 8.25 RBDO with NN - Six-story space frame:
3D view of the American standard steel wide flange beam (W-shape).
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Figure 8.26 RBDO with NN - Six-story space frame: Load-displacement curve up to failure.
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Table 8.127 RBDO with NN - Six-story space frame: American standard
steel wide flange beam (W-shape) sections, Table 1 of 5.

Height =~ Width Thickness Thickness Momentof Moment of
Designation (in) (in) web (in) flange (in) Area (in®) inertia I, (in*) inertia I, (in%)
W 27x178 27.81  14.08p 0.725 1.19 52.3 6990 555
W 27x161 27.59 14.02 0.66 1.08 47.4 6280 497
W 27 x 146 27.38 13.965 0.605 0.975 42.9 5630 443
W 27 x114 27.29 10.07 0.57 0.93 33.5 4090 159
W 27 x102 27.09 10.015 0.515 0.83 30 3620 139
W 27X 94 26.92 9.99 0.49 0.745 27.7 3270 124
W 27 x84 26.71 9.96 0.46 0.64 24.8 2850 106
W 24 x162 25 12.955 0.705 1.22 47.7 5170 443
W 24 x146 24.74 12.9 0.65 1.09 43 4580 391
W24x131 24.48  12.85g 0.605 0.96 38.5 4020 340
W 24 x 117 24.26 12.8 0.55 0.85 34.4 3540 297
W 24 X 104 24.06 12.75 0.5 0.75 30.6 3100 259
W 24 x 94 24.31 9.065 0.515 0.875 27.7 2700 109
W 24 x 84 24.1 9.02 0.47 0.77 24.7 2370 94.4
W 24 x76 23.92 8.99 0.44 0.68 22.4 2100 82.5
W 24 x 68 23.73 8.965 0.415 0.585 20.1 1830 70.4
W24 x62 23.74 7.04 0.43 0.59 18.2 1550 34.5
W 24 x 55 23.57 7.005 0.395 0.505 16.2 1350 29.1
W 21x 147 22.06 12.51 0.72 1.15 43.2 3630 376
W 21x132 21.83 14.44 0.65 1.035 38.8 3220 333
W21x122 21.68 12.39 0.6 0.96 35.9 2960 305
W 21x111 21.51 12.34 0.55 0.875 32.7 2670 274
W 21x101 21.36 12.29 0.5 0.8 29.8 2420 248
W 21x93 21.62 8.42 0.58 0.93 27.3 2070 92.9
W 21x83 21.43 8.355 0.515 0.835 24.3 1830 81.4
W21x73 21.24 8.295 0.455 0.74 21.5 1600 70.6
W 21x68 21.13 8.27 0.43 0.685 20 1480 64.7
W21x62 20.99 8.24 0.4 0.615 18.3 1330 57.5
W 21x57 21.06 6.555 0.405 0.65 16.7 1170 30.6
W 21x50 20.83 6.53 0.38 0.535 14.7 984 24.4
W 21X 44 20.66 6.5 0.35 0.45 13 843 20.7
W18 x 119 18.97 11.265 0.655 1.06 35.1 2190 253
W 18 x 106 18.73 11.2 0.59 0.94 31.1 1910 220
Wai8x g7 18.59 11.145 0.535 0.87 28.5 1750 201
W 18 x 86 18.39 11.09 0.48 0.77 25.3 1530 175
W18 x 76 18.21 11.035 0.425 0.68 22.3 1330 152
W8 x71 18.47 7.635 0.495 0.81 20.8 1170 60.3
W18 x 65 18.35 7.59 0.45 0.75 19.1 1070 54.8

W 18 x 60 18.24 7.555 0.415 0.695 17.6 984 50.1
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Table 8.28 RBDO with NN - Six-story space frame: American standard
steel wide flange beam (W-shape) sections, Table 2 of 5.

Height = Width Thickness Thickness Momentof Moment of
Designation (in) (in) web (in) flange (in) Area (in®) inertia I, (in*) inertia I, (in%)
Wa8x 55 18.11 7.53 0.39 0.63 16.2 890 44.9
W18 x 50 17.99 7.495 0.355 0.57 14.7 800 40.1
W18 x 46 18.09 6.06 0.36 0.605 13.5 712 22.5
W 18 x 40 17.9 6.015 0.315 0.525 11.8 612 19.1
W18 x 35 17.7 6 0.3 0.425 10.3 510 15.3
W 16 x 100 16.97  10.425 0.585 0.985 29.4 1490 186
W 16 x 89 16.75 10.365 0.525 0.875 26.2 1300 163
W16 x 77 16.52  10.295 0.455 0.76 22.6 1110 138
W 16 x 67 16.33 10.235 0.395 0.665 19.7 954 119
W16 x 57 16.43 7.12 0.43 0.715 16.8 758 43.1
W16 x50 16.26 7.07 0.38 0.63 14.7 659 37.2
W 16 x 45 16.13 7.035 0.345 0.565 13.3 586 32.8
W 16 x 40 16.01 6.995 0.305 0.505 11.8 518 28.9
W16 x36 15.86 6.985 0.295 0.43 10.6 448 24.5
Wa16x31 15.88 5.525 0.275 0.44 9.12 375 12.4
W 16 x 26 15.69 5.5 0.25 0.345 7.68 301 9.59
W 14 x 730 22.42 17.89 3.07 4.91 215 14300 4720
W 14 x 665 21.64 17.65 2.83 4.52 196 12 400 4170
W 14 x 605 20.92 17.415 2.595 4.16 178 10800 3680
W 14 x 550 20.24 17.2 2.38 3.82 162 9430 3250
W 14 x 5oo 19.6 17.01 2.19 3.5 147 8210 2880
W 14 X 455 19.02 16.835 2.015 3.21 134 7190 2560
W14 x 426 18.67  16.695 1.875 3.035 125 6600 2360
W 14 x398 18.29 16.59 1.77 2.845 117 6000 2170
W 14 x 370 17.92 16.475 1.655 2.66 109 5440 1990
W14 X342 17.57 16.36 1.54 2.47 101 4900 1810
W14 x312 17.12 16.23 1.41 2.26 91.4 4330 1610
W 14 x 283 16.74 16.11 1.29 2.07 83.3 3840 1440
W 14 x 257 16.38  15.995 1.175 1.89 75.6 3400 1290
W 14 x 233 16.04 15.89 1.07 1.72 68.5 3010 1150
W14 x 211 15.72 15.8 0.98 1.56 62 2660 1030
W14 x193 15.48 15.71 0.89 1.44 56.8 2400 931
W 14 x 176 15.22 15.65 0.83 1.31 51.8 2140 838
W 14 x 159 14.98 15.565 0.745 1.19 46.7 1900 748
W 14 X145 14.78 15.5 0.68 1.09 42.7 1710 677
W14 x132 14.66 14.725 0.645 1.03 38.8 1530 548
W 14 x120 14.48 14.67 0.59 0.94 35.3 1380 495

W 14 x 109 14.32  14.605 0.525 0.86 32 1240 447
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Table 8.19 RBDO with NN - Six-story space frame: American standard
steel wide flange beam (W-shape) sections, Table 3 of 5.

Height =~ Width Thickness Thickness Momentof Moment of
Designation (in) (in) web (in) flange (in) Area (in®) inertia I, (in*) inertia I, (in%)
W14 x99 14.16  14.565 0.485 0.78 29.1 1110 402
W14 x 90 14.02 14.52 0.44 0.71 26.5 999 362
W14 x82 14.31 10.13 0.51 0.855 24.1 882 148
W14 x74 14.17 10.07 0.45 0.785 21.8 796 134
W14 x68 14.04 10.035 0.415 0.72 20 723 121
W 14 x 61 13.89 9.995 0.375 0.645 17.9 640 107
W14 x53 13.92 8.06 0.37 0.66 15.6 541 57.7
W 14 x 48 13.79 8.03 0.34 0.595 14.1 485 51.4
W14 x43 13.66 7.995 0.305 0.53 12.6 428 45.2
W14 x38 14.1 6.77 0.31 0.515 11.2 385 26.7
W14 x34 13.98 6.745 0.285 0.455 10 340 26.3
W4 x30 13.84 6.73 0.27 0.385 8.85 201 19.6
W14 x 26 13.91 5.025 0.255 0.42 7.69 245 8.91
W4 x22 13.74 5 0.23 0.335 6.49 199 7
W12x336 16.82 13.385 1.775 2.955 98.8 4060 1190
W 12 x 305 16.32 13.235 1.625 2.705 89.6 3550 1050
W12 x 279 15.85 13.14 1.53 2.47 819 3110 937
W12 x 252 15.41 13.005 1.395 2.25 74.1 2720 828
W12 x 230 15.05  12.895 1.285 2.07 67.7 2420 742
W 12 x 210 14.71 12.79 1.18 1.9 61.8 2140 664
W12 x190 14.38 12.67 1.06 1.735 55.8 1890 589
W a2 x 170 14.03 12.57 0.96 1.56 50 1650 517
Wi12x152 13.71 12.48 0.87 1.4 44.7 1430 454
W12 x136 13.41 12.4 0.79 1.25 39.9 1240 398
W12 x120 13.12 12.32 0.71 1.105 35.3 1070 345
W 12 x 106 12.89 12.22 0.61 0.99 31.2 933 301
W12x96 12.71 12.16 0.55 0.9 28.2 833 270
W12x87 12.53 12.125 0.515 0.81 25.6 740 241
W12 x79 12.38 12.08 0.47 0.735 23.2 662 216
Wi12x72 12.25 12.04 0.43 0.67 21.1 597 195
W12 x 65 12.12 12 0.39 0.605 19.1 533 174
W12 x58 12.19 10.01 0.36 0.64 17 475 107
W12 x53 12.06 9.995 0.345 0.575 15.6 425 95.8
W12 x50 12.19 8.08 0.37 0.64 14.7 394 56.3
W12 x 45 12.06 8.045 0.335 0.575 13.2 350 50
W12 x40 11.94 8.005 0.295 0.515 11.8 310 44.1
W12 x35 12.5 6.56 0.3 0.52 10.3 285 24.5

Wi12x30 12.34 6.52 0.26 0.44 8.79 238 20.3
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Table 8.20 RBDO with NN - Six-story space frame: American standard
steel wide flange beam (W-shape) sections, Table 4 of 5.

Height = Width Thickness Thickness Momentof Moment of
Designation (in) (in) web (in) flange (in) Area (in®) inertia I, (in*) inertia I, (in%)
W12 x26 12.22 6.49 0.23 0.38 7.65 204 17.3
Wi12x22 12.31 4.03 0.26 0.425 6.48 156 4.66
Wi12x19 12.16 £4.005 0.235 0.35 5.57 130 3.76
W12 x16 11.99 3.99 0.22 0.265 4.71 103 2.82
W12 x14 11.91 3.97 0.2 0.225 4.16 88.6 2.36
Wiox112 11.36 10.415 0.755 1.25 32.9 716 236
W 10 x 100 11.1 10.34 0.68 1.12 29.4 623 207
W 10 x 88 10.84  10.265 0.605 0.99 25.9 534 179
W 1o x77 10.6 10.19 0.53 0.87 22.9 455 154
W 10x 68 10.4 10.13 0.47 0.77 20 394 134
W 10 x 60 10.22 10.08 0.42 0.68 17.6 341 116
W 10 x 54 10.09 10.03 0.37 0.615 15.8 303 103
Wi1ox49 9.98 10 0.34 0.56 14.4 272 93.4
W10 x 45 10.1 8.02 0.35 0.62 13.3 248 53.4
W10x39 9.92 7.985 0.315 0.53 11.5 209 45
W10x33 9.73 7.96 0.29 0.435 9.7 170 36.6
Waiox30 10.47 5.81 0.3 0.51 8.84 170 16.7
W 10 x 26 10.33 5.77 0.26 0.44 7.61 144 14.1
W 10x 22 10.17 5.75 0.24 0.36 6.49 118 11.4
Wiox19 10.24 4.02 0.25 0.395 5.62 96.3 4.29
Waiox1y 10.11 4.01 0.24 0.33 4.99 819 3.56
Waiox15 9.99 4 0.23 0.27 4.41 68.9 2.89
Waiox12 9.87 3.96 0.19 0.21 3.54 53.8 2.18
W 8 x 67 9 8.28 0.57 0.935 19.7 272 88.6
W 8x:58 8.75 8.22 0.51 0.81 17.1 228 75.1
W 8x48 8.5 8.11 0.4 0.685 14.1 184 60.9
W 8 x 40 8.25 8.07 0.36 0.56 11.7 146 49.1
W 8x35 8.12 8.02 0.31 0.495 10.3 127 42.6
W8x31 8 7.995 0.285 0.435 9.13 110 37.1
W 8x 28 8.06 6.535 0.285 0.465 8.2 98 21.7
W 8x 24 7.93 6.495 0.245 0.4 7.08 82.8 18.3
W8x21 8.28 5.27 0.25 0.4 6.16 75.3 9.77
W 8x18 8.14 5.25 0.23 0.33 5.26 61.9 7-97
W 8x 15 8.11 4.015 0.245 0.315 A 48 3.41
W 8x13 7-99 4 0.23 0.255 3.84 39.6 2.73
W 8x10 7.89 3.94 0.17 0.205 2.96 30.8 2.09
W 6 x 25 6.38 6.08 0.32 0.455 7-34 53.4 17.1

W6 x 20 6.2 6.02 0.26 0.365 5.87 41.4 13.3
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Table 8.21 RBDO with NN - Six-story space frame: American standard
steel wide flange beam (W-shape) sections, Table 5 of 5.

Height =~ Width Thickness Thickness Momentof Moment of
Designation (in) (in) web (in) flange (in) Area (in®) inertia I, (in*) inertia I, (in%)
W6x16 6.28 4.03 0.26 0.405 4.74 32.1 4.43
W6 x15 5.99 5.99 0.23 0.26 4.43 29.1 9.32
W6x12 6.03 4 0.23 0.28 3.55 22.1 2.99
W6x9 5.9 3.94 0.17 0.215 2.68 16.4 2.19
W5 x19 5.15 5.03 0.27 0.43 5.54 26.2 9.13
Wi5x16 5.01 5 0.24 0.36 4.68 21.3 7.51
W4 x13 4.16 4.06 0.28 0.345 3.83 11.3 3.86

The deterministic constraints are eleven in total, two for the stresses of each element
group and one for the inter-story drift. The load-displacement curve of a node in the top-
floor of the frame is depicted in Figure 8.26, corresponding to the design vector
(W 12x26, W 12x33, W 12x87, W 12x87, W 10x60) with a probability of failure equal to
8.68%. For this test example the (u+A)-ES approach is used with p=A=5 following the
rule that y, A should be equal to the number of the design variables. A sample size of 500,
1000 and 5000 simulations have been examined for the MCS with the Importance Sam-
pling technique (described in detail in Section 2.9), in order to study the influence of the

number of simulations on the optimization process.

The probabilistic constraint is imposed on the allowable probability of structural collapse
due to successive formation of plastic nodes and is set to p,=10>. The probability of fail-
ure due to uncertainties related to material properties, geometry and loads of the struc-
ture is estimated using MCS with IS. The external load, the yield stresses, the elastic
modulus and the dimensions of the cross-sections of the structural members are consi-
dered as random variables. The loads follow a log-normal Probability Density Function,
while random variables associated with material properties and cross-section dimensions
follow a normal PDF. The required importance sampling function g,(x) for the loads is
also assumed to follow a normal distribution. The type of PDF, mean value, and variance
of the random parameters are described in Table 8.22.

Table 8.22 RBDO with NN - Six-story space frame: Characteristics of the random variables.

E (kN/m?) Young's Modulus ~ Normal 200 0.10-E
ay(kN/mz) Allowable stress Normal 25.0 0.10-0
X; Design variables Normal X; 0.1:X;

Loads (x103) Log- Normal 6.4 0.20
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Table 8.23 shows the performance of the methods for the formulations considered. DDO
stands for the conventional Deterministic Optimization approach, RBDO stands for the
conventional Reliability-Based Design Optimization approach, while RBDO-NNi corres-
ponds to the proposed Reliability-Based Optimization with NN incorporating algorithm i
(i=1,2).

Table 8.23 RBDO with NN - Six-story space frame: Performance of the methods.

Optimization procedure Genne(:';t)it)iss ps** w:g:tnzlgl\r;; Time (h)
DDO 43 0.171 727 0.05
RBDO (500 siml.) 65 0.105%x10° 869 7.6
RBDO-NNz1 (500 siml.) 64 0.105x10° 873 2.7
RBDO-NN2 (500 siml.) 65  0.105x10° 869 3.6
RBDO (1000 siml.) 68 0.101x10" 875 16.3
RBDO-NN1 (1000 siml.) 69 0.101x10° 875 5.3
RBDO-NN2* 66 0.97x10° 881 5.0
RBDO (5000 siml.) 68 0.101x10° 875 81.1
RBDO-NNa1 (5000 siml.) 69 0.101x10° 875 26.5
RBDO-NN2* 66 0.97x10° 881 5.0

*For 100000 simulations.
**For 100000 simulations using the NN2 scheme.

As can be observed from Table 8.23, the probability of failure for the deterministic opti-
mum is unacceptable since it exceeds substantially the accepted threshold value of 10>.
On the other hand, the optimum weight achieved by the RBDO exceeds by 16% the one
obtained with the deterministic formulation. For the application of the RBDO-NN1 me-
thodology the number of NN input units is equal to the number of design variables, whe-
reas one output unit is needed. The output unit takes the values of 1 or o, corresponding
to a feasible or infeasible design vector, respectively. Consequently the NN configuration
implemented in this case has one hidden layer with 10 nodes resulting in a 5-10-1 NN ar-
chitecture used for all runs (Papadrakakis et al. 1996a). The training set consists of 100
training patterns chosen based on the requirement that the full range of the design space
should be represented in the training procedure.

For the application of the RBDO-NN2 methodology the number of NN input units is
equal to the number of the random variables, whereas one output unit is needed corres-
ponding to the critical load factor. Consequently the NN configuration results in a 3-7-1
NN architecture which is used for all runs (Papadrakakis et al. 1996a). The number of
conventional step-by-step limit state analysis calculations performed for the training of
NN is taken 60 corresponding to different groups of random variables properly selected
from the random field. As can be seen in Table 8.23 the proposed RBDO-NN1 and RBDO-
NN2 optimization schemes for 500 and 1000 simulations manage to achieve the opti-
mum weight in one third of the CPU time required by the conventional RBDO proce-
dure. For 5000 simulations the time required for RBDO-NN1 remains one third (1/3),
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while for the RBDO-NN2z the CPU time required drops to the one sixteenth (1/16) of the
conventional times required. The number of MC simulations in the case of NN2 scheme
can be practically unlimited without affecting the computational efficiency due to the
trivial computing time required by the NN to perform one MCS. The difference on the
computational time needed by the NN1 methodology, for different number of simula-
tions, compared to NN2 is due to the fact that in the first methodology the computation-
al time for the generation of the training set depends on the number of MC simulations
which are required for checking the feasibility with respect to the probabilistic con-
straint. For this example it is observed that when the number of required simulations is
less than 500, the RBDO-NN1 methodology outperforms the RBDO-NN2 methodology,
the two methodologies perform similarly for 1000 simulations, while in the case of more
than 5000 simulations the RBDO-NN2 needs one order of magnitude less computational
time compared to both conventional and RBDO-NN1 methodologies. The computational
time of the conventional RBDO is decreased by 70% when the RBDO-NN1 methodology
is employed.

8.3.3 Conclusions on the two test examples of RBDO with NN

The aim of the proposed RBDO procedure of Sections 8.3.1 and 8.3.2 was threefold:

i. To reach an optimized design with controlled safety margins with regard to various

model uncertainties;
ii. To minimize the weight of the structure;
iii. To reduce substantially the required computational effort.

The solution of realistic RBDO problems in structural mechanics is an extremely compu-
tationally intensive task. In the test examples considered the conventional RBDO proce-
dure was found almost two orders of magnitude more computationally expensive than
the corresponding deterministic optimization procedure. The aim of decreasing the
computational cost by at least one order of magnitude was achieved using;:

i. NN predictions to perform both deterministic and probabilistic constraints check;

ii. NN predictions to perform the structural analyses involved in MCS.

8.4 Reliability-based Robust Design Optimization (RRDO)

In this section two Reliability-based Robust Design Optimization test examples are con-
sidered, namely a 39-bar space truss and a space truss tower. The objective functions
considered are the initial construction cost and the variance of the response of the struc-
ture, while each design is checked whether it satisfies the provisions of the European de-
sign codes for steel structures (Eurocode 3) (CEN 1993) with a prescribed probability of
violation. The uncertainty of loads, material properties and cross section dimensions is
taken into consideration and reliability analysis is performed with the Monte Carlo Si-
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mulation method, described in Section 2.6, combined with the Latin Hypercube Sam-
pling technique of Section 2.8.

The optimization problem is handled with the non-dominant Cascade Evolutionary Al-
gorithm with the weighted Tchebycheff metric, described in Section 4.10.1. In order to
make the application of this robust and efficient optimization procedure feasible to real-
world problems, Neural Networks are implemented to replace the conventional finite
element analyses required by the MCS.

8.4.1 39-bar space truss - RRDO test example

The test example considered is the 39-bar truss structure shown in Figure 8.4 (Lagaros et
al. 2007), the same structure used for the test example of Section 8.1.2. The height of the
structure is 16 m, while its basis is an equilateral triangle of side 6.93m. The model con-
sists of 15 nodes and 39 elements divided into 4 design variables. The design variables
considered are the dimensions of the members of the structure, four groups in total, tak-
en from the Circular Hollow Section table of the Eurocode (CEN 1993), shown in Table
8.3.

For each design variable, two stochastic variables are assigned, the external diameter d
and the thickness t of the circular hollow section. A vertical load V=2kN is applied to all
nodes, while a probabilistic horizontal load F with a mean value 8kN is applied to the
top nodes at the x-direction. The type of Probability Density Function, the mean value,
and the variance of the random variables are shown in Table 8.5.

Three types of constraints are imposed to the sizing optimization problem: (i) stress; (ii)
compression force (for buckling); and (iii) displacement constraints. The constraints are
the same as the ones used for the numerical application of Section 8.1.2. Stress con-
straints are described in Egs. (8.1) and (8.2), buckling constraints are described in Egs.
(8.3), (8.4) and (8.5), while the displacement constraint is described in Eq. (8.6). For this
test example, a constraint of 500mm on the maximum deflection is imposed, as opposed
to the corresponding constraint imposed for the test example of Section 8.1.2, which was

200mim.

Parametric study for MCS with LHS

In order to examine the performance of the MCS combined with LHS, a parametric study
is performed for monitoring the influence of the number of LHS simulations with respect
to the accuracy that the required statistical quantities are calculated. For this reason the
probability of violation of displacement constraint and the standard deviation of the cha-
racteristic node displacement are calculated with respect to the number of LHS simula-
tions for a randomly selected design V. The properties of the specific design V are shown
in Table 8.24.
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Table 8.24 RRDO - 39-bar space truss: Properties of design V for verification.

Property Value
Section 1(Dxt)* 114.3% 6.3
Section 2 (Dxt)* 88.9x8
Section 3 (Dxt)* 101.6 x 8
Section 4 (Dxt)* 114.3% 6.3
Weight (kN) 107.91
Standard Deviation 0.14
Puiol (%0) 2.40

* Taken from the Circular Hollow Section table of the Eurocode

The results of the parametric study for this design can be seen in Figure 8.27. For this
test example 3000 LHS simulations have been considered adequate in order to calculate
with sufficient accuracy the statistical quantities under consideration.
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Figure 8.27 RRDO - 39-bar space truss: Verification for design V.

Solution of the RDO problem

For the solution of the multi-objective optimization problem in question the non-
dominant CEATm(u+A)nmuncsteps Optimization scheme was employed where p=A=s,
nrun=10 and csteps=3. These values have been found to be appropriate for providing
good quality Pareto front curves (Lagaros et al. 2005¢). Two different formulations of the
RDO problem have been considered in this study:

i. The standard RDO formulation;

ii. The RRDO formulations with probabilistic constraints.
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In the case where probabilistic constraints are taken into account, a probability of viola-
tion equal to 2% has been considered. The resultant Pareto front curves for the two RDO
formulations are depicted in Figure 8.28, with the structural weight on the horizontal
axis and the standard deviation of the characteristic node displacement on the vertical

axis.
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Figure 8.28 RRDO - 39-bar space truss: Comparison of the Pareto front curves.

It can be seen from Figure 8.28 that the influence of considering the probabilistic con-
straints is significant when the weight of the structure is the dominant criterion (designs
Arpo and Aggrpo). The two Pareto front curves almost coincide when the importance of
the second criterion (standard deviation of the response) becomes dominant.

Table 8.25 RRDO - 39-bar space truss: Characteristic optimal solutions.

RDO RRDO
DDO (A) (B) (9] DDO (A) (B) (9]
Section 1 (Dxt)* 139.7%4  168.3x6.3 193.7x12.5 139.7x5 139.7X10 193.7X12.5

Section 2 (Dxt)* 139.7X5 219.1x7.1 193.7x12.5 168.3x4.5 114.3X10 193.7X12.5
Section 3 (Dxt)* 101 x 6.3 168.3x8 193.7x12.5 101.6x 10 139.7x8 193.7x12.§
Section 4 (Dxt)* 139.7x4  193.7x6.3 193.7x12.5 139.7x 4 101.6 X 10 273 x7.1

Weight (kN) 27.6 57.7 106.7 33.5 52.0 102.9
Variance (m) 6.04x107 2.62x107 1.34x10° 5.71x10°  2.83x10° 1.35%10°
Puiol (%) 4.2 3.9x10" 9.0x107 1.9 5.1x10" 9.0x107

* Taken from the Circular Hollow Section table of the Eurocode.
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In Table 8.25 three designs are compared which have been selected from the two Pareto
front curves. Designs Bgrrpo versus Brpo and Crrpo versus Crpo are similar, with respect to
both weight and standard deviation of the response, leading to similar probabilities of
violation. On the other hand designs Arrpo and Agpo differ by 17.5% with respect to the
weight and by 6.0% with respect to the standard deviation of the characteristic node
displacement. Moreover the probability of violation of the constraints, in the case of the
Arpo design, is equal to 4.2% while it becomes equal to 1.9% for the Agrpo design.

8.4.2 Truss tower - RRDO test example

The test example considered is the 3D truss tower shown in Figures 8.29 and 8.30 (Laga-
ros et al. 2007). The height of the truss tower is 128 m, while its basis is a rectangle of side
17.07 m. The model consists of 324 nodes and 1254 elements divided into 12 groups that
play the role of the design variables. The design variables considered are the dimensions
of the members of the structure, 12 groups in total, taken from the Circular Hollow Sec-
tion table of the Eurocode (CEN 1993), shown in Table 8.3. For each design variable, two
stochastic variables are assigned, the external diameter d and the thickness t of the circu-
lar hollow section. The type of PDFs, the mean value, and the variance of the random
variables are shown in Table 8.26.

Three types of constraints are imposed to the sizing optimization problem: (i) stress; (ii)
compression force (for buckling); and (iii) displacement constraints. The constraints are
the same as the ones used for the numerical application of Section 8.1.2. Stress con-
straints are described in Egs. (8.1) and (8.2), buckling constraints are described in Egs.
(8.3), (8.4)and (8.5), while the displacement constraint is described in Eq. (8.6). For this
test example, a constraint of 500mm on the maximum deflection is imposed.

Characteristic
-
-~ node

Figure 8.29 RRDO - Truss tower: Top view of the structure.
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Figure 8.30 RRDO - Truss tower: Views of the structure:
(a) 3D view, (b) Front view (dimensions in m).
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Table 8.26 RRDO - Truss tower: Characteristics of the random variables.

fm}lnr‘il:;)l Description PDF Mean value c\:;?gﬁ::?;:
E (kN/m?) Young's Modulus ~ Normal 2.10x10° 7.14
oy(kN/mz) Allowable stress Normal 355000 10.00
F (kN/m?®) Wind loading Normal Fu 40.00
D CHS Diameter Normal D;* 2.0
t CHS Thickness Normal t;* 2.0

* Taken from the Circular Hollow Section table of the Eurocode, for every design

The applied loading consists of:
i.  Self weight (dead load);
ii.  Live loads;

iii. Wind actions according to the Eurocode (CEN 1991).

Parametric study for MCS with LHS

A similar to the previous test example parametric study, is also performed for this test
example, in order to examine the applicability and the efficiency of MCS with LHS. The
probability of violation of the displacement constraint and the standard deviation of the
characteristic node displacement are calculated with respect to the number of LHS simu-
lations for a randomly selected design V. The properties of the specific design V are

shown in Table 8.27.

Table 8.27 RRDO - Truss tower: Properties of design V for verification.

Property Value
Section 1(Dxt)* 114.3% 6.3
Section 2 (Dxt)* 88.9x8
Section 3 (Dxt)* 101.6 x 8
Section 4 (Dxt)* 114.3% 6.3
Volume (m?) 107.91
Standard Deviation (m) 0.26
Puiol (%) 6.80

* Taken from the Circular Hollow Section table of the Eurocode.
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Figure 8.31 RRDO - Truss tower: Verification.

The results of the parametric study for the specific design V are shown in Figure 8.31. For
this test example 3000 LHS simulations have been considered enough in order to calcu-
late with sufficient accuracy the statistical quantities under consideration.

Solution of the RDO problem

For the solution of the multi-objective optimization problem in question the non-
dominant CEATM(U+A)pruncsteps Optimization scheme was employed where p=A=s,
nrun=10 and csteps=3. The resultant Pareto front curves for the two RDO formulations
are depicted in Figure 8.32.

As can be seen from Figure 8.32, the trend on the influence of the probabilistic con-
straints is similar to the one of the previous test example, i.e. it is significant near the
area where the weight of the structure is the dominant criterion. As the importance of
the standard deviation of the response increases, the two Pareto front curves almost co-
incide.
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Figure 8.32 RRDO - Truss tower: Comparison of the Pareto front curves.
Table 8.28 RRDO - Truss tower: Characteristic optimal solutions.
RDO RRDO
DDO (A) (B) (9] DDO (A) (B) (9]
Section 1(Dxt)* 323.9x8.0 355.6x10.0 406.4 % 8.8 323.9x8.0 323.9x8.0 323.9x8.0
Section 2 (Dxt)* 355.6x8.0 219.1x20.0 406.4%10.0 323.9x8.0 323.9x8.0 323.9x12.5
Section 3 (Dxt)* 355.6 x10.0  355.6 X 10.0 406.4x8.8 | 355.6x10.0 355.6x10.0 323.9x12.5
Section 4 (Dxt)* 323.9%X10.0  244.5%16.0 323.9x12.5 | 355.6x10.0 219.1X20.0 406.4 % 8.8
Section 5(Dxt)* 406.4 x 8.8 406.4 % 8.8 406.4 % 8.8 406.4x8.8  323.9x12.5 406.4 % 8.8
Section 6 (Dxt)* 355.6 x 8.0 355.6x8.0  355.6 x10.0 355.6 x 8.0 355.6x8.0  273.0x12.5
Section 7 (Dxt)* 323.9x 8.0 273.0x8.0 323.9x10.0 323.9x8.0 323.9x8.0 219.1x16.0
Section 8 (Dxt)* 323.9%X10.0 323.9%x12.5  244.5%X20.0 | 355.6x10.0 355.6%x10.0 273.0%x16.0
Section g (Dxt)* 323.9x 8.0 323.9x 8.0 355.6 x 8.0 323.9x 8.0 323.9x8.0 323.9x 8.0
Section 10 (Dxt)* 219.1x7.1 323.9x8.0 273.0x12.5 355.6 x 8.0 355.6x8.0 219.1x20.0
Section 11 (Dxt)*  323.9%X10.0  244.5X20.0 244.5%20.0 406.4x8.8  244.5%X20.0 244.5%20.0
Section 12 (Dxt)* 323.9x8.0 323.9x12.5 273.0x16.0 | 323.9x10.0 273.0x12.5 273.0x16.0
Weight (kN) 3874.7 4546.8 4997-3 4231.2 4456.7 4964.7
Variance (m) 4.91x107 3.34%x10° 3.04%10° 4.99%10" 3.34%x10° 2.97x10
Puiol (%) 3.80 2.80x10™ 8.5x107 1.80 2.90x10" 8.0x103

* Taken from the Circular Hollow Section table of the Eurocode.

In Table 8.28 three designs are compared which have been selected from the two Pareto

front curves. Designs Brrpo versus Brpo and Cgrrpo versus Crpo are similar with respect to

both weight and standard deviation of the response while they have similar probabilities
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of violation. On the other hand designs Agrpo and Arpo differ by 10.0% with respect to
the weight and by 2.0% with respect to the standard deviation of the characteristic node
displacement. Moreover the probability of violation of the constraints, in the case of the
Agpo design, is equal to 3.8% while it becomes equal to 1.8% for the Agrpo design.

8.4.3 Conclusions on the two test examples of RRDO

The proposed methodology is tested and validated in the two test examples of Sections
8.4.1and 8.4.2. For both test examples, two objective functions have been considered: the
construction cost and the standard deviation of a characteristic node displacement, rep-
resentative of the structural response under the external loading. Two sets of constraints
are enforced: deterministic constraints on stresses; element buckling and displacements
imposed by the Eurocode 3 (CEN 1993), and a probabilistic constraint on the maximum
probability of violation of the deterministic constraints. Furthermore, due to manufac-
turing limitations the design variables are not considered continuous but discrete. The
discrete design variables are treated in the same way as in single objective design optimi-
zation problems using the discrete version of Evolution Strategies (Papadrakakis et al.
1998a). The design variables considered are the dimensions of the members of the struc-
ture taken from the Circular Hollow Section table of the Eurocode (CEN 1993). The ran-
dom variables related to the cross-sectional dimensions, for both test examples, are two
per design variable: the external diameter D and the thickness ¢ of the circular hollow
section. Apart from the cross-sectional dimensions of the structural members, the ma-
terial properties (modulus of elasticity E and yield stress g,) as well as the lateral loads
have been considered as random variables.

8.5 Reliability-based Robust Design Optimization (RRDO) assisted by
Neural Networks

8.5.1 39-bar truss - RRDO test example with NN

The first test example considered is the 39-bar truss structure of the test example of Sec-
tion 8.4.1. All properties and parameters of this test example are the same as the ones
used for the test example of Section 8.4.1, with the only difference of incorporating NN
predictions instead of conventional methods.

The NN configuration implemented has one hidden layer with 30 nodes resulting in a
fully connected 11-30-4 NN architecture which is used for all runs. The 11 input nodes of
the NN correspond to the random variables of Table 8.5, which are the dimensions D
and t of the four design variables, the modulus of elasticity, the allowable stress of the
structural members and the value of the horizontal load. On the other hand, the four
output nodes of the network correspond to the characteristic displacement, the maxi-

mum displacement, the maximum compressive force and the maximum tensile force.
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Study on the performance of NN predictions

The performance of the NN predictions is demonstrated in Figure 8.33 for a random de-

sign A, shown in Table 8.29.
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Figure 8.33 RRDO - 39-bar space truss with NN: Performance of NN with respect to
the number of the training patterns (for design A, shown in Table 8.29).

Table 8.29 RRDO - 39-bar space truss with NN:
Design A, to be used for checking the performance of NN.

Design variable Cross section

Section1 139.7X12.5
Section 2 193.7x16
Section 3 193.7 X 10
Section 4 168.3x 10

Three different training sets, of size 100, 200 and 500 have been examined, all generated

randomly using the LHS method, while 50 patterns (also randomly generated with LHS)

have been used for testing the prediction capabilities of the trained NN over the entire

range of interest. Due to the special care taken to alleviate the possibility of NN extrapo-

lation (see Section 6.7.1), as can be seen in Figure 8.33, 100 patterns are adequate for

training efficiently the NN. In order to assess the accuracy of the NN predictions, the
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probability of violation was estimated using the same NN architecture trained with 100,
200 and 500 patterns and compared to the “exact” values as obtained by the conventional
LHS-MCS. The results are shown in Table 8.30 for various numbers of MC simulations
where it can be seen that the actual probability of violation is 0.53%, obtained after 5000
MC simulations. It is confirmed that 100 training patterns are adequate for an accurate
prediction since a probability of violation equal to 0.54% is obtained by the NN.

Table 8.30 RRDO - 39-bar space truss with NN: Accuracy study
of the NN predictions for a training set of 100, 200 and 5oo patterns.

Probability of violation (%)

No. of

Monte Carlo NN-100 NN-200 NN-500
Simulations “Exact” patterns patterns patterns
500 1.00 1.40 1.20 1.40
1000 7.00x10"°  9.00x10"  8.00x10" = 9.00x10"
2000 5.50x10°  6.50x10°  6.00x10°  6.50x10 "
3000 5.00X10 " 5.67x10" 5.33x10" 6.33x10"
5000 5.30x10°  5.40x10°  5.20x10°  5.20X10"
10000 5.30X10°  5.40x10°  5.20X10  5.20X10 "

For the solution of the multi-objective optimization problem in question the
non-dominant CEATm ((+A) yrun,esteps Optimization scheme was implemented with p=A=s5,
nrun=10 and csteps=3. These values were found to be suitable for providing good quality
Pareto front curves (Lagaros et al. 2005¢). Four different formulations of the RDO prob-
lem have been considered:

1. The standard RDO formulation;

2. The RRDO_2% with allowable probability of violation of the deterministic con-
straints equal to 2%j;

3. The RRDO_0.1% with allowable probability of violation equal to 0.1%;
4. The RRDO_0.01% with allowable probability of violation equal to 0.01%.

The resultant Pareto front curves for the above mentioned formulations are depicted in
Figure 8.34, with the construction cost on the horizontal axis and the standard deviation
of the characteristic node displacement on the vertical axis.
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Figure 8.34 RRDO - 39-bar space truss with NN: Comparison of the Pareto front curves.

The Pareto front curve shown in Figure 8.34 represents solutions favoring one or the
other objective function. Solutions near optimal design points A favor the objective func-
tion that is related to the initial cost, while solutions near the design points B favor the
objective function that is related to the standard deviation of the response. All other in-
termediate points are compromise solutions between these two optimal solutions that
are conflicting to each other.

It can be seen in Figure 8.34 that the influence of the probabilistic constraint is signifi-
cant near the optimum designs (A;, i=1, ...,4). These designs are located in the Pareto
front area dominated by the initial construction cost (Cpy) of the structure, where the
four designs are substantially affected by the conditions imposed by the probabilistic
constraint. It can furthermore be seen that the four Pareto front curves gradually con-
verge as the importance of the second criterion (standard deviation of the response), in-
creases. In particular, the Pareto fronts, obtained with the RDO and RRDO_2% formula-
tions, approach each other first, followed by the Pareto front of RRDO_0.1%, while all
four Pareto fronts converge at the lower end of the design space.

The optimization formulations considered require different sample sizes for the MCS.
For RDO and RRDO_2% formulations, a sample size of 10 000 was adequate, while for
RRDO_0.1% and RRDO_0.01% formulations, a sample size of 100000 and 500 000 was
required, respectively. Different formulations and consequently different sample sizes
lead to significantly different computing costs. The computational effort required for
solving the optimization problem is given in Table 8.31, where the conventional and the
NN-based computing times are reported. It can be seen that the computational time is
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reduced by three orders of magnitude for RRDO_0.1% and RRDO_0.01% cases when NN
predictions are implemented.

Table 8.31 RRDO - 39-bar space truss with NN: Computational efficiency study.

. No. of Time (h)
Formulation . .
Simulations LHS-MCS MCS-NN
RDO 10000 1.81 2.17x10°
RRDO 2% 10000 1.82 2.16%x10°°
RRDO 0.1% 100000 1.76x10" 2.12x10°
RRDO 0.01% 500000 8.60x10" 2.06x10~

8.5.2 Truss tower - RRDO test example with NN

The second test example considered is the 3D truss tower of the test example of Section
8.4.2. All properties and parameters of this test example are the same as the ones used
for the test example of Section 8.4.2, with the only difference of implementing NN pre-
dictions instead of conventional analyses. This test example is selected in order to dem-
onstrate the performance, in terms of accuracy and computational efficiency, of the pro-
posed optimization scheme for a rather large-scale optimization problem.

The FE model consists of 324 nodes and 1254 elements which are divided into 12 groups
of design variables. The applied loading consists of: (i) self weight (dead load); (ii) live
loads; and (iii) wind actions according to the Eurocode 1 (CEN 1991). The type of PDFs,
the mean value, and the variance of the random variables are shown in Table 8.26. The
horizontal displacement (in the x-direction) of the top node is selected as the characte-
ristic displacement to be monitored, as shown in Figure 8.29.

The NN configuration implemented has one hidden layer with 50 nodes resulting in a
fully connected 27-50-4 NN architecture. The 27 input nodes of the NN correspond to
the random variables of Table 8.26, which are the dimensions D and t of the twelve de-
sign variables, the modulus of elasticity, the allowable stress of the structural members
and the value of the horizontal load.

Study on the performance of NN predictions

The performance of NN is demonstrated in Figure 8.35, where the prediction of the cha-
racteristic displacement, the maximum displacement, the maximum compressive force

and the maximum tensile force are shown for a random design A, shown in Table 8.32.
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Figure 8.35 RRDO - Truss tower with NN: Performance of NN with respect to
the number of the training patterns (for design B, shown in Table 8.32).

Table 8.32 RRDO - Truss tower with NN: Design B,
to be used for checking the performance of NN.

Design variable Cross section
Section1 323.9x16
Section 2 193.7 X 10
Section 3 273X 20
Section 4 219.1x16
Section g 323.9x7.1
Section 6 323.9X16
Section7 244.5X 20
Section 8 273x16
Section g 273X 10
Section 10 244.5%16
Section 11 273X7.1
Section 12 323.9x8.0

Three different training sets, of 100, 200 and 500 sample size have been examined, all

generated randomly using the LHS method. As can be seen, 100 patterns are adequate for
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training efficiently the NN. In accordance to the previous test example, in order to test
the accuracy of the NN predictions, the probability of violation is also assessed for the
three patterns sizes. The obtained results are shown in Table 8.33 where it can be seen
that 500 patterns give a more accurate prediction of the probability of violation com-
pared to 100 or 200 patterns. The computing cost is given in Table 8.34, where the com-
puting times of the conventional and the NN-based optimization procedures are re-
ported. It has to be noted that the computing costs of the conventional RRDO_0.1% and
RRDO_0.01% formulations are estimations due to the excessive computing cost required
for these two cases. It can be seen that the NN-based methodology requires up to three
orders of magnitude less computing time compared to the conventional formulations.
The optimization scheme used in the previous test example is also implemented here
and the resultant Pareto front curves for the RDO formulations are depicted in Figure
8.36 with and without probabilistic constraints. Similar behavior to the previous test ex-
ample can be observed regarding the quality of the Pareto front curves and the dominant
regions of each objective function.

Table 8.33 RRDO - Truss tower with NN: Accuracy study of the
NN predictions for a training set of 100, 200 and 500 patterns.

Probability of violation (%)

No. of

Monte Carlo NN-100 NN-200 NN-500
Simulations “Exact” patterns patterns patterns
500 0.00 0.00 0.00 0.00
1000 1.00x10"  2.00x10°  2.00X10"  1.00x10"
2000 2.00x10°  2.50X10°  2.50X10°  2.00X10 "
3000 2.00x10" 2.33x10™ 2.33x10°  2.00x10"
5000 2.22x10" 2.67x107  2.89x10"  2.44x10"
10000 2.22x10" 2.67x107  2.8g9x10"  2.44x10”

Table 8.34 RRDO - Truss tower with NN: Computational efficiency study.

. No. of Time (hours)
Formulation . .
Simulations LHS-MCS MCS-NN
RDO 10000 53.3 3.08
RRDO 2% 10000 54.2 3.12
RRDO 0.1% 100000 559 * 3.19
RRDO 0.01% 500000 2790 % 3.50

* Estimated.
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Figure 8.36 RRDO - Truss tower with NN: Comparison of the Pareto front curves.

8.5.3 Conclusions on the two test examples of RRDO with NN

The deterministic optimum is not always a “safe” design, since there are many random
factors that affect the design during its lifetime. In order to find the “real” optimum the
designer has to take into account all important random parameters. For this purpose two
separate formulations have been performed in the past: the reliability-based optimiza-
tion and the robust design optimization. However, due to the excessive computational
demands required for addressing these type of problems, all studies were restricted to
very simple academic examples. In the present work a reliability analysis combined with
a robust design optimization formulation is proposed where probabilistic constraints are
incorporated into the formulation of the robust design optimization problem.

The aim of this work in addressing a structural optimization problem considering uncer-
tainties was twofold: (i) In the first part, the influence of the probabilistic constraints was
examined, and in particular those related to the probability of violation of behavioral
constraints, in addition to the variance of the structural response due to a number of un-
certainties; (ii) In the second part, a neural network-based methodology was imple-
mented for accelerating the computational efficiency of the proposed methodology and
making the application of this type of optimization problems feasible for realistic struc-
tures.

The combined RRDO formulation requires structural reliability analyses to be performed
for every candidate design of the ES-based optimizer, in order to determine the maxi-
mum probability of violation of the constraints. Depending on the value of the allowable
probability of violation, different sample sizes are used in order to calculate with an ac-
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ceptable accuracy the statistical quantities under consideration, i.e. the standard devia-
tion of the structural response and the probability of violation of the constraints. The
Pareto front curves obtained for the combined reliability-based robust design optimiza-
tion and the robust design optimization formulations are much different when the initial
construction cost is predominant in the objective function. However, when the standard
deviation criterion becomes dominant, the Pareto front curves for various probabilities
of violation almost coincide. Consequently, the optimum initial construction costs
achieved by the combined reliability-based robust design optimization formulations are
larger than the corresponding initial construction cost achieved by the robust design op-
timization. Furthermore, it was observed that an increasing influence of the standard
deviation in the objective function, forces the robust optimum design to produce results
very close to those obtained by the combined reliability-based robust design optimiza-
tion formulations close to the right end of the Pareto front curve.

It has been also demonstrated that the solution of a combined RRDO of real-world prob-
lems in structural mechanics is an extremely computationally intensive task. Although
the Latin Hypercube Sampling methodology has been implemented for improving the
computational efficiency of the Monte Carlo Simultion method, the computational cost
remains excessive making the solution of such problems computationally unsolvable. In
this work, a neural network assisted methodology has been proposed in order to obtain
estimates of the structural response required during the reliability analysis with the
Monte Carlo Simulation method. The obtained NN estimates have shown to be very sa-
tisfactory in terms of accuracy for performing this type of computations. Furthermore,
the present numerical results manage to achieve a reduction in computational time up to
four orders of magnitude, for low probabilities of violation, compared to the convention-
al procedure making thus feasible the reliability-based robust design optimization of rea-
listic structures under probabilistic constraints.
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9 Conclusions

9.1

Original contribution of the thesis

The objective of the present thesis was to develop algorithms and methodologies for

solving the problem of structural design optimization considering uncertainties. The

problem can be stated in various forms, such as Reliability-Based Design Optimization
(RBDO), Robust Design Optimization or the combined Reliability-based Robust Design
Optimization (RRDO) problem. These problems have some unique characteristics and

require a set of different algorithms and techniques in order to be solved:

i.

ii.

iii.

1v.

For the basic optimization process, a single-objective optimization algorithm is re-
quired. The algorithm should be robust and efficient, capable of finding the global
optimum, without being trapped in local optima, with a satisfactory convergence
rate and consequently not requiring excessive computational effort.

For the stochastic analysis part of the methodology, a technique is required that
can calculate the statistical quantities that are affected by the random variables of
the model. These quantities can be probabilities, such as the probability of failure
of the structure or the probability of violation of the behavioral constraints of the
optimization problem, or other statistical parameters (mean value, standard devia-
tion, etc) of derived random quantities.

For the multi-objective optimization problem encountered in the RDO or in the
RBDO formulations considering multiple objectives, a multi-objective optimiza-
tion algorithm is required. The algorithm should be able to provide a well distri-
buted Pareto Front, without being trapped in local optima, even when non-convex
functions are describing the optimization problem.

Due to the fact that the problem of optimum structural design considering uncer-
tainties, in any one of its formulations, is extremely computationally intensive, es-
pecially when real-world large-scale structures with many design variables and/or
random variables are considered, it is required to implement some special tech-
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niques, such as metamodels, that can help in substantially reducing the computa-
tional effort of the whole process.

The present thesis contributed to each one of the four points mentioned above, as will be
described in detail in the next sections.

9.1.1 Single-objective optimization

The RBDO, RDO and RRDO problems are computationally very expensive. Conse-
quently, the single-objective optimizer used for these problems should be efficient and
robust, without requiring excessive computational effort in order to locate the optimum.
Furthermore, it should be a global optimizer, capable of finding the global optimum,
without being trapped in the various local optima that might exist in the design space. In
the present thesis, Evolutionary Algorithms (EAs) were mainly used and in particular the
Evolution Strategies (ES) algorithm. A first version of the algorithm for structural optimi-
zation was implemented by Papadrakakis et al. (1998a). In the present thesis, the algo-
rithm was used in its discrete and continuous forms and was fine-tuned in order to be
robust and efficient for the optimization needs. Furthermore, the idea of cascading was
implemented in the present thesis in an ES context, with the Cascade Evolutionary Algo-
rithm CEA(u+24), consisting of a number of ES(u+A) optimization stages. The main ES
algorithm used, as well as the cascade ES scheme exhibited very good performance in the
numerical applications where they were tested.

In an effort to improve the single objective optimization process and achieve faster con-
vergence rates and better global behavior, other optimization algorithms were also stu-
died and tested. One of them, namely the Particle Swarm Optimization (PSO) algorithm,
a rather new methodology that has gained considerable attention during the last years in
the academic community, was found to be very promising for use in structural optimum
design. For the special needs of a constrained structural optimization problem, the tradi-
tional PSO algorithm was enhanced in the present thesis with a non-linear weight up-
date rule and an efficient constraint handling technique that produced very good results
in terms of the achieved optimum and the convergence history, compared to results
from the literature. The proposed weight update rule showed to improve the efficiency of
the optimization process, achieving better convergence behavior than other rules. The
proposed constraint handling technique, based on a linear segment penalty function,
showed very good performance, since it always led to feasible optimal designs, while also
taking advantage of infeasible designs during the optimization procedure.

For further improving the computational efficiency of PSO for single-objective optimiza-
tion problems, the PSO algorithm was also combined with a Sequential Quadratic Pro-
gramming (SQP) mathematical programming method, in a new PSO-SQP algorithm. The
hybrid algorithm proved to be a robust and efficient methodology for structural optimi-
zation problems, producing excellent results in the numerical applications where it was
tested, achieving the same quality of results as the PSO methodology, in far better com-
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putational time, by combining the global search abilities of the PSO with the local search
abilities of the SQP algorithm.

9.1.2 Stochastic analysis

The stochastic analysis part of the methodology must be efficient, capable of yielding
satisfactory results in demanding cases, where various stochastic variables are considered
taking values from arbitrary probability density functions. In general, either analytical or
sampling methodologies can be used, as described in detail in Chapter 2. Analytical me-
thods, such as the First- and Second-Order Reliability Methods (FORM-SORM) and the
Response Surface Method (RSM) exhibit significant limitations. FORM and SORM entail
prior knowledge of the mean and the variance of each random variable, while a differen-
tiable failure function is also required. Furthermore, they can be affected by the presence
of various local optima for the optimization problem of finding the Most Probable Point
(MPP). Also RSM requires a good approximation of the performance function around the
design point and since the actual limit state function and the actual design point are not
known a priori, the accuracy of the reliability estimate depends on the accuracy of the

polynomial approximation.

In the present thesis, a Monte Carlo Sampling (MCS) methodology was used, having the
strong advantage of being capable of handling every possible case, regardless of its com-
plexity. The only drawback of the method is that it can be very computationally expen-
sive, requiring in most of the cases an excessive number of simulations in order to pro-
vide reliable results. When combined with an optimization problem, the situation re-
garding the computational effort becomes even worse. For this reason, the MCS metho-
dology was combined in the present thesis with special sampling methodologies, in par-
ticular Importance Sampling (IS) and Latin Hypercube Sampling (LHS). These methods
proved to work very well by reducing significantly the computational cost of the purely
random sampling methodology (Crude MCS).

The above enhancements for the stochastic analysis process were not implemented as a
stand-alone procedure, but within a structural optimization algorithm, either with a sin-
gle or with multiple objectives. The resultant RBDO, RDO and RRDO algorithms that
were developed proved to be efficient for handling various test examples, ranging from
simple plane structures to high-rise large-scale 3D structures.

9.1.3 Multi-objective optimization

In the context of optimum structural design considering uncertainties, a multi-objective
optimization problem is encountered either in the RDO formulation or in RBDO formu-
lations considering multiple criteria. In the present thesis, various methodologies were
used and tested for solving the multi-objective optimization problem and providing the
resultant Pareto Front (PF). The ES method combined with standard methods such as
the Linear Weighting Method (LWM), the Distance Function Method (DFM) or the Con-
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straint Method (CM), was first implemented. These schemes managed to give good re-
sults in some test examples.

Two new multi-objective methodologies were also proposed and tested, namely the ES-
MO algorithm, the CEATm cascade algorithm. A multi-objective structural optimization
problem under dynamic loading was solved for the first time, with the Direct Time Inte-
gration (DTI) and the Response Spectrum Modal Analysis (RSMA) methods. The pro-
posed algorithms proved to be efficient for providing a complete and detailed Pareto
Front even in difficult cases where the multi-objective problem was not examined on its
own, but within a RDO methodology.

9.1.4 Computational effort

Engineering problems that were once considered difficult or even impossible to handle
due to their enormous computational requirements, can now be solved in a few seconds
using a conventional personal computer. Nevertheless, despite the increased efficiency of
high-performance today’s computers, the available computing power is never enough to
satisfy the demands of the researchers - engineers. New, more computationally demand-
ing formulations of engineering problems arise, that need to be solved.

Compared to a simple linear analysis problem, an optimization problem can be consi-
dered three to four orders of magnitude more computationally demanding, or even more
for complex structures with many design variables. Similarly, a stochastic analysis prob-
lem, where random variables are taken into account and the probability of structural
failure or other statistical quantities have to be calculated, can be considered three to
five orders of magnitude more computationally demanding than a linear analysis prob-
lem. This number can further increase if many random variables are taken into account
and/or very small probabilities are to be calculated.

Thus, it is obvious that the combined problem of optimum structural design considering
uncertainties is extremely computationally intensive. One of the objectives of the
present thesis was to propose methodologies for improving the computational efficiency
of the RBDO, RDO and RRDO algorithms that deal with the problem of structural opti-
mization considering uncertainties. Although the computational cost was reduced, up to
a certain point, using efficient optimizers and improved sampling techniques, it still re-
quired further reduction, especially for real-world large-scale problems with many design
and/or random variables. In order to significantly reduce the computational effort and
overcome the practical difficulties, the present thesis proposes the use of Neural Network
(NN) metamodels to obtain estimates of the structural response required during the re-
liability analysis with the MCS method. The obtained estimates based on NN predictions
have shown to be very satisfactory in terms of accuracy, while they lead to a reduction up
to four orders of magnitude in computational time, making thus feasible the design op-
timization of realistic structures considering uncertainties.
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9.2 Overall conclusions

Apart from the conclusions discussed in detail in Chapters 7 and 8 for every numerical
application that was studied, the research work done for the thesis led to the following
fundamental overall conclusions:

e Uncertainties in structural mechanics, analysis and design can play an extremely
important role, affecting not only the safety and reliability of structures and me-
chanical components, but also the quality of their performance.

e The optimum design obtained by a deterministic optimization formulation can
have limited value, as it can be severely affected by the uncertainties that are inhe-
rent in the model. The deterministic optimum can be associated with unaccepted
probabilities of failure, or it can be vulnerable to slight variations of some uncer-
tain parameters. The RBDO and RDO formulations can heal these problems, by
taking into account the uncertainties in the optimum design process, as shown in
the numerical applications sections of the thesis.

e The computational effort for considering the probabilistic optimum design is
enormous. To reduce the computational burden, it is necesary to use efficient op-
timization algorithms and efficient sampling techniques for the stochastic analysis
process.

e For further reducing the computational cost, NN metamodels can be applied as
proposed in the thesis, providing acceptable numerical results at very low compu-
tational cost.

e The methodologies proposed in the thesis for the probabilistic optimum design
can be applied to real-world structures. This is an indication that time is not far off
when such design procedures will be common practice in structural engineering,
possibly also adopted by the design codes.

The main objective of the thesis was to unify the concepts of probability-based safety
analysis and structural optimization and provide the necessary numerical tools to deal
with optimization problems considering uncertainties. The work aimed to uncover the
advantages of the methodologies and to show how they can be applied in a practical way
to deal with realistic structures.

The ultimate research goal is to establish the use of these methods as the state of the art
in the near future and try to encourage practice towards that direction, away from the
current use of safety factors and trial and error processes for the design of structural sys-
tems.

9.3 Future work

A research topic can be never considered as fully covered. It is clear that any piece of re-

search work leaves many open issues for future research and sometimes it seems to raise
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more questions than it has answered. Following the investigation described in this thesis,
there are some natural extensions to this work that would help expand and strengthen
the methodologies proposed and the obtained results:

e In an effort to further improve the computational efficiency of the methodologies
described in the thesis, the extended implementation of parallel processing would
be of great value. Parallel processing can be implemented in various parts of the
methodologies:

i. In the evolutionary optimization process, either with ES or with PSO, parallel
processing can be implemented by assigning a processor to every member of
the population, thus calculating the response of every generation or iteration
at once.

ii. Also for the SQP part of the hybrid PSO-SQP methodology, the gradients re-
quired for the line search with the global finite difference method can be cal-
culated in parallel for every dimension of the problem, speeding up the SQP
procedure.

iii. In the multi-objective optimization process using scalarizing functions, paral-
lel processing can be implemented by assigning a processor to every individual
optimization run, thus calculating all the Pareto Front at once.

iv. In a MCS procedure, either with LHS or in its basic form, parallel processing
can be implemented by assigning a processor to every simulation, or to a
number of simulations if the sample size is large, more than the number of the
available processors. Then, the calculation of the statistical quantities can be
done at once, or in a significantly lower number of runs.

e In order to further reduce the computational effort, different metamodels can be
applied and tested, in comparison to the existing NN metamodels proposed in the
present thesis. Considerable improvements in model-reduction methodologies in
recent years have led to a growing interest in the field of Reduced Order Models
(ROMs) across the simulation-based engineering science. These surrogate models
can provide cost-efficient representations of large-scale computational systems and
their implementation in a RBDO/RDO context would be of great interest (Weick-
um et al. 2008).

e The PSO methodology used in the thesis was applied to single objective optimiza-
tion problems with continuous design variables, as the implementation of the me-
thod came at the end of the research work. It would be of interest to apply also a
discrete version of PSO for structural optimization, where members can take val-
ues from given sets instead of continuous values, and test it in comparison to the
discrete version of the ES methodology that was used in the thesis.

e The PSO can also be applied to multi-objective optimization problems, as an alter-
native to the ES-based methodologies that were used in this work. A comparison of
the ES-based and PSO-based methods for multi-objective structural optimization
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would be very interesting. The two methods share many similarities and conse-
quently the same multi-objective methodologies can be possibly used, with minor
modifications.

e The PSO algorithm was not tested as a part of an optimization procedure consider-
ing uncertainties. It would be very interesting to implement the PSO methodology
in a RBDO/RDO context, as an alternative to the ES method used, highlight the
differences in the methodologies and compare their results.
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Appendix A.
Notation and Symbols

This appendix contains the details of the mathematical notation used in the thesis. A no-

tation based on ISO 31-u (ISO 1993) is mainly followed, with some exceptions and addi-

tions. The following general rules are applied:

The International System of Units (SI) base units as well as the SI derived units are
basically used, unless otherwise stated.

Italic letters are used for variables (a, x), parameters or functions (f; g), while vec-
tors and matrices are denoted by boldface letters, lowercase (x, r) and uppercase
(A, M), respectively.

Physical quantities consist of a numeral times a unit. These are typeset following
the recommendations of ISO 1000 (ISO 1993). The units (and their prefixes) as well
as the numbers are printed in upright Roman type, so as to differentiate from the
italic type used for variables (m for mass, [ for length), while a thin space (narrower
than that between words) separates the number and the symbol (2.2kg, 5kN). This
rule explicitly includes the percent sign.

Multiplication between numbers in the numerical value of a physical quantity is
indicated by a “x” while symbols for derived units formed from multiple units by
multiplication are joined with a thin space or center dot (-), for example

"5x10°kNm" or "5x10°kN-m.

A thin space is used as a thousand separator in contrast to commas or periods in
order to reduce confusion (10000kPa).

Vector or matrix components are denoted with the index notation. In this nota-
tion, u; is the i-th component of vector u, while M;; is the i j-th component of ma-
trix M.

Individual vectors that belong to a set of vectors are denoted using a superscript,
for example vector v, j=1, ..,n, in order to avoid confusion with vector elements

that are denoted with subscripts, as described above.

The index notation is also used for shorthand notation of partial derivatives, for
example 9, f(u,t) = 3f (u,t)/ 9t is the partial derivative of the function flu,t) with

respect to t.

The lists below present analytically the mathematical notation used in the thesis.
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Appendix A

i. Mathematical Logic

Symbol Name Meaning / Example
A Conjunction sign p A gmeans “p and q”
v Disjunction sign p v gmeans “p or q (or both)”
— Negation sign The statement - p means “negation of p”; “not p”;
“non p”. It is true if and only if p is false
= Implication sign p = g means “if p then q”; “p implies ¢”
v Universal quantifier For all, for every
3 Existential quantifier There is, there exists
ii. Sets
Symbol Meaning Example and verbal equivalent
€ Belongs to; is an element of  x € A means “x belongs to A”
¢ Does not belong to; isnotan x ¢ A means “x does not belong to A”
element of
E) Contains A > x means “set A contains x” (as an ele-
ment)
? Does not contain A 3 x means “set A does not contain x” (as an
element)
A3xeo xeg A
{..} Set with elements {x,, x,, x;} means “a set with elements x;, x,, x;”
{..1..} Setwith elements for which  {x € A | p(x)} means a set of those elements of
a proposition is true A for which the proposition p(x) is true
card Number of elements in a set; card(A) means the number of elements in A
cardinal of a set
[..,..] Closed interval inR [a,b] ={x € R |a<x<b}
(..,..) Openinterval in R (a,b)={x€ R |la<x<b}
(..,..] Left half-openintervalin R  (a,b] ={x € R | a<x < b}
[..,..) Right half-open interval in [a,b)={x€ R |asx<b}
R
c Is included in B € A means “Bis included in A”; “B is a sub-
set of A”; “every element of B belongs to A”
C Is properly included in B c A means “B is properly included in A”; “B

”, «

is a proper subset of A”; “every element of B
belongs to A, but B is not equal to A”
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(V]

Rn

Rmxn

Cn

Can

Is not included in

Includes

Includes properly

Does not include

Union of two sets

Intersection of two sets

Difference of two sets;
one set minus another

Empty set

The set of natural numbers;
the set of positive integers
and zero

The set of integer numbers

The set of rational numbers
The set of real numbers

Euclidean n-dimensional
real vector space

Euclidean mxn-dimensional
real matrix space

The set of complex numbers

Euclidean n-dimensional
complex vector space

Euclidean mxn-dimensional
complex matrix space

C € A means “Cis not included in A”; “C is not
a subset of A”

A 2 B means “A includes B (as subset)”; “A
contains every element of B”

A D B means “A includes B properly”; “A con-
tains every element of B, but A is not equal to
B’,

A 2 C means “A does not include C (as sub-
set)”

ApCsCgA

A U B means “Union of A and B’, i.e. “the set
of elements which belong to A or to B or to
both A and B”

AUB={x|xeAvxeB}

A N B means “Intersection of A and B’, i.e.
“the set of elements which belong to both A
and B’

ANnB={x|xeAArxeB}

A\ B means “the set of elements which be-
long to A but not to B”

A\B={x|xeAArxe¢B}

The empty set is an implicit member of every
set

N={o,1,2,3,..}

7 =A{..,—3,-2,-1,0,1,2,3,...}

Set of all n-dimensioned vectors with real en-
tries

Set of all mxn matrices with real entries

Set of numbers consisting of a real and an im-
aginary part

Set of all n-dimensioned vectors with complex
entries

Set of all mxn matrices with complex entries
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iii. Miscellaneous signs and symbols

Symbol Meaning Example / verbal equivalent

= Is by definition equal to a: = b means “a is by definition equal to b”

= Is equal to a = b means “a is equal to b”

* Is not equal to a # b means “a is not equal to b’

~ Is approximately equal to a = b means “a is approximately equal to b”

= Is asymptotically equal to a = b means “a is asymptotically equal to b”

2 Corresponds to On a map: 1cm £ 1km

~ Is proportional to a ~ b means “a is proportional to b”

< Is less than * a < b means “a is less than b”

> Is greater than * a > b means “a is greater than b”

< Is less than or equal to * a < b means “a is less than or equal to b”

> Is greater than or equal to * a = b means “a is greater than or equal to b”

< Is much less than * a < b means “a is much less than b”

> Is much greater than * a » b means “a is much greater than b”

oo Infinity )lgg f(x) = means “the limit of function
flx) as x approaches infinity is infinity”

I Is parallel to AB || CD means “the line AB is parallel to
the line CD”

1 Is perpendicular to AB L CD means “the line AB is perpendicular
to the line CD”

I Identity matrix Matrix containing ones at its diagonal and
zeros everywhere else

X' Transpose of matrix X 1 2 1 3
3 4] |2 4}

X! Inverse of matrix X

Ix

sgn(x)

]

Positive square root of scalar
X

Absolute value of scalar x **

Signum of scalar x **

Fuclidean norm of vector x

2 4T [ 35 —2}
13 7 15 1

Ja=2

|-5=5
-1 ifx<o
sgn(x) =4 0 ifx=o0
1 ifx>o

lx|=vx" x=x2+...+x2
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9 Partial derivative 3 f(ut) =9f(ut)/ &
\Y% Gradient of Vf is the gradient vector of f(x)
v? Hessian of V2 f is the hessian matrix of f{x)

* When used for comparison of vectors or matrices instead of scalars, it means entrywise
comparison of vectors or matrices, i.e. for vectors a, b, the expression a < b means a; < b;
for every i.

** See paragraph vii (Complex numbers) for corresponding definition for complex num-
bers.

iv. Operations

Symbol Meaning Example / verbal equivalent
+ Addition (“plus”) 2+5=7
- Subtraction (“minus”) 8-2=6
- Or X Multiplication (“times”) for sca- 5-3=15
lars, vectors or matrices L 21T1 o 5 2
RN S
/ Division (“divided by”)
+ Plus or minus a = b means “a plus or minus b”
F Minus or Plus a ¥ b means “a minus or plus b”

Hadamard product (entry-wise
product or Schur product) for vec-
tor or matrix multiplication

—(axb)=aFh

e ]

v. Variables

Style Example Meaning

italics x,a,n,it Scalar variable or
f,9,h Scalar function

Boldface italics x,ar,s,t Vector variable or
f,9.h Vector function

Upright

Boldface uppercase italics

cos, sin, max, min
d (differential operator)
X, A RS T

Explicitly defined functions and
operators

Matrix variable
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Boldface number 0,1 Vector or matrix containing the
specific number for every ele-
ment
Underlined italics X, ars,t Scalar random variable

(Hemelrijk 1966)
Boldface underlined italics x,a, r, s, t Vector random variable

Boldface uppercase under- X,A, R, S, T
lined italics

Matrix random variable

Capital Calligraphic F AL Set, Space
Subscript x=[x,, ..., Xn] Vector components or
M, M, Matrix components or
= {M M, }

9. f(u,t) = 9f(u,t)/ 9t

Partial derivatives

vi. Constants

Symbol Meaning Approximate value
I Ratio of the circumference of a cir- 7 = 3.1415926

cle to its diameter
e Euler's number, base of natural e =2.7182818

logarithms

vii. Complex numbers

Symbol Meaning Example and verbal equivalent
A Imaginary unit 2=
Re(z) Real part of a complex number z Re(x+y.i)=x
Im(z) Imaginary part of z Im(x+y.)=y
|z | Absolute value of z |x+yi|=x*+y
arg(z) Argument of z; the angle between the  z = x + y.i = rcos(p) +.irsin(¢p)
positive real axis and the vector rep- _
resenting z on an Argand diagram. where:
r=|z| and ¢=arg(z)
zZ Conjugate of z X+yi=Xx—yi
sgn(z) Signum of z sgn(z)=z/|z|, for z+o

sgn(z)=o, for z=0
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viii. Special notation for multi-objective optimization

Symbol Meaning Example and verbal equivalent

= Weakly dominates u > v means “objective vector u weakly
dominates objective vector v’

- Dominates u > v means “objective vector u dominates
objective vector v’

= Strictly dominates u >> v means “objective vector u strictly
dominates objectivess vector v”

= Is weakly dominated by u < v means “objective vector u is weakly
dominated by objective vector v’

< Is dominated by u < v means “objective vector u is domi-
nated by objective vector v”

<< Is strictly dominated by u << v means “objective vector u is strictly
dominated by objective vector v’

<> Is incomparable to (or indif- u <> v means “objective vector u is incom-

ferent to)

parable to objective vector v’

ix. Statistical operators

Symbol Meaning Example and verbal equivalent

E(x) Expected value operator E(x) = jx - f(x)dx is the mean value, or ex-
pected Hflalue of random variable x with
Probability Density Function f{x)

var(x) Variance operator var(x) = IE( (x—p)? ) is the variance of ran-
dom variable x with x = E(x)

cov(x, X) Covariance operator cov(x, X) =E((x—u)-(x—v)) is the covari-

ance of random variables x and y with
4 =E(x) and v = E(y)







Appendix B.
Acronyms and Abbreviations

This appendix contains an alphabetized listing of the acronyms and abbreviations used
in the text, figures and tables of the dissertation.

i. Acronyms

Acronyms in text are spelled out the first time that they appear in each chapter, with the
shortened form appearing immediately in parentheses. Thereafter, the shortened form is
used throughout the chapter.

Acronym Description

Al Artificial Intelligence

BFGS Broyden-Fletcher-Goldfarb-Shanno
BPNN Back-Propagation Neural Network
CDF Cumulative Distribution Function
CEA Cascade Evolutionary Algorithm
CHS Circular Hollow Section

CM Constraint Method

CPU Central Processing Unit

CSA Conventional Semi-Analytical

DDO Deterministic Design Optimization
DFM Distance Function Method

DM Decision Maker

DOF Degree Of Freedom

DS Descriptive Sampling

DTI Direct Time Integration

EA Evolutionary Algorithm

EAS Equal Angle Section

EP Evolutionary Programming

ES Evolution Strategy or Evolution Strategies
ESA Exact Semi-Analytical

ESMO Evolution Strategy for Multi-objective Optimization
FEA Finite Element Analysis

FEM Finite Element Method

FLS Fatigue Limit State

FORM First-Order Reliability Method
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GA Genetic Algorithm

GFD Global Finite Difference

GP Goal Programming

GRG Generalized Reduced Gradient

HSS Hammersley Sequence Sampling

IS Importance Sampling

KKT Karush-Kuhn-Tucker

LHS Latin Hypercube Sampling

LMS Least Mean Squares

LWM Linear Weighting Method

MCS Monte Carlo Simulation

MLHS Median Latin Hypercube Sampling

MMA Method of Moving Asymptotes

MOP Multi-objective Optimization Problem

MP Mathematical Programming

MPP Most Probable Point

MSE Mean Square Error

NFL No Free Lunch

NLP Non-Linear Programming

NN Neural Network

PDF Probability Density Function

PF Pareto Front

PSO Particle Swarm Optimization

PVM Parallel Virtual Machine

QP Quadratic Programming

RBDO Reliability-Based Design Optimization

RDO Robust Design Optimization

RNN Recurrent Neural Network

ROM Reduced Order Model

Rprop Resilient propagation

RRDO Reliability-based Robust Design Optimization

RSM Response Surface Method

RSMA Response Spectrum Modal Analysis

SA Semi-Analytical

SI Le Systéme International d’'Unités (French)
International System of Units (English)

SLP Sequential Linear Programming

SLS Serviceability Limit State

SOP Single-objective Optimization Problem

SORM Second-Order Reliability Method

SQP Sequential Quadratic Programming

SRSS Square Root of the Sum of Squares

TRM Trust-Region Method
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ULS
WQM
XOR

Ultimate Limit State
Weighted Quadratic Method
Exclusive OR

ii. Abbreviations

Abbreviation Description
a.k.a. also known as
e.g. exempli gratia (Latin)
for sake of example, for example (English)
ed. editor
Eq. equation
et al. et alii (Latin)
and others (English)
etc. et cetera (Latin)
and so forth (English)
ie. id est (Latin)
that is (English)
no. numero (Latin)

number (English)
page
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